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Abstract. Attribute-based encryption (ABE) is a promising crypto-
graphic primitive achieving fine-grained access control on encrypted data.
However, efficient user revocation is always essential to keep the system
dynamic and protect data privacy. Cui et al. (ESORICS 2016) proposed
the first server-aided revocable attribute-based encryption (SR-ABE)
scheme, in which an untrusted server manages all the long-term trans-
form keys and update keys generated by key generation center (KGC) in
order to achieve efficient user revocation. So, there’s no need for any user
to communicate with KGC to update his/her decryption key regularly.
In addition, the most part of computational overhead of decryption is
outsourced to the server and user keeps a small size of private key to
decrypt the final ciphertext. Then, Qin et al.’s (CANS 2017) extended
Cui et al.s’ work to be decryption key exposure resistant (DKER).

Unfortunately, current SR-ABE schemes could only be provably
secure in one-user setting, which means there’s only one “target user”
id∗ with an attribute set Sid∗ satisfying the access structure (M∗, ρ) in
the challenge ciphertext, i.e., Sid∗ � (M∗, ρ). However, a more reasonable
security model, i.e., multi-user setting, requires that any user id in the
system can be with an attribute set Sid � (M∗, ρ), and the adversary
is allowed to query on any user’s private key SKid and his/her long-
term transform key PKid,Sid as long as his/her identity id is revoked at
or before the challenge time t∗. How to construct a SR-ABE secure in
multi-user setting is still an open problem.

In this paper, we propose the first SR-ABE scheme provably secure in
multi-user setting. In addition, our SR-ABE is fully secure and decryp-
tion key exposure resistant. Our scheme is constructed based on dual sys-
tem encryption methodology and novelly combines a variant of Lewko et
al.’s work in EUROCRYPT 2010 and Lewko et al.’s work in TCC 2010.
As a result, we solve the remaining open problem.

Keywords: Attribute-based encryption · Revocation · Server-aided ·
Multi-user setting · Fully secure

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 192–212, 2021.
https://doi.org/10.1007/978-3-030-88428-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_10


SR-ABE Revised: Multi-User Setting and Fully Secure 193

1 Introduction

Attribute-based Encryption (ABE)[22], as an extension of identity-based encryp-
tion (IBE), is a powerful cryptographic primitive achieving fine-grained access
control on encrypted data. ABE schemes are usually divided into two types:
Key-Policy ABE (KP-ABE) [9] and Ciphertext-Policy ABE (CP-ABE) [3]. In
this paper, we only focus on CP-ABE. In CP-ABE scheme, the data owner is
allowed to define a specific access policy in the ciphertext which can only be
decrypted by users with attributes satisfying the policy. CP-ABE is very suit-
able for encrypted data sharing in public cloud storage scenarios.

In the IBE or ABE system, when users lose their secret keys or exit the
system, efficient user revocation is very crucial for preserving data privacy and
keeping the system dynamic. In 2001, Boneh et al. [6] proposed a simple identity
revocation mechanism, in which the Key Generation Center (KGC) has to gen-
erate O(N −r) new secret keys for all unrevoked users at time period t, where N
is the total number of users and r is the number of revoked users. To reduce the
workload of KGC, Boldyreva et al. [4] proposed a more efficient identity revoca-
tion mechanism based on the binary-tree structure of [15]. In [4], each user keeps
O(log N) long-term secret keys and the KGC broadcasts O(r log(N/r)) update
keys at time period t. Only non-revoked users can obtain their corresponding
update keys. However, there are two drawbacks in [4]: every user needs to keep
at least O(log N) long-term secret keys; all non-revoked users are required to
communicate with the KGC regularly. As a result, [4] is not suitable for users
with limited resources or who cannot communicate with KGC in real-time.

To solve this problem, Qin et al. [17] proposed a novel system model i.e.,
server-aided revocation in IBE scenario (SR-IBE). In [17], user’s original long-
term secret keys and update keys are all managed by an untrusted server, which
honestly follows the protocol but is curious about data encrypted in the cipher-
text, and each user keeps only one short private key. Since the original long-term
secret keys are stored in the server, those keys are renamed as long-term trans-
form keys. In this case, user no longer needs to communication with KGC for
key updating regularly. To extend server-aided revocation mechanism from IBE
to ABE scenario, in 2016, Cui et al. [8] proposed the first server-aided revocable
ABE (SR-ABE). [8] not only inherits the advantages of server-aided revocation
mechanism, but also achieves the decryption outsourcing, i.e., user could decrypt
the ciphertext with little computational overhead. However, the scheme fails to
satisfy (local) decryption key exposure resistance (DKER). Specifically, in [8],
user’s decryption key is his/her private key, which does not change with time,
so exposing the user’s decryption key will make the scheme completely insecure.
Seo and Emura [23] has shown that the exposure of decryption keys is a very
realistic threat to many revocable cryptosystems. Then, Qin et al. [18,19] revis-
ited the security model of [8] and enhanced it by capturing the decryption key
exposure attacks on user’s local decryption keys while allowing the adversary to
fully corrupt the server. In [18,19], the user keeps just a short private key, and
can delegate his/her decryption capacity to a decryption key with any specified
time period. Even if the local decryption key of a certain time period is leaked,
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the security of the decryption key of other time periods will not be affected. Sim-
ilarly, [18,19] maintain the properties of server-aided revocation and outsourced
decryption.

In general, the system framework of SR-ABE is shown in Fig. 1. The ABE
ciphertext generated by data owner is transformed by an untrusted server using
a short-term transformation key which is generated by combining the long-term
transformation key and the key update message. However, once a user is revoked,
the server cannot assist him/her to accomplish the transformation. In [8], user’s
private key is the decryption key, so once the decryption key is exposed, user’s
privacy is totally leaked. However, in [18,19], user’s decryption key is derived
from the private key, so even a decryption key of time period t is exposed, it will
not affect decryption keys in other time periods.

Fig. 1. System framework of SR-ABE

1.1 Motivation

The existing SR-ABE schemes [8,18,19] can only prove secure under “one-user
setting”, in which only one user id∗ (called “target user”) has the capacity to
access the challenge ciphertext and the adversary can corrupt his private key.
In [8,18,19], the adversary is divided into two distinct types: (1) the adversary
is allowed to corrupt id∗’s private key, but id∗ has to be revoked at or before
the challenge time period t∗; (2) the adversary is not allowed to corrupt id∗’s
private key, then id∗ is not revoked but the adversary can obtain decryption
keys for any time period except t∗. Note that [8,18,19] can only simulate the
security game for these two types of adversaries separately, which do not cross
with each other. However, this is too restrictive in a real world scenario, since
the two different adversaries may exist simultaneously even for two target users.
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But unfortunately, the restriction seems necessary for the proof technique used
in [8,18,19].

Let us analyze why this is the case. In this paper, we focus on SR-ABE
scheme with DKER. Note that [8] is improved by [18,19] which achieves DKER,
so we take [18,19] as example. The analysis works similarly for [8] as well. First,
we briefly recall some algorithms in the construction of [18,19]:

Setup(1λ): This algorithm outputs master secret key msk = α, the public
parameter par = (g, w, v, u, h, u0, h0, e(g, g)α), along with a revocation list
RL and a state st, where g is the generator of a group G, w, v, u, h, u0, h0 are
randomly chosen from G, α is randomly chosen from Zp, st is set to be the
binary tree BT (BT is introduced in Sect. 2.3).

UserKG(par,msk, id, S, st): This algorithm randomly chooses βid ∈ Zp and set
skid = gβid . Then, it chooses an undefined leaf node θid from BT, stores id in
this node. For each x ∈ Path(BT, θid), it runs as follows.
1. It fetches gx from the node x. If x has not been defined, it randomly

chooses gx ∈ G, computes g′
x = gα−βid/gx and stores gx in the node x.

2. It randomly chooses rx, rx,1, . . . , rx,k ∈ Zp, computes

Px,0 = g′
x · wrx , Px,1 = grx , P

(i)
x,2 = grx,i , P

(i)
x,3 = (usih)rx,i · v−rx .

3. it outputs pkid,S = {x, Px,0, Px,1, P
(i)
x,2, P

(i)
x,3}x∈Path(BT,θid),i∈[1,k] as the

long-term transformation key and skid = gβid as the secret key.
TKeyUp(par,msk,RL, t, st): This algorithm inputs par, msk, a revocation list

RL, a time period t and a state st. For each x ∈ KUNodes(BT,RL, t), it
randomly chooses sx ∈ Zp, fetches gx from the node x, outputs a key update
message tkut = {x,Qx,1, Qx,2}x∈KUNodes(BT,RL,t), where

Qx,0 = gx · (uth)sx , Qx,1 = gsx .

Encrypt(par, (M, ρ), t,M): This algorithm inputs par, an LSSS access struc-
ture (M, ρ), a time period t and a message M , randomly chooses v =
(s, y2, . . . , yn)⊥ ∈ Z

n
p and μ1, . . . , μl ∈ Zp, computes λi = Mi · v, outputs

the ciphertext CT = {C,C0, {Ci,1, Ci,2, Ci,3}, C4}, where

C = e(g, g)αs · M, C0 = gs, Ci,1 = wvi · vμi ,

Ci,2 = (usρ(i)h)−μi , Ci,3 = gμi , C4 = (uth)s.

As we can see, Qin et al. [18,19] used the “random splitting technique” to
divide a master secret key “α” into two parts. Specifically, “α” is split into
“α−βid” and “βid” for identity id, where βid is randomly chosen and gβid serves
as the user’s private key in UserKG. In order to achieve user revocation, gα−βid

will be further divided into random gx and g′
x,id to generate key update message

in TKeyUp and long-term transformation key in UserKG respectively (gx is
stored in the node x of BT, and does not change once stored; g′

x,id changes with
different identities), such that
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gx · g′
x,id = gα−βid , x ∈ Path(BT, θid). (1)

The security of the SR-ABE scheme [18,19] is reduced to the Rouselakis-
Waters CP-ABE scheme [20]. It seems that [18,19] cannot prove secure in
multi-user setting. This is because if the adversary A, who attacks the SR-
ABE scheme [18,19], is allowed to simultaneously corrupt two separate users in
two different types, as we mentioned at the beginning of this section, then the
simulator B, who was built using A to attack [20], can break [20] itself, which
leads to the failure of the security reduction. The detail is as follows.

The simulator B is given the public parameters of Rouselakis-Waters, and
the master key α is hidden from B. Assume that there are two identities id∗

0

and id∗
1 with attribute sets S0 and S1 satisfying the challenge access structure

(M∗, ρ) such that:

(1) A corrupts id∗
0’s private key and id∗

0 is revoked before the time period t∗;
(2) A doesn’t corrupts id∗

1’s private key and id∗
1 is not revoked.

According to Eq. (1), we have

gx · g′
x,id0

= gα−βid0 , x ∈ Path(BT, θid0) (2)

gx · g′
x,id1

= gα−βid1 , x ∈ Path(BT, θid1) (3)

Since S0 |= (M∗, ρ), g′
x,id0

for x ∈ Path(BT, θid0), are known to B in order to
generate the long-term transformation key pkid0,S0 for A; Since A corrupts id∗

0’s
private key, βid0 is a known value to B; Since id1 is non-revoked, B has to know
gx for x ∈ Path(BT, θid1) to generate the key update message at time period t∗

for A, especially the value gx∗ for x∗ ∈ Path(BT, θid0)∩Path(BT, θid1). According
to Equation (2), B knows the value

gα = (gx∗ · g′
x∗,id0

) · gβid0 ,

which enables B to break the underlying Rouselakis-Waters CP-ABE
scheme [20], and thus the security reduction fails. For the similar reason, [8]
also cannot prove secure in multi-user setting and it is still a practical open
problem to construct an SR-ABE scheme probably secure under such setting.

1.2 Our Approach

As we analyzed above, in previous SR-ABE schemes [8,18,19], if the adversary
A is allowed to simultaneously corrupt two separate users in two different types,
then the simulator B is able to compute gα (α is the master secret key) and solve
the underlying complexity assumption itself, thus the security reduction breaks
down. This hints that we need to find a new construction and proof system
so that the exposure of gα will not lead to the failure of the security reduction.
Fortunately, Waters et al. [11,13,24] introduced dual system methodology, which
opens up a new way to prove security of IBE, ABE and other related encryption
systems.
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Briefly speaking, in the dual encryption system [11,13], both ciphertext and
private key can be in one of two indistinguishable forms: normal and semi-
functional. Unless both the key and ciphertext are semi-functional, the key will
decrypt the ciphertext correctly. However, when a semi-functional key is used
to decrypt a semi-functional ciphertext, the semi-functional components of the
key and ciphertext will interact to generate an additional random term, and
decryption will fail. In the real system, the normal keys and ciphertexts are
used, while semi-functional objects are gradually presented in hybrid security
proof: firstly in Game0, the normal challenge ciphertext is switched to a semi-
functional one; then, from Game1 to Gameq, the secret keys given the adversary
are changed from normal to semi-functional one by one and Gameq is a security
game where the simulator only generates semi-functional objects; finally, we end
up in GameFinal where the challenge ciphertext is a semi-function encryption on a
random group element and all of the private key queries result in semi-functional
key, hence security can be proved straightforward.

When arguing that Gamek−1 and Gamek are indistinguishable for k ∈ [1, q],
the simulator B who attacks the underlying assumptions (Assumption 1 and
2 in Sect. 2.1) always chooses the master secret key α by himself so that he is
ready to make any key and any challenge ciphertext for adversary A who attacks
the scheme. When claiming that Gameq and GameFinal are indistinguishable, the
simulator B who attacks Assumption 3 (Sect. 2.1) takes as input parameters
g, gαX2,X3, g

sY2, Z2, T (T is either e(g, g)α or a random element in GT ), then
it makes use of the Assumption 3 parameter gαX2 to generate semi-functional
objections to answer any key query from A.

Based on this observation, the dilemma encountered in proving multi-user
security in the previous SR-ABE schemes could be overcome, because we no
longer need to worry about the exposure of gα or gαX2. In other words, leverag-
ing dual system methodology into SR-ABE may lead us down the right path to
prove the security under multi-user setting. Therefore, we novelly combine the
ABE scheme [11] and the IBE scheme [13] in the dual system to construct our
SR-ABE scheme. Thanks to the powerful dual system encryption methodology,
in our security proof, even the adversary A corrupts two separate users in two
different types simultaneously, the simulator B, who knows α or gαX2, is able to
answer any key query on these two users from A, and thus the security reduc-
tion works. As a result, our SR-ABE is provably secure in multi-user setting.
The only remaining question is how to combine those two schemes in the dual
system organically to obtain a concrete SR-ABE scheme. We put this detail at
the beginning of Sect. 4.

1.3 Our Contributions

In this paper, we construct the first (fully secure) server-aided revocable
attribute-based encryption scheme with decryption key exposure resistance,
achieving the security requirement in the multi-user setting. We solve the open
problem of how to construct a SR-ABE scheme that is provably secure in the
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Table 1. Comparison between our scheme and other indirect revocable ABE schemes.

[4] [1] [21] [8] [18] Ours

Revocation Mode Indirect Indirect Indirect & Direct Indirect Indirect Indirect

Type of ABE KP-ABE KP-ABE KP-ABE & CP-ABE CP-ABE CP-ABE CP-ABE

Server – – – Untrusted Untrusted Untrusted

Decryption Outsource No No No Yes Yes Yes

DKER No No No No Yes Yes

Fully Secure No No No No No Yes

Secure Channel Yes Yes Yes No Yes/No Yes/No

Multi-User Setting Yes Yes Yes No No Yes

Size of Key Updates O(r log N
r

) O(r log N
r

) & – O(r log N
r

) O(r log N
r

) O(r log N
r

) O(r log N
r

)

Size of Key Stored by User O(l log N) O(l log N) O(l log N) & O(k log N) O(1) O(1) O(1)

multi-user setting. Specifically, our scheme novelly combines a variant of a fully
secure (H)IBE [13] and a fully secure ABE [11] in the dual encryption system.

In Table 1, we compare our SR-ABE scheme with several related indirect
revocable ABE schemes [1,4,8,18,21]. Let N be the number of user in the system,
r be the number of revoked users, l be the number of attributes presented in
an access structure, and k be the size of the attribute set associated with an
attribute-key. Also, let “-” denote not-applicable. As shown in Table 1, compared
with [1,4,21], our scheme has inherited the wonderful merits of SR-ABE schemes
[8] and [18], i.e., decryption outsourced and small size of key storage in the user
side. There’s no need for any user to communicate with KGC to update his/her
decryption key regularly as well. In addition, compared with [8] and [18], our
scheme is fully secure and provably secure in multi-user setting. Furthermore,
different from [8], our SR-ABE satisfies DKER.

2 Preliminaries

In this section, we briefly introduce some basic cryptographic definitions.

2.1 Composite Order Bilinear Groups

We recall the definition of composite order bilinear groups in [13]. A group
generator G is defined as an algorithm that takes a security parameter λ as
input and outputs (p1, p2, p3, G,GT , e), where p1, p2, p3 are distinct primes, G
and GT are two cyclic groups of order N = p1p2p3, and e : G × G → GT is a
bilinear map with the following properties:

Bilinear: ∀u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
Non-degenerate: ∃g ∈ G such that e(g, g) ∈ GT is the generator of GT .

The group operations in G and GT as well as the bilinear map e are com-
putable in polynomial time. Let Gp1 , Gp2 , Gp3 denote the subgroups of order
p1, p2, p3 in G respectively, then when hi ∈ Gpi

and hj ∈ Gpj
for i �= j, e(hi, hj)

is the identity element in GT . This orthogonality property of Gp1 , Gp2 , Gp3 will
be used to implement semi-functionality in our SR-ABE.

We now introduce the complexity assumptions [11,12]. Let Gp1p2 and Gp1p3

denote the subgroup of order p1p2 and p1p3 in G, respectively.
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Assumption 1. (Subgroup decision problem for 3 primes). Given a
group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e) R←− G, g
R←− Gp1 ,X3

R←− Gp3 ,D = (G, g,X3)

T1
R←− Gp1p2 , T2

R←− Gp1 .

The advantage of an algorithm A in breaking Assumption 1 is defined as:

Adv1G,A(λ) :=| Pr[A(D,T1)] − Pr[A(D,T2)] | .

Definition 1. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Note that T1 can be written uniquely as the product of an element of Gp1 and
an element of Gp2 . We refer to these elements as the Gpi

part of T1 for i = 1, 2.

Assumption 2. Given a group generator G, we define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e) R←− G, g,X1
R←− Gp1 ,X2, Y2

R←− Gp2 ,

X3, Y3
R←− Gp3 ,D = (G, g,X1X2,X3, Y2Y3), T1

R←− G,T2
R←− Gp1P3 .

The advantage of an algorithm A in breaking Assumption 2 is defined as:

Adv2G,A(λ) :=| Pr[A(D,T1)] − Pr[A(D,T2)] | .

Definition 2. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Note that T1 can be written uniquely as the product of an element of Gp1 ,
an element of Gp2 and an element of Gp3 . We refer to these elements as the Gpi

part of T1 for i = 1, 2, 3. T2 can be written as the product of an element of Gp1

and an element of Gp3 similarly.

Assumption 3. Given a group generator G, we define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e) R←− G, α, s
R←− ZN , g

R←− Gp1 ,X2, Y2, Z2
R←− Gp2 ,

X3
R←− Gp3 ,D = (G, g, gαX2,X3, g

sY2, Z2), T1 = e(g, g)αs, T2
R←− GT .

The advantage of an algorithm A in breaking Assumption 3 is defined as:

Adv3G,A(λ) :=| Pr[A(D,T1)] − Pr[A(D,T2)] | .

Definition 3. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.
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2.2 Access Structures and Linear Secret Sharing

Definition 4 (Access structure[3]). Let {P1, P2, . . . , Pn} be a set of parties. A
collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, P2, . . . , Pn},
i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.

Definition 5 (Linear Secret Sharing Schemes (LSSS)[3]). A secret shar-
ing scheme Π over a set of parties P is a linear secret-sharing scheme over
Zp if:

– The shares for each party form a vector over Zp.
– There exists a matrix M with l rows and n columns, called the share generating

matrix, for Π. For i = 1, . . . , l, the ith row of matrix M, i.e., Mi, is labelled
by a party ρ(i), where ρ : {1, . . . , l} → P is a function that maps a row to
a party for labelling. Considering that the column vector �v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are randomly
chosen, then M�v is the vector of l shares of the secret s according to Π. The
share Mi�v belongs to party ρ(i).

The linear reconstruction property states that there exist constants {ωi ∈ Zp}i∈I

such that, for any valid shares {λi}i of a secret s according to Π, we have:
Σi∈Iωiλi = s, where I = {i | ρ(i) ∈ S} for an authorized set S [2]. We note that
for unauthorized sets, no such constants {ωi} exist.

2.3 Binary Tree

We recall the definition of binary-tree data structure, as with [5,7,10,16,23]. This
structure uses a node selection algorithm called KUNodes. In the algorithm, we
use the following notations: BT denotes a binary-tree. root denotes the root
node of BT. x denotes a node in the binary tree and θ emphasizes that the
node x is a leaf node. The set Path(BT, θ) stands for the collection of nodes
on the path from the leaf θ to the root (including θ and the root). If x is a
non-leaf node, then x�, xr denote the left and right child of x, respectively. The
KUNodes algorithm takes as input a binary tree BT, a revocation list RL and
a time t, and outputs the minimal set Y of nodes, such that the corresponding
key update information can only be used by the non-revoked users to generate
a valid short-term transformation key. Specifically, the KUNodes algorithm first
marks all ancestor of users that were revoked by t as revoked nodes, then outputs
all the non-revoked children of revoked nodes. The description of the KUNodes
algorithm is as follows:

KUNodes(BT,RL, t):
X,Y ← ∅; ∀(θi, ti) ∈ RL, and ti ≤ t, add Path(BT, θi) to X;
∀x ∈ X: if x� /∈ X then add x� to Y , if xr /∈ X then add xr to Y ;
If Y = ∅ then add root to Y ; Return Y .
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3 Framework and Security Model

Our SR-ABE scheme involves four types of entities: a key generation center
(KGC), data owners, data users and an untrusted server.

Setup(1λ, U) → (PK,MSK,RL, st): Taking as input a security parameter λ
and an attribute set U containing all possible attributes, KGC runs this
algorithm to generate the public key PK, the master secret key MSK, an
initially empty revocation list RL and a state st.

UserKG(PK,MSK, id, S, st) → (PKid,S , SKid, st): KGC runs the user key
generation algorithm and outputs user’s long-term transformation key PKid,S

for the untrusted server and a private key SKid for the user, then updates
the state st.

TKeyUp(PK,MSK,RL, t, st) → (tkut, st): KGC runs the transformation key
update algorithm and outputs a key update message tkut for server and an
updated state st.

TranKG(PK, id, PKid,S , tkut) → tkid,t/ ⊥: The server runs the transformation
key generation algorithm and outputs a short-term transformation key tkid,t

for id if id is not revoked at t. Otherwise, it outputs ⊥.
DecKG(PK, id, SKid, t) → dkid,t: The user runs the decryption key generation

algorithm and outputs a decryption key dkid,t for id in time period t.
Enc(PK, (M, ρ), t,M) → CT : Taking the public key PK, an access structure

(M, ρ), a time period t and a message M as the input, the data owner runs
the encryption algorithm to generate a ciphertext CT and then submits CT
to server.

Transform(PK, id, S, tkid,t, CT ) → CT ′/ ⊥: The server runs the ciphertext
transformation algorithm to generate a partially decrypted ciphertext CT ′

for id if the attribute set S associated with the transformation key tkid,t

satisfies the access structure of the ciphertext CT . Otherwise, it outputs ⊥.
Decrypt(PK, id, dkid,t, CT ′) → M/ ⊥: The user runs the decryption algorithm

and outputs the message M or a failure symbol ⊥.
Revoke(id, t,RL, st) → RL: KGC runs the revocation algorithm and outputs an

updated revocation list RL.

3.1 Security Model

Now, we introduce the security definition of indistinguishability under chosen
plaintext attacks (IND-CPA security) for SR-ABE between an adversary A and
the challenger B.

Setup: B runs the Setup algorithm, and returns the public key to A, then keeps
the master secret key MSK, an initially empty revocation list RL, a state st,
and two empty sets T, T ′ by itself.

Phase 1: A adaptively issues a sequence of following queries to B :
– Create(id,S). B runs UserKG(PK,MSK, id, S, st) to obtain the pair

(PKid,S , SKid), stores in table T the entry (id, S, PKid,S , SKid) and
returns PKid,S to A.
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– Corrupt(id). If there exists an entry indexed by id in table T , then B
retrieves the entry (id, S, PKid,S , SKid), sets T ′ = T ′ ∪ {(id, S)}, returns
SKid. If no such entry exists, then it returns ⊥.

– TKeyUp(t). B runs TKeyUp(PK,MSK,RL, t, st) and returns tkut.
– DecKG(id,t). If there exists an entry indexed by id in table T , then

B retrieves the entry (id, S, PKid,S , SKid), runs DecKG(PK, id, SKid, t)
and returns dkid,t. If no such entry exists, then it returns ⊥.

– Revocation(id,t). B runs Revoke(id, t,RL, st) and outputs an updated
revocation list RL.

Challenge: A submits two messages (M0,M1) of the same size, an access struc-
ture (M∗, ρ) and a time period t∗ with the following restrictions:

– If (id, S) ∈ T ′ and S � (M∗, ρ), then A must query the revocation oracle
on (id, t) at or before t∗.

– If there exists a tuple (id, S, PKid,S , SKid) ∈ T , S � (M∗, ρ) and id
is not revoked at or before t∗, then A cannot query Corrupt(id) and
DecKG(id,t∗).

B picks a random bit β ∈ {0, 1}, and returns the challenge ciphertext CT ∗ ←
Enc(PK, (M∗, ρ), t∗,Mβ) to A.

Phase 2: A continues submits queries to B as in Phase 1, with the restrictions
defined in the Challenge phase.

Guess:A outputs a guess β′ of β, and it wins the game if β′ = β. The advantage
of A in this game is defined as AdvA(l) =| Pr[β′ = β] − 1/2 |.

Definition 6. An SR-ABE scheme is adaptively IND-CPA secure if the advan-
tage AdvA(l) is negligible in l for all polynomial time adversary A.

4 Construction

In this section, we propose the construction of our SR-ABE with DKER, which
is fully secure in multi-user setting. As we have discussed in Sect. 1.2, we try
to construct an SR-ABE by the dual system encryption technique. However, we
find that if we trivially follow the construction of SR-ABE with DKER [18,19]
by just replacing their underlying ABE block [20] with dual ABE [11], then it
will cause “authority abuse”: (1) anyone can generate a valid private key, since
it is computed without the system master secret key; (2) user id with his private
key SKid can easily change the identity embedded in his long-term transform
key PKid,S from id to id′. Adding up these two points, user id can maliciously
generate a new SKid′ and PKid′,S′ , where S′ ⊆ S, for an unauthorized user id′

by the key re-randomization technique, resulting in the authority abuse.
In our scheme, we novelly combine dual ABE [11] and dual IBE [13]. Firstly,

we embed the system master key into user’s private key to ensure that only the
KGC can distribute users’ private keys. Specifically, we view the system master
key α as the master key of a variant of the 2-level HIBE [13] to generate 1-level
user private key SKid (id as identity), which is then used to delegate a 2-level
decryption key dkid,t ((id ‖ t) as identity). It should be noted that the exposure
of decryption key dkid,t on time t will not affect the decryption key dkid,t′ on



SR-ABE Revised: Multi-User Setting and Fully Secure 203

time t′ �= t, so that our SR-ABE is decryption key exposure resistant (DKER).
Secondly, we generate user’s long-term transformation key PKid,S by combining
the key generation algorithms of both [11] and the variant of [13]. The unique
random r embedded in both SKid and PKid,S guarantees that, without knowing
r, anyone cannot change the identity embedded in SKid and PKid,S , so that the
authority abuse is prevented. The detail of our scheme is shown as follows.

– Setup(1λ, U) → (PK,MSK): The setup algorithm chooses a bilinear group
G of order N = p1p2p3, where p1, p2, p3 are three distinct primes. We let Gpi

denote the subgroup of order pi in G. It then chooses random exponents α, a ∈
ZN , and random group elements g, u, h, u0, h0 ∈ Gp1 . For each attribute i ∈
U , it chooses a random value si ∈ ZN . Then, the algorithm outputs the public
parameters PK and master secret key MSK as follows:

PK = {N, g, ga, u, h, u0, h0, e(g, g)α, {Ti = gsi}i∈U} ,MSK = {α,X3} (4)

where X3 is a generator of Gp3 .
– UserKG(PK,MSK, id, S, st) → (PKid,S , SKid, st): The algorithm chooses

an undefined leaf node θ from the binary tree BT, and stores id in this node.
Then, it randomly chooses r ∈ ZN . For each node x ∈ Path(BT, θ), it runs as
follows.

• It fetches gx from the node x. If x has not been defined, it randomly picks
gx ∈ Gp1 , then stores gx in node x.

• It randomly chooses tx ∈ ZN , Rx,0, R̄x,0, Rx,i ∈ Gp1 , and computes

PKid,S,x =

{
Kx = gα+atxr((uidh)r/gx) · Rx,0, Lx = gtxr · R̄x,0

{Kx,i = T txr
i · Rx,i}i∈S

}
. (5)

Then, the algorithm picks a random element R3 ∈ Gp3 and computes

SKid = gα(uidh)r · R3. (6)

Finally, the algorithm outputs the long-term transformation key PKid,S =
{x, PKid,S,x}x∈Path(BT,θ), the private key SKid and updates the state st.

– TKeyUp(PK,MSK,RL, t, st) → (tkut, st):
For each x ∈ KUNodes(BT,RL, t), the algorithm fetches gx from x (gx should
always be predefined in the above UserKG algorithm), randomly chooses R̂x,3,
R̄x,3 ∈ Gp3 , sx ∈ ZN , and computes

Qx,0,t = gαgx · (ut
0h0)sxR̂x,3, Qx,1,t = gsxR̄x,3. (7)

Finally, the algorithm generates the transformation key update information
tkut = {x,Qx,0,t, Qx,1,t}x∈KUNodes(BT,RL,t) and updates the state st.

– TranKG(PK, id, PKid,S , tkut) → tkid,t/ ⊥: Suppose θ is the leaf node
corresponding with id. If Path(BT, θ)

⋂
KUNodes(BT,RL, t) = ∅, the algo-

rithm returns ⊥. Otherwise, there must exist one node x such that x ∈
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Path(BT, θ)
⋂

KUNodes(BT,RL, t). Then, it computes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tk0 = Kx · Qx,0,t = g2α+atxr(uidh)r(ut
0h0)sx · Rx,0R̂x,3

tk1 = Lx = gtxr · R̄x,0

tk2,i = Kx,i = T txr
i Rx,i ∀i ∈ S

tk3 = Qx,1,t = gsxR̄x,3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (8)

Finally, it returns the transformation key tkid,t = {tk0, tk1, {tk2,i}i∈S , tk3}.
– DecKG(PK, id, SKid, t) → dkid,t: It randomly chooses rt ∈ ZN and outputs

a decryption key dkid,t = {SKid(ut
0h0)rt , grt} = {gα(uidh)r(ut

0h0)rtR3, g
rt}.

– Enc(PK, (M, ρ), t,M) → CT : Given an LSSS access structure (M, ρ), M is
an l × n matrix and ρ is a map from each row Mi of M to an attribute
ρ(i). The algorithm randomly chooses a random vector �v ∈ Z

n
N and denotes

�v = (s, y2, . . . , yn)⊥. Then it computes the shares λ = (λ1, . . . , λl)⊥ = M · �v,
where λi = Mi · �v. Finally, it randomly chooses r1, . . . , rl ∈ ZN and outputs
the ciphertext CT as

CT =

{
C = M · e(g, g)αs, C0 = gs, Ct = (ut

0h0)s

{Ci = gaλiT−ri

ρ(i) ,Di = gri}i∈[1,l]

}
. (9)

– Transform(PK, id, S, tkid,t, CT ) → CT ′/ ⊥: If the user has been revoked
at time period t or the attribute set S � (M, ρ), the algorithm returns ⊥.
Otherwise, the algorithm computes a set of constants {ωi ∈ ZN} such that∑

ρ(i)∈S ωiMi = (1, 0, ..., 0). Next, it computes

B0 =
∏

ρ(i)∈S

(e(tk2,i,Di) · e(Ci, tk1))ωi

=
∏

ρ(i)∈S

(e(T txr
i , gri) · e(gaλiT−ri

ρ(i) , g
txrR̄x,0))ωi

= e(g, g)atxr
∑

ρ(i)∈S λiωi = e(g, g)atxrs,

(10)

and B1 = e(tk0, C0) = e(g, g)2αs · e(g, g)atxrs · e((uidh)r, gs) · e((ut
0h0)sx , gs)

and B2 = e(tk3, Ct) = e(gsxR̄x,3, (ut
0h0)s) = e(gsx , (ut

0h0)s). Finally, the
algorithm computes

D =
B1

B0 · B2
= e(g, g)2αs · e((uidh)r, gs). (11)

and returns the transformed ciphertext CT ′ = (C,C0, Ct,D)
– Decrypt(PK, id, dkid,t, CT ′) → M : Set dkid,t = (dk0, dk1), it computes

D0 = e(dk0, C0) = e(g, g)αs · e((uidh)r, gs) · e((ut
0h0)rt , gs)

D1 = e(dk1, Ct) = e(grt , (ut
0h0)s)

(12)

and then computes

M =
C · D0

D · D1
=

M · e(g, g)2αs · e((uidh)r, gs) · e((ut
0h0)rt , gs)

e(g, g)2αs · e((uidh)r, gs) · e(grt , (ut
0h0)s)

. (13)
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– Revoke(id, t,RL, st) → RL: If a user’s identity id is revoked at time period t,
the algorithm adds (x, t) into the revocation list RL for all nodes x associated
with identity id.

5 Security Analysis

In this section, we provide a security analysis of our SR-ABE scheme in the multi-
user setting. Following the basic technique of dual system encryption [11,13], we
define two additional structures: semi-functional ciphertexts and semi-functional
keys. These will not be used in the real system, but will be essential in the security
proof.

Semi-functional Ciphertext: Let g2 be a generator of Gp2 . Randomly pick
c, zt∗ , z1, . . . , zl, γ1, . . . , γl ∈ ZN and �u ∈ Z

n
N . Then:

C0 = gsgc
2, Ct = (ut

0h0)sgczt∗
2 ,

Ci = gaλiT−ri

ρ(i) g
Mi	u+γizρ(i)
2 , Di = grig−γi

2 ∀i ∈ [1, l].
(14)

Semi-functional Key: There are two types of semi-functional key. A semi-
functional key of type 1 is formed as follows. Chose random elements zid, b, d, zt ∈
ZN , set

SKid = gα(uidh)r · R3 · gbzid
2 ; (15)

for each node x ∈ Path(BT, θ), set

Kx = gα+atxr((uidh)r/gx) · Rx,0 · gdtx
2 · gbzid

2 , Lx = gtxr · R̄x,0 · gbtx
2 ,

Kx,i = T txr
i Rx,i · g

btxzρ(i)
2 ∀i ∈ S;

(16)

for each node x ∈ KUNodes(BT,RL, t), pick random element γx ∈ ZN , set:

Qx,0,t = gαgx · (ut
0h0)sxR̂x,3 · gγxzt

2 , Qx,1,t = gsxR̄x,3 · gγx

2 . (17)

A semi-functional key of type 2 is formed as:

SKid = gα(uidh)r · R3 · gbzid
2 ; (18)

for ∀x ∈ Path(BT, θ),

Kx = gα+atxr((uidh)r/gx) · Rx,0 · gdtx
2 · gbzid

2 , Lx = gtxr · R̄x,0,

Kx,i = T txr
i Rx,i ∀i ∈ S;

(19)

for ∀x ∈ KUNodes(BT,RL, t),

Qx,0,t = gαgx · (ut
0h0)sxR̂x,3 · gγxzt

2 , Qx,1,t = gsxR̄x,3 · gγx

2 . (20)

It should be noted that if we use a semi-functional key to decrypt a semi-
functional ciphertext, we get the following additional term:
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e(g2, g2)(cd−bu1)tx+cγx(zt−zt∗ ), (21)

where u1 denotes the first coordinate of �u (i.e. (1, 0, . . . , 0) · �u). Note that the
values zi, which are used to hide u1 from an attacker, are common to semi-
functional ciphertexts and semi-functional keys of type 1. Similar to [11], our
security proof will depend on the restriction that each attribute can only be
used once in the row labeling of an access matrix. Based on this restriction, the
attacker gains very limited information-theoretic knowledge of zi.

We call a semi-functional key of type 1 “nominally” semi-functional if (cd −
bu1)tx + cγx(zt − zt∗) = 0. If we use such a key to decrypt a corresponding
semi-functional ciphertext, the decryption still succeeds.

We will prove the security of our system from Assumptions 1, 2, and 3 using
a hybrid argument over a sequence of games. The first game, GameReal, is
the real security game (the ciphertext and all the keys are normal). The next
game GameRestricted will be like the real security game except that the attacker
cannot ask for the transformation key update information and decryption keys
for times which are equal to the challenge time t∗ modulo p2. Also, the attacker
cannot ask for long-term transformation keys, private keys and decryption keys
for identities idi �= idj modulo N such that idi = idj modulo p2. In the next
game, Game0, all of the keys will be normal, but the challenge ciphertext will be
semi-functional. We let q denote the number of key queries made by the attacker.
For k from 1 to q, we define:

Gamek,1 In this game, the challenge ciphertext is semi-functional, the first k − 1
keys are semi-functional of type 2, the kth key is semi-functional of type 1,
and the remaining keys are normal.

Gamek,2 In this game, the challenge ciphertext is semi-functional, the first k
keys are semi-functional of type 2, and the remaining keys are normal.

In Gameq,2, all of the keys are semi-functional of type 2. In the final game,
GameFinal, all keys are semi-functional of type 2 and the ciphertext is a semi-
functional encryption of a random message, independent of the two messages
provided by the attacker. Thus, the adversary’s advantage in winning the final
game is 0. Now, we will prove that these games are indistinguishable. The proof
of Lemmas 2, 4, 5 is given in Appendix.

Lemma 1. Supposed that a PPT adversary A can distinguish the GameReal

and GameRestricted with a non-negligible advantage ε > 0, then there exists
a PPT simulator B that can break either Assumption 1 or Assumption 2 with
advantage ≥ ε

2 .

Proof. This proof is similar with Lemma 1 of [13], so we omit it here.

Lemma 2. Supposed that a PPT adversary A can distinguish GameRestricted

and Game0 with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can break Assumption 1 with advantage ε.
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Lemma 3. Supposed that a PPT adversary A can distinguish the Gamek−1,2

and Gamek,1 with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can break Assumption 2 with advantage ε.

Proof. B is given (g,X1X2,X3, Y2Y3, T ) and simulates Gamek−1,2 or Gamek,1

with A. It randomly picks a, α, a0, a1, b0, b1 ∈ ZN and si ∈ ZN for each attribute
i in the system, then sets u = ga1 , h = gb1 , u0 = ga0 , h0 = gb0 and returns the
public parameters PK = {N, g, ga, u, h, u0, h0, e(g, g)α, {Ti = gsi ,∀i}} to A.

To make the first k − 1 keys semi-functional of type 2, B responds to each
key request as follows. Choose an undefined leaf node θ from BT and store id in
this node. Randomly choose f, r, zid, d

′, zt ∈ ZN , R′
3 ∈ Gp3 , set

– SKid = gα(uidh)r · R′
3 · (Y2Y3)fzid ;

– For each x ∈ Path(BT, θ), fetch gx from the node x (if gx has not been defined,
randomly pick gx ∈ Gp1 and store in node x), randomly choose tx ∈ ZN ,
R′

x,0, R̄x,0, {Rx,i}i∈S ∈ Gp3 , set

Kx = gα+atxr((uidh)r/gx) · R′
x,0 · (Y2Y3)d′tx+fzid , Lx = gtxr · R̄x,0,

Kx,i = T txr
i Rx,i ∀i ∈ S;

(22)

– For each x ∈ KUNodes(BT,RL, t), fetch gx from the node x, randomly choose
sx, γ′

x ∈ ZN and R̂′
x,3, R̄

′
x,3 ∈ Gp3 , set

Qx,0,t = gαgx(ut
0h0)sx · R̂′

x,3(Y2Y3)γ′
xzt , Qx,1,t = gsx · R̄′

x,3(Y2Y3)γ′
x . (23)

The above keys are properly distributed. To make normal keys for requests > k,
B can simply run the key generation algorithm by using the MSK.

To answer the kth key request, B will implicity set gr be the Gp1 part of T .
Choose an undefined leaf node θ from BT and store id in this node. Randomly
choose R′

3 ∈ Gp3 , set

– SKid = gαT a1id+b1 · R′
3;

– For each x ∈ Path(BT, θ), fetch gx from the node x, choose random elements
tx ∈ ZN , R′

x,0, R̄
′
x,0, {R′

x,i}i∈S ∈ Gp3 , set

Kx = gαT atx(T a1id+b1/gx) · R′
x,0, Lx = T tx · R̄′

x,0,

Kx,i = T sitxR′
x,i ∀i ∈ S;

(24)

– For each x ∈ KUNodes(BT,RL, t), fetch gx from the node x, choose random
elements R̂′

x,3, R̄
′
x,3 ∈ Gp3 and s′

x ∈ ZN , set

Qx,0,t = gαgx · (T a0t+b0)s′
xR̂′

x,3, Qx,1,t = T s′
xR̄′

x,3. (25)

If T ∈ Gp1p3 , we set sx = rs′
x and this is a properly distributed normal key.

Otherwise T ∈ G, this is a semi-functional key of type 1. In this case, we
implicitly set zi = si. If we set gb

2 as the Gp2 part of T , then we have that
d = ba, zid = a1id + b1, zt = a0t + b0, γx = bs′

x, sx = rs′
x. Note that the
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value of s′
x, si modulo p2 are uncorrelated from these values modulo p1. Since

φ(id) = a1id + b1 (ϕ(t) = a0t + b0) is pairwise independent function modulo p2,
as long as idi �= idj(mod p2) (t �= t∗(mod p2)), zidi

and zidj
(zt and zt∗) will seem

randomly distributed to A. If idi = idj(mod p2) or t = t∗(mod p2), then A has
made invalid key requests, this is why we use additional restrictions.

A sends B two messages (M0,M1), a challenge access matrix (M∗, ρ) and a
challenge time t∗. To generate the semi-functional challenge ciphertext CT ∗, B
will implicitly set gs = X1 and gc

2 = X2. It randomly chooses u2, . . . , un ∈ ZN ,
r′
i ∈ ZN for i ∈ [1, l] and a random bit β ∈ {0, 1} and sets �u′ = (a, u2, . . . , un).

Finally, B generates the challenge ciphertext CT ∗ as:

CT ∗ =

{
C = Mβ · e(gα,X1X2), C0 = X1X2, Ct = (X1X2)a0t∗+b0

Ci = (X1X2)M
∗
i 	u′

T−r′
isρ(i) ,Di = (X1X2)r′

i ∀i

}
. (26)

We set �v = sa−1�u′ and �u = c�u′ (i.e., u1 = ca). Then, s is shared in the Gp1

while ca is shared in the Gp2 . We also implicitly set ri = sr′
i and γi = −cr′

i. The
values zρ(i) = sρ(i) match those in the kth key if it is semi-functional key of type
1, as required.

The kth key and challenge ciphertext are almost properly distributed. How-
ever, the first coordinate of �u (i.e., u1) is correlated with the value of a modulo
p2, since a also appears in the kth key if it is semi-functional. We argue that this
is information theoretically hidden from the adversary A, who cannot request
any keys that can decrypt the challenge ciphertext. This argument has been
carefully proved in Lemma 8 of [11], so we omit it here.

In addition, with the setting of zid = a1id + b1 and zt = a0t + b0, if B use
the kth key to decrypt a semi-functional ciphertext, which is embedded with the
same time period with kth key query, we would have (cd−bu1)tx +cγx(zt −zt) =
(cba − bca)tx + cγx(zt − zt) = 0 mod p2, so the kth key is either normal key or
nominally semi-functional key.

Thus, if T ∈ Gp1p3 , then B has properly simulated Gamek−1,2. Otherwise,
T ∈ G and B has properly simulated Gamek,1. Therefore, B can use the output
of A to gain advantage negligibly close to ε in breaking Assumption 2. ��
Lemma 4. Supposed that a PPT adversary A can distinguish the Gamek,1

and Gamek,2 with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can break Assumption 2 with advantage ε.

Lemma 5. Supposed that a PPT adversary A can distinguish the Gameq,2 and
GameFinal with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can break Assumption 3 with advantage ε.

6 Conclusion

In this paper, we propose the first (fully secure) SR-ABE scheme with DKER,
which is provably secure in multi-user setting. The construction of our scheme
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relies on the basic technique of dual encryption system in composite order bilin-
ear groups. In our security proof, we inherited the shortcomings of the one-use
restriction in the fully secure ABE scheme [11], meaning that a single attribute
could only be used once in a policy. Later, [14] relaxed the restriction and allowed
unrestricted use of attributes while still proving full security in the standard
model. However, these frameworks only work in composite-order bilinear groups,
where the computations (especially pairing operation) are very slow. In practice,
prime-order bilinear groups are preferable because they provide more efficient
and compact instantiations. Our SR-ABE can be further improved by using the
techniques of above works. Due to the limited space, we leave it as future work.

Acknowledgments. We thank anonymous reviewers for helpful feedback.

A Proof of Lemma 2

Proof. B is given (g,X3, T ) and simulates GameRestricted or Game0 with A. It
sets the public parameters as follows. It randomly picks a, α, a0, a1, b0, b1 ∈ ZN

and si ∈ ZN for each attribute i in the system, then sets u = ga1 , h = gb1 , u0 =
ga0 , h0 = gb0 , returns the public parameters to A as:

PK = {N, g, ga, u, h, u0, h0, e(g, g)α, {Ti = gsi ,∀i}} , (27)

and keeps MSK = {α,X3} as secret. In this case, B can answer any normal key
query (including Create(id,S), Corrupt(id), TKeyUp(t), DecKG(id,t)) from A
by running the corresponding key generation algorithm with MSK.

A sends B two messages (M0,M1), a challenge access matrix (M∗, ρ) and a
challenge time t∗. To generate the challenge ciphertext CT ∗, B will implicitly
set gs to be the Gp1 part of T (T is the product of gs and possible an element of
Gp2). It randomly chooses v′

2, . . . , v
′
n ∈ ZN , r′

i ∈ ZN for i ∈ [1, l], β ∈ {0, 1} and
sets �v′ = (1, v′

2, . . . , v
′
n)⊥. Finally, B generates the challenge ciphertext CT ∗ as:

CT ∗ =

{
C = Mβ · e(gα, T ), C0 = T, Ct = T a0t∗+b0

Ci = T aM∗
i 	v′

T−r′
isρ(i) , Di = gr′

i ∀i

}
. (28)

We note that this implicitly sets �v = (s, sv′
2, . . . , sv

′
n) and ri = sr′

i. Modulo
p1, v is a random vector with first coordinate s and ri is a random value. Thus,
if T ∈ Gp1 , CT ∗ is a properly distributed normal ciphertext. Otherwise, T ∈
Gp1p2 , we let gc

2 as the Gp2 part of T (i.e. T = gsgc
2). We then have a semi-

functional ciphertext with zt∗ = a0t
∗ + b0, u = ca�v′, γi = −cr′

i, and zρ(i) = sρ(i).
By the Chinese Remainder Theorem, a0, b0, a, v′

2, . . . , v
′
n, r′

i, sρ(i) modulo p2 are
uncorrelated from these values modulo p1, so CT ∗ is a properly distributed semi-
functional ciphertext. Therefore, B can break Assumption 1 with advantage ε
by the output of A. ��
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B Proof of Lemma 4

Proof. B is given (g,X1X2,X3, Y2Y3, T ) and simulates Gamek,1 or Gamek,2

with A. It randomly picks a, α, a0, a1, b0, b1 ∈ ZN and si ∈ ZN for each attribute
i in the system, then sets u = ga1 , h = gb1 , u0 = ga0 , h0 = gb0 and returns the
public parameters PK = {N, g, ga, u, h, u0, h0, e(g, g)α, {Ti = gsi ,∀i}} to A.

The first k − 1 semi-functional keys of type 2, the normal keys > k, and the
challenge ciphertext are all constructed the same as the above lemma. Hence,
the ciphertext is sharing the value ac in the Gp2 subgroup. However, this will
not be correlated with the kth key any way, so the value is random modulo p2.
To answer the kth key request, B choose a random element R′

3 ∈ Gp3 and set

– SKid = gαT a1id+b1 · R′
3;

– For each x ∈ Path(BT, θ), fetch gx from the node x, choose random elements
tx ∈ ZN , R′

x,0, R̄
′
x,0, {R′

x,i}i∈S ∈ Gp3 , and an additional hx ∈ ZN , set

Kx = gαT atx(T a1id+b1/gx) · R′
x,0 · (Y2Y3)hx , Lx = T tx · R̄′

x,0,

Kx,i = T sitxR′
x,i ∀i ∈ S;

(29)

– For each x ∈ KUNodes(BT,RL, t), fetch gx from the node x, choose random
elements R̂x,3, R̄x,3 ∈ Gp3 and s′

x ∈ ZN , set

Qx,0,t = gαgx · (T a0t+b0)s′
xR̂x,3, Qx,1,t = T s′

xR̄x,3. (30)

Note that we add the (Y2Y3)hx term. This randomizes the Gp2 part of Kx, so
the key is no longer nominally semi-functional. If we use the kth key to decrypt
the semi-functional ciphertext, the decryption would fail.

Thus, if T ∈ Gp1p3 , then B has properly simulated Gamek,2. Otherwise,
T ∈ G, then B has properly simulated Gamek,1. Therefore, B can use the
output of A to gain advantage to ε in breaking Assumption 2. ��

C Proof of Lemma 5

Proof. B is given (g, gαX2,X3, g
sY2, Z2, T ) and simulates Gameq,2 or

GameFinal with A. It randomly picks a, , a0, a1, b0, b1 ∈ ZN and si ∈ ZN for
each attribute i in the system, then sets u = ga1 , h = gb1 , u0 = ga0 , h0 = gb0 and
returns PK = {N, g, ga, u, h, u0, h0, e(g, gαX2) = e(g, g)α, {Ti = gsi ,∀i}} to A.

To make semi-functional keys of type 2, randomly choose f, r, zid, d
′, zt ∈ ZN ,

R′
3 ∈ Gp3 and set

– SKid = gα(uidh)r · R′
3 · Zfzid

2 ;
– For each x ∈ Path(BT, θ), fetch gx from the node x, randomly choose tx ∈ ZN ,

R′
x,0, R̄x,0, {Rx,i}i∈S ∈ Gp3 , set

Kx = gα+atxr((uidh)r/gx) · R′
x,0 · Zd′tx+fzid

2 , Lx = gtxr · R̄′
x,0,

Kx,i = T txr
i R′

x,i ∀i ∈ S;
(31)
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– For each x ∈ KUNodes(BT,RL, t), fetch gx from the node x, randomly choose
sx, γ′

x ∈ ZN and R̂′
x,3, R̄

′
x,3 ∈ Gp3 , set

Qx,0,t = gαgx · (ut
0h0)sxR̂′

x,3 · Z
γ′

xzt

2 , Qx,1,t = gsxR̄′
x,3 · Z

γ′
x

2 . (32)

A sends B two messages (M0,M1), a challenge access matrix (M∗, ρ) and a
challenge time t∗. B chooses u2, . . . , un, r′

i ∈ ZN , a random bit β ∈ {0, 1} and
sets �u′ = (a, u2, . . . , un). Finally, B generates the challenge ciphertext CT ∗ as:

CT ∗ =

{
C = Mβ · T,C0 = gsY2, Ct = (gsY2)a0t∗+b0

Ci = (gsY2)M
∗
i 	u′

(gsY2)−r′
isρ(i) ,Di = (gsY2)r′

i ∀i

}
. (33)

We set Y2 = gc
2, �v = sa−1�u′ and �u = c�u′ (i.e., u1 = ac), so s is shared in

the Gp1 and ca is shared in the Gp2 . This implicitly sets u1 = ca, ri = sr′
i and

γi = −cr′
i.

Thus, if T = e(g, g)αs, then B has properly simulated Gameq,2 and CT ∗ is
a semi-functional ciphertext with encryption of Mβ . Otherwise, T ∈ GT , then
B has properly simulated GameFinal and CT ∗ is a semi-functional ciphertext
with encryption of a random message in GT . Therefore, B can use the output of
A to gain advantage to ε in breaking Assumption 3. ��
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