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Abstract
We give a brief introduction to the generalization of the classical differential calculus to non-commutative algebras based on
operations on cyclic complexes extending the classical Cartan calculus. We mention some of the basic analytic and algebraic
applications of this calculus.

Introduction

A natural language for calculus on a manifold or an algebraic variety is in terms of the corresponding algebras of functions, be it
smooth or algebraic. The goal of non-commutative calculus is to extend the calculus to the case of associative algebras. While most
of what is done below works in the case of A1 algebras, we will, at least until the end, avoid the 1-language.

Let A be an algebra. Let D be a derivation of A. When A is commutative, say A¼ C1ðMÞ for a smooth manifold M, D is a vector
field on M and as such it acts on the de Rham complex ðO�

M; dÞ by Lie derivative, as it does on any natural tensor construction
applied to A. We will denote this action by LD.

One also defines the contraction ιD by D and the classical calculus is summarized by the "change of variables" identities

½d; ιD� ¼ LD; ι2D ¼ 0

Introducing a formal variable u of degree �2, and working over power series ℂ½½u��, one can combine these into a single identity

ðudþ ιDÞ2 ¼ uLDAEndℂ½½u��ðO�ðMÞ½½u��Þ ð1Þ
Now let A be an associative algebra and D a derivation of A. The commonly used replacement for de Rham complex is the

periodic cyclic complex (Loday, 1998) which we recall in the section “Noncommutative Differential Forms” where, in the first
approximation, the differential graded space of differential forms get replaced by the Hochschild chain complex ðC�ðAÞ; bÞ and one
can ask whether something similar to (1) exists there. The answer is yes, but with modifications. First, we relax (1) and ask for an
operator J ðDÞ which is no more linear in D but rather a formal combination
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J ðDÞ ¼
X1
n ¼ 1

JDn

n!
ð2Þ

We are looking for J ðDÞ satisfying
ðbþ uBþ J ðDÞÞ2 ¼ uLD ð3Þ

These formulas appear in Alekseev and Ševera (2012) and in Bonechi et al. (2023). What we find instead is an exponential
series ℐðDÞ satisfying

ðbþ uBþℐðDÞÞ2 ¼ uðeD � 1Þ ð4Þ
These appear in Gerasimov (1993). All the homogenous components IDn of ℐðDÞ are defined over Z.
In characteristic zero, one can indeed pass from the operator ℐðDÞ to a more classical J ðDÞ; but the procedure is somewhat

awkward. One way of saying this is that the operators ℐðDÞ on Hochschild chains of a commutative algebra are A-linear modulo
u, and the "classical" operators J ðDÞ that we get from them are not.

The detailed description of this calculus of derivations is in the subsection “The Cartan Calculus of Derivations”
The classical calculus has an immediate extension from vector fields to multi-vector fields, generalizing the standard formulas

ιf ðoÞ ¼ fo; Lf ðoÞ ¼ df4o ð5Þ
for a function f and a form o. The noncommutative Cartan calculus extends to the full DGA (differential graded algebra) of
Hochschild cochains (section “Noncommutative Calculus of Multi-Vector Fields and Forms”), where the appropriate notion seems
to be that of calculus.

Note that now, after extending to higher cochains and multivectors, comparing the two versions of Cartan calculus via HKR
(Hochschild-Kostant-Rosenberg) when our algebra is commutative becomes much more difficult; when A is regular, a positive
answer is given by the Kontsevich formality theorem. We include some information about this in the last section but, for more
information, refer the reader to the original papers.
Other Approaches to NC-Calculus

Also, the text below does not contain any mention of alternative approaches to non-commutative calculus, so let us mention at
least two of them.

• The language of Fredholm modules and spectral triples. While not really disjoint from the text below, it is an important subject
by itself. A good starting point is the lecture of Alain Connes: see "Relevant Websites" section

• Braided commutative structures that originated from the study of matrix compact quantum groups, see f.ex (Beggs and Majid,
2021). and especially the references therein for a good introduction to the subject.
The Commutative Case

Let A be a commutative unital algebra over a ground ring k of characteristic zero. An algebraic version of a vector field on X is a
derivation of A. More generally, for a graded k-algebra, a derivation of degree m is a k-linear map D : A-A of degree m satisfying

DðabÞ ¼DðaÞbþ ð�1ÞmjajaDðbÞ ð6Þ
for any homogeneous a and b in A:

An algebraic version of the algebra of differential forms on X is the graded commutative unital algebra O�
A=k generated by a unital

subalgebra A and by elements da, aAA; that are k-linear in a and satisfy

dðabÞ ¼ ðdaÞbþ adb; d1¼ 0 ð7Þ
This algebra is graded in such a way that jaj ¼ 0 and jdaj ¼ 1. It has a graded derivation of degree 1

d : O�
A=k-O�þ1

A=k ; d2 ¼ 0

such that dðaÞ ¼ da and d1¼ 0. The Lie algebra DerðAÞ acts on O�
A=k by derivations: for DADerðAÞ; extend D to a degree zero

derivation of O�
A=k that sends da to dDðaÞ. We will often write LD instead of D: Define also ιD : O�

A=k-O��1
A=k as the unique derivation

of degree �1 sending da to DðaÞ and a to zero. The following Cartan relations hold.
Theorem 2.1

½LD; LE� ¼ L½D;E�; ½LD; ιE� ¼ ι½D;E�; ½ιD; ιE� ¼ 0; ½d; ιD� ¼ LD:

Moreover, since A is commutative, one can form the graded commutative algebra of algebraic multi-vector fields:

T�
A=k ¼L�

ADerðAÞ;
with A in degree zero and Der Að Þ in degree 1. T�

A=k½1� is a graded Lie algebra with the Nijenhuis-Schouten bracket ½�; �� which is a
graded derivation in both variables and, for aAA and DADerðAÞ, satisfies



706 Noncommutative Calculus
½D; a� ¼DðaÞ; ½D1;D2� ¼D1D2 � D2D1:

In the case when A is the algebra of smooth functions C1ðMÞ on a smooth manifold M, ðO�; dÞ is replaced by the de Rham
complex of M and the role of T�

A=k is played by the Lie algebra GðM;L�TMÞ of multi-vector fields on M.

Remark 2.2 The whole package of the de Rham complex, multi-vector fields and the operations of Lie derivative, contraction and
Cartan relations extends to the case of graded commutative algebras.
Non-Commutative Calculus

Noncommutative Differential Forms

When A is a not necessarily commutative algebra, the Lie algebra DerðAÞ is defined but the algebra O�
A=k needs modification. One

can drop the requirement that it has to be graded commutative. The result is a graded differential algebra Onc;�
A=k on which LD; ιD;

and d act as above, and all the Cartan Eq. (19) hold. Unfortunately, the cohomology of d is trivial. In fact the map

a0da1…danþ1↦a0a1da2…danþ1 þ
Xn
k ¼ 1

ð�1Þka0da1…dðakakþ1Þdakþ2…danþ1 ð8Þ

is a contracting homotopy for the complex ðOnc;�
A=k ; dÞ.

Remark 3.1 A meaningful noncommutative calculus based on noncommutative forms does exist; we discuss it briefly below. But
first we are going to describe a related approach based on Hochschild and cyclic homology.
Cyclic Complexes

For an associative unital algebra A over a commutative unital ring k, define

C�ðAÞ ¼ A#ðA=kÞ#� ð9Þ
b : C�ðAÞ-C��1ðAÞ; B : C�ðAÞ-C�þ1ðAÞ; ð10Þ

bða0#…#anÞ ¼
Xn�1

i ¼ 0

ð�1Þia0#…#aiaiþ1#an þ ð�1Þnana0#…#an�1; ð11Þ

Bða0#…#anÞ ¼
X
i

ð�1Þiðn�iÞ1#ai#…#an#a0#…ai�1: ð12Þ

One has

b2 ¼ 0; bBþ Bb¼ 0; B2 ¼ 0: ð13Þ
The B-differential appeared first in Rinehart (1963). The homology of the differential b is called the Hochschild homology of A

and is denoted by HH�ðAÞ:

Definition 3.2 The negative cyclic homology HC�
� ðAÞ (resp. periodic cyclic homology HCper

� ðAÞ) of an associative algebra A is the homology of
the complexes:

CC�
� ðAÞ ¼ ðC�ðAÞ½½u��; bþ uBÞ; CCper

� ðAÞ ¼ ðC�ðAÞððuÞÞ; bþ uBÞ;
where u is a formal variable of degree � 2.
Hochschild Cochain Complex

The role of noncommutative multi-vector fields is played by Hochschild cochains.

Definition 3.3 Let A be a unital associative algebra over k. Set

C�ðAÞ ¼HomkðA#�;AÞ ð14Þ
with the differential δ : C�ðAÞ-C�þ1ðAÞ given by

δfða1;…; anþ1Þ ¼ a1fða2;…; anþ1Þ

þ
Xn
k ¼ 1

ð�1Þkfða1;…; akakþ1…anþ1Þ þ fða1;…; anÞanþ1

The complex ðC�ðAÞ; δÞ computes the groups ExtA#AopðA;AÞ, usually called the Hochschild cohomology of A and denoted by HH�ðAÞ.
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Note that the space of cocycles in C1ðAÞ is DerðAÞ. There is a differential graded Lie algebra structure on C�ðAÞ½1� that extends
the commutator of derivations (the Gerstenhaber bracket). For later use, let us be more explicit. Let fACkðAÞ and cAClðAÞ. Set

f3c¼ f3ðc#id…#idÞ þ ð�1Þjcjf3ðid#c#id…#idÞþ
…þ ð�1Þjcjjfjf3ðid#…#cÞ

and

½f;c� ¼ f3c� ð�1Þjcjjfjc3f:
Here j � j refers to the Lie algebra degree, i. e., for fACk, jfj ¼ k� 1. ½�; �� is called the Gerstenhaber bracket and the following holds.

Theorem 3.4 ðC�ðAÞ½1�; ½�; ��; δÞ is a differential graded Lie algebra.

The commutative case
Suppose that A is a commutative algebra and k contains the rational numbers. Define the Hochschild-Kostant-Rosenberg map

HKR : C�ðAÞ-O�
A=k; a0#…#an↦

1
n!
a0da1…dan; n � 0 ð15Þ

It is easy to see that HKR intertwines b with 0 and B with d: Moreover it extends to

HKR : CC�
� ðAÞ-ðO�

A=k½½u��; udÞ; CCper
� ðAÞ-ðO�

A=kððuÞÞ; udÞ ð16Þ
Dually there is a HKR morphism of complexes

HKR : 4TA=k-C�ðAÞ ð17Þ
given by

HKRðD1…DnÞða1;…; anÞ ¼ 1
n!

X
sASn

D1ðasð1ÞÞ…DnðasðnÞÞ ð18Þ

Theorem 3.5 Suppose that A is a commutative regular algebra. Then HKR induces an isomorphism HH�ðAÞ-O�
A=k and quasi-isomorphisms

CC�
� ðAÞ-ðO�

A=k½½u��; udÞ

CCper
� ðAÞ-ðO�

A=kððuÞÞ; udÞ

ð4T�
A=k;0Þ-ðC�ðAÞ; δÞ:

Remark 3.6 In the case of A¼ C1ðMÞ, the same result holds after replacing algebraic tensor products with projective tensor products.
Operations on Cyclic Complexes

The Cartan Calculus of Derivations

Definition 4.1 For a derivation D of A, set

LDða0#…#anÞ ¼
Xn
j ¼ 0

a0#…#DðajÞ#…#an

ιDða0#…#anÞ ¼ a0Dða1Þ#a2#…#an

SDm ða0#…#anÞ ¼
Xn
j ¼ 0

Xn
k ¼ j

ð�1ÞnjLmDðaj#…#anÞ#a0#…#aj�1

ID ¼ ιD þ uSD:

The following lemma is essentially due to Rinehart (1963)

Lemma 4.2 The following Cartan relations are satisfied:

½bþ uB; LD� ¼ 0; ½LD; LE� ¼ L½D;E�; ½LD; IE� ¼ I½D;E�; ½bþ uB; ID� ¼ uLD ð19Þ
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The missing Cartan relation

½ID; IE� ¼ 0 ð20Þ
is true only at the level of homology.

Proposition 4.3 For all n40:

½bþ uB; IDn � þ
Xn�1

k ¼ 1

n

k

� �
IDk IDn�k ¼ uDn

Remark 4.4 For comparison, define in the commutative case the operations

JDn ¼ ιD; n¼ 1; JDn ¼ 0; n41 ð21Þ
then

½ud; JD� ¼ uD; ½ud; JDn � þ
Xn�1

k ¼ 1

n

k

� �
JDk JDn�k ¼ 0; n41 ð22Þ

and, as a consequence, setting J ðDÞ ¼ P1
n ¼ 1

1
n! JDn , we get

ðudþ J ðDÞÞ2 ¼ uLD ð23Þ
On the other hand, the relations from Proposition 4.3 are equivalent to

ðbþ uBþℐðDÞÞ2 ¼ uðeD � 1Þ ð24Þ
where again

ℐðDÞ ¼
X1
n ¼ 1

1
n!
IDn ð25Þ

This seems to be another instance of the appearance of the inverse Todd series eD�1
D , as it often happens in the comparison

between commutative and non-commutative context.
One can pass from ℐðDÞ to J ðDÞ as follows.

Lemma 4.5 Define the Stirling numbers as the coefficients of the power series

X
k;l�0

ck;lx
kyl ¼

X1
n ¼ 1

1
n!
yðy � xÞ…ðy � ðn� 1ÞxÞ: ð26Þ

Let IDn ; n � 1; satisfy the relations from the proposition 4.3 and set

J ðDÞ ¼
X
k;l�0

ck;lL
k
DIDl :

Then

ðbþ uBþ J ðDÞÞ2 ¼ uLD

Example 4.6 Let A be a differential graded algebra whose differential we denote by dA: Let a be a derivation of degree one of A
and set

R ¼ dA þ að Þ2 ¼ dA; a½ � þ 1
2
a; a½ �:

Consider first the commutative case and the de Rham complex O�
A=k with the differential dA þ d: Then

Da ¼ dA þ dþ ιR ð27Þ
is again a differential. Equivalently,

Du
a ¼ dA þ ud� 1

u
ιR ð28Þ

is a differential on O�
A=kððuÞÞ:

Now, more generally, assume that, in addition to the Lie algebra DerðAÞ; a collection of JRn acts on a complex with differential
bþ uB, subject to (22). Then, formally, set

Du
a ¼ dA þ ud�CðRÞ where CðRÞ ¼

X1
n ¼ 1

u�n

n!
JRn : ð29Þ

One checks that ðDu
aÞ2 ¼ 0:
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Let us now assume that instead of a collection of operators JRn ; a collection of operators IRn acts subject to the equations of (22).
For example, the complex could be CCper

� ðAÞ: Looking for FðRÞ such that

ðdA þ bþ uB� FðRÞÞ2 ¼ 0; ð30Þ
we find

FðRÞ ¼
X
k;l

ck;lR
lIRk ð31Þ

where

X
k;l

ck;ly
lxk ¼ 1þ y

u

� �x
y � 1¼

X1
n ¼ 1

1
n!un

x x� yð Þ… x� n� 1ð Þyð Þ ð32Þ

We see that exp x
u

� �
gets replaced by 1þ y

u

� �x
y.

Both operators require a convergence condition. For example, one might assume that k contains the rationals and the image of
R is inside an ideal of A. Or, one assumes that the image of R is contained in pA where p42 is a prime. In both cases,
bþ uBþ dA � FðRÞ is a well-defined differential on the periodic cyclic complex completed with respect to the filtration induced by
powers of the ideal (in the second case, this means p-adic completion).

Compatibility with the hochschild-kostant-rosenberg map

Theorem 4.7 Suppose that A is commutative. There exists a natural (in D) k½½u��-linear continuous morphism

HKRðDÞ : CC�
� ðAÞ½½u��-O�

A=k½½u��
of the form HKRðDÞ ¼HKR þP1

n ¼ 1 HKRDn ;where HKR is the quasi-isomorphism given in Theorem 3.5 and HKRDn are homogeneous of
degree n in D and such that the following holds.

ðudþ ιDÞHKRðDÞ ¼HKRðDÞðbþ uBþ J ðDÞÞ

Remark 4.8 As in the commutative case, all of the above extends to (differential) graded algebras.
Noncommutative Calculus of Multi-Vector Fields and Forms

Return to the case of a commutative algebra A. Recall that 4�TA=k½1� carries a graded Lie algebra structure. The action by operators
ιD, DADerðAÞ extends to an action by contraction of multi-vectors (multi-vector fields) so that O�� is a graded module over the
graded algebra 4�TA=k. Set, for aALmTA=k

La ¼ ½d; ιa� : O�
A=k-O��mþ1

A=k ð33Þ

Theorem 4.9 The operation of Lie-derivative L makes O��mþ1
A=k into a module over the Lie algebra 4�TA=k½1�. The following identities hold.

(1) ½La; Lb� ¼ L½a;b�;
(2) ½La; ιb� ¼ ð�1Þjaj�1ι½a;b�;
(3) ½ιa; ιb� ¼ 0;
(4) ½d; ιa� ¼ La:

Moreover,

ιab ¼ ιaιb; Lab ¼ Laιb þ ð�1ÞjajιaLb ð34Þ

Suppose now that A is an associative algebra. The definitions of the operators LD, ιD, ID as in 4.1, extend to the case of a general
Hochschild cochain DAC�ðAÞ as follows.

Definition 4.10 Let A be a graded vector space and D a Hochschild cochain on A. We set

LDða0#…#anÞ ¼Dða0…; adÞ#adþ1#…#anþ
Xn�d

k ¼ 0

eka0#…#Dðakþ1;…; akþdÞ#…#anþ

Xn
k ¼ nþ1�d

ZkDðakþ1;…; an; a0;…Þ#…#ak;
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where the second sum in the above formula is taken over all cyclic permutations such that a0 is inside D. The signs are given by

ek ¼ ð�1ÞðjDjþ1Þ
Pk

i ¼ 0
ðjai jþ1Þ and Zk ¼ ð�1ÞjDjþ1þ

P
irk

ðjai jþ1Þ
P

i�k
ðjai jþ1Þ

Definition 4.11 Let a A be a graded algebra. For DACdðAÞ we set

iDða0#…#anÞ ¼ ð�1ÞjDj
P

ird
ðjai jþ1Þa0Dða1 ;…;adÞ#adþ1#…#an

and

SDða0#…#anÞ ¼
X

j�0; k�jþd

ejk1#akþ1#…a0#…#Dðajþ1;…; ajþdÞ#…#ak

(The sum is taken over all cyclic permutations; a0 appears to the left of D). The signs are given by

ejk ¼ ð�1ÞjDjðja0 jþ
Pn

i ¼ 1
ðjai jþ1ÞÞþðjDjþ1Þ

Pk

jþ1
ðjai jþ1Þþ

P
irk

ðjai jþ1Þ
P

i�k
ðjai jþ1Þ

As before, ID ¼ ιD þ uSD.

Proposition 4.12 (cf Daletskii et al., 1990). We set ID ¼ iD þ uSD. Then

½LD; LE� ¼ 0 ½bþ uB; ID� ¼ IδD þ ð�1ÞjDjþ1LD

The other Cartan relations hold at the level of pairing between HH�ðAÞ and HH�ðAÞ; but not on the level of chains and cochains (compare
to Subsection “The Cartan Calculus of Derivations”):

½LD; ιE� ¼ ι½D;E�; ½ιD; ιE� ¼ 0

Definition 4.13 For any differential graded Lie algebra g, let UþðgÞ be the kernel of the augmentation UðgÞ-k: Let CobarðUþðgÞÞ be the
free associative algebra generated by UþðgÞ½1� (the degree shift by one). We denote the free generator corresponding to xAUþðgÞ by ðxÞ: Define

∂CobarðxÞ ¼
X

ð�1Þjxð1Þjðxð1ÞÞðxð2ÞÞ ð35Þwhere the comultiplication is defined by

Dx¼
X

xð1Þ#xð2Þ

In addition, the differential dg induces a differential on CobarðUþðgÞÞ. Now define the dg algebra

UðgÞ⋉1CobarðUþðgÞÞ½½u�� ð36Þ
as follows. It is an algebra over k½½u�� generated by the subalgebra ðUðgÞ; dgÞ and the subalgebra CobarðUþðgÞÞ. The only additional relations
are

½X; ðxÞ� ¼ ½X; x�; XAg; xAUþðgÞ:
The differential acts as follows:

x↦dgx; xAUðgÞ; ðxÞ↦ðdgxÞ þ ∂CobarðxÞ þ ux; xAUþðgÞ: ð37Þ
The lemma 4.2 says that CobarðUþðgÞÞ acts naturally on CC�

� ðAÞ where g¼DerðAÞ. This has a straightforward extension as
follows.

Proposition 4.14 Let A be a unital algebra and let g be a differential graded Lie subalgebra

A½1�⋊DerðAÞCC�ðAÞ
(consisting of zero-cochains and one-cocycles). Then CobarðUþðgÞÞ acts naturally on CC�

� ðAÞ.
Now let A be a Z=2Z-graded algebra. Suppose that t is a DerðAÞ-invariant supertrace on A. Let g be as above. Given a Maurer-

Cartan element l of g½u�, i.e. an odd element satisfying the identity dlþ 1
2 l; l� ¼ 0½ , the composition #l ¼ t3e

l
u is defined as an

element of Homk½u�ðC�ðAÞ½u�; k½u; u�1�Þ:

Proposition 4.15 One has

#l3ðbþ uBÞ ¼ 0:

Example 4.16 Let D= be an odd element of A and R¼D=2. Set l¼ uR� u
1
2adD=. (This is a very slightly more general situation than the

one above). The corresponding cyclic periodic cocycle, restricted to the subalgebra of even elements of A; is the Jaffe-Lesniewski-
Osterwalder (JLO) cocycle (Jaffe et al., 1988; Getzler and Szenes, 1989) of the form

ða0;…; a2nÞ↦
Z
D2n

tða0e�t0R½D=; a1�…e�t2n�1R½D=; a2n�e�t2nRÞdt1…dt2n
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where D2n is the standard 2n-simplex

fðt0:…; t2nÞj
X
i

ti ¼ 1 and ti � 0; i¼ 0;…;2n:

Remark 4.17 The JLO cocycle is an infinite series that is not defined on periodic cyclic chains because those are infinite series
themselves. It is defined on chains that are finite series in u, but the complex of those is homologically trivial (over the rationals).
However, it is defined on suitable completions of the latter complex when A is a topological algebra (Connes, 1988; Meyer, 2007;
Puschnigg, 1993).

Remark 4.18 Let F be an odd element of A satisfying F2 ¼ 1. A version of the proposition 4.15 can be applied to deduce the
Connes cocycle (Connes, 1985)

#tðF4ðnþ1ÞÞða0;…; anÞ ¼ tðFa0½F; a1�…½F; an�Þ

Theorem 4.19 The action described in the proposition 4.14 extends to a natural A1 action of CobarðUþðgAÞÞ on CC�
� ðAÞwhere

gA ¼ C�ðAÞ½1� is the differential graded Lie algebra of Hochschild cochains with the Gerstenhaber bracket.

Remark 4.20 Over rational numbers there exist explicit formulas implementing this action.
Formality

Theorem 4.21 (Kontsevich, 2003; Dolgushev, 2006; Shoikhet, 2003, Tamarkin, 1999). There exists an L1 quasi-isomorphism

K : 4�þ1TM-C�þ1ðOM;OMÞ ð38Þ
and a compatible quasi-isomorphism of L1 modules over 4�þ1ðTMÞ

S : CC�
� ðOM;OMÞ-ðO�

M½½u��; udÞ ð39Þ

Calculi
A part of non-commutative calculus involves the analog of the wedge product on multi-vector fields. While it does exist, it depends
on a choice of an associator and is, in contrast to the above, non-canonical.

Definition 4.22 A Gerstenhaber algebra is a graded commutative algebra A together with a graded Lie algebra structure on A½1�
such that

½a;bg� ¼ ½a;b�gþ ð�1Þðjaj�1Þjbjb½a; g�
for any homogeneous a;b; g in A:

Definition 4.23 (Tamarkin and Tsygan, 2000; Tamarkin and Tsygan, 2005; Dolgushev et al., 2009). A calculus is a pair ðA;MÞ
together with the following data.

(1) a Gerstenhaber algebra structure on A;

(2) a linear map

ι : A#M-M
which gives M a structure of a module over the graded commutative algebra A;

(3) a linear map

L : A½1�#M-M
which gives M a structure of a module over the graded Lie algebra A½1�;

(4) a linear map d : M-M of degree �1 such that

(a) Lab ¼ Laιb þ ð�1ÞjajιaLb, ½La; ιb� ¼ ð�1Þjaj�1L½a;b�;
(b) ½d; ιa� ¼ La; d2 ¼ 0.
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Example 4.24 For a commutative algebra A, the pair ð4TA=k;O
��
A=kÞ is a calculus. For an associative algebra A, the pair ðHH�ðAÞ;HH��ðAÞÞ

is a calculus (Daletskii et al., 1990).

There is a homotopy version of the calculus structure which we will denote by Calc1 (cf. Tamarkin and Tsygan, 2005). The
main formality result is the following.

Theorem 4.25 There is a natural Calc1 structure on the pair ðC�ðAÞ;C��ðAÞÞ such that:

(1) the underlying L1 structure of C●ðAÞ½1� is equivalent to the one given by the Gerstenhaber bracket;
(2) the underlying L1 module structure of C�●ðAÞ over C●ðAÞ½1� is equivalent to the action given by operators Lf;
(3) the L1 module structure over the odd Abelian Lie algebra kd is given by the cyclic differential B.
Applications

Chern Character

One of the main applications of cohomology in the commutative case is the Chern character which gives pairing of topological K-
theory with cohomology. The corresponding non-commutative analog is the Connes-Karoubi Chern character for topological
algebras

Ktop
� ðAÞ-HCper

� ðAÞ
and its algebraic counterpart from algebraic K-theory to negative cyclic homology. The natural map KalgðAÞ-KtopðAÞ is a fibration
and hence comes with an associated half-infinite exact sequence. The Chern character is a natural transformation between the two
sequences,

As usual, homology is easier to compute then K-theory and the Chern character provides computational tools for getting
information about K-theory. An important example is provided by the index theorems, see below. In this context one should note
that the infinite cochains constructed in the proposition 4.15, while not in the dual of the cyclic periodic homology, have a well
defined pairing to the image of Chern character.
The Gauss-Manin connection

Let S be an algebraic variety and A be a sheaf of OS -algebras. Then CCper
� ðA=OSÞ (the periodic cyclic complex of A where the ring

of scalars is OS) is a sheaf of complexes of OS-modules. In Getzler (1992), generalizing the classical results of (Grothendieck,
1968) and (Katz and Oda, 1968), Getzler constructed a flat connection on the homology sheaf HCper

� ðA=OSÞ. (Literally speaking,
one needs an assumption that the OS-module A admits a connection; this connection does not need to be flat or to preserve the
product).

The Getzler-Gauss-Manin connection can be lifted to the level of complexes. Namely, there is a flat superconnection

rGM : O�
S#OSCC

per
� ðA=OSÞ-O�

S#OSCC
per
� ðA=OSÞ½1� ð40Þ

Cf. Dolgushev et al. (2011), Tsygan (2007) and Nest and Tsygan,. The construction combines the contents of Example 4.6 and
Theorem 4.19.

Examples can be found in Yashinski (2017) and Yamashita (2017). Other approaches to and versions of the Gauss-Manin
connection in noncommutative geometry are contained in Ginzburg and Schedler (2012), Kaledin (2009) and Petrov et al. (2018).
For some examples see Yashinski (2017), Yashinski (2012)

Remark 5.1 Ginzburg and Schedler (2012), the periodic cyclic complex is shown to be quasi-isomorphic to a complex
O�;ncðAÞððuÞÞ; dþ ιD where ιD is the Ginzburg-Schedler differential. The differential ιD commutes wirh Lie derivatives and con-
tractions by derivations (because it is some sort of a contraction itself). Therefore the Cartan calculus of derivations extends to this
version of the periodic cyclic complex. We do not know how to extend it to a Cartan calculus of higher Hochschild cochains
(although this can be helped by passing to a semi-free resolution of A), nor to the Ginzburg and Schedler versions of the
Hochschild and negative cyclic complexes. For a different approach to Gauss-Manin connection see Petrov and Vologodsky (2019)
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Noncommutative Hodge Structures

In algebraic geometry, the De Rham cohomology of a smooth projective complex algebraic variety carries a pure Hodge structure.
In noncommutative geometry, periodic cyclic homology replaces De Rham cohomology, and there is a notion of a smooth proper
DG category. Conjecturally, the periodic cyclic homology of such a category carries a noncommutative Hodge structure. The latter
is defined in Katzarkov et al. (2008). There are two ingredients of a (classical) pure Hodge structure: the integral (or rational) lattice
and the Hodge filtration. In the noncommutative setting, what replaces the filtration is a variant of the Gauss-Manin connection
(Katzarkov et al., 2008; Shklyarov, 2014).
The Goodwillie Rigidity

Let ⋆1 and ⋆2 be two multiplication laws on the same k-module A: Assume for all a and b in A that a⋆1b� a⋆2bAI where I is a
pro-nilpotent ideal with respect to either multiplication.

Theorem 5.2 Let k contain the rationals. There is a natural isomorphism of complexes

Tð⋆1;⋆2Þ : CCper
� ðA;⋆1 Þ̂’B CCper

� ðA;⋆2 Þ̂
where ^ stands for the completion with respect to the ideal.

Furthermore, Tð⋆1;⋆2ÞTð⋆2;⋆3Þ is homotopic to Tð⋆1;⋆3Þ, and there are higher homotopies. More precisely: there is an A1
functor from the category whose morphisms are products on A congruent to one another modulo I, with exactly one morphism
between any two objects, to the category of complexes.

Theorem 5.2 is a refinement of Goodwillie’s theorem: if k contains ℚ then for a pro-nilpotent ideal I of A, the projection

CCper
� ðAÞ̂ -CCper

� ðA=IÞ
is a quasi-isomorphism.
Deformation Quantization

Formality

Theorem 5.3 Let M be a smooth manifold. There exists an L1 quasi-isomorphism

K : 4�þ1TM-C�þ1ðOM;OMÞ ð41Þ
and a compatible quasi-isomorphism of L1 modules over 4�þ1ðTMÞ

S : CC�
� ðOM;OMÞ-ðO�

M½½u��; udÞ ð42Þ
The existence of one such quasi-isomorphism for cochains is the formality theorem of Kontsevich (Kontsevich (2003)). The

existence for chains is proven in Shoikhet (2003) and Dolgushev (2006). The fact that those quasi-isomorphisms are parametrized
by Drinfeld associators follows from Tamarkin (1999) and Kontsevich (1999) (for cochains) and from the statement and proof of
Theorem 4.25 (for chains).

Classification and cyclic homology of deformation quantization algebras

Definition 5.4 A formal Poisson structure on M is a formal series

p¼ p0 þ hp1 þ…A42TM½½h��
satisfying fp; pg ¼ 0:
For a formal Poisson structure p put

Pp;F ¼
X1
k ¼ 1

1

2kk!
KF;kðhp;…; hpÞ ð43Þ

(k arguments hp).

Lemma 5.5 Let

f⋆p;Fg ¼ fg þPp;Fðf ; gÞ
Then ⋆p;F is a deformation quantization of p0:
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The 2-cochain Pp;F is an MC element of C2ðOM;OMÞ½½h��, and we write

Op;F;M ¼ ðOM½½h��;☆p;FÞ ð44Þ
For first appearences of deformation quantization see Bayen et al. (1978a,b)

Lemma 5.6

C�ðOp;F;M;Op;F;MÞ-B ðC�ðOM;OMÞ½½h��; δþ ½Pp;F; �Þ

CC�
� ðOp;F;MÞ-B ðCC�

� ðOMÞ½½h��; bþ LPp;F þ uBÞ
Algebraic Index Theorem

Theorem 5.7

is homotopy commutative. Here I is the Goodwillie rigidity isomorphism,

Âu;FðTMÞ ¼
X
k�0

u�kÂF;2kðTMÞ

and

ÂFðTMÞ ¼
X
k�0

ÂF;2kðTMÞ

is the characteristic class of the tangent bundle that is defined by an invariant power series ÂF whose restriction from g2n to sp2n is Â:
Proofs of the Poisson case can be deduced from (Kontsevich and Soibelman, 2000; Shoikhet, 2003; Dolgushev, 2005; Will-

wacher, 2011; Van Den Bergh et al., 2012; Willwacher, 2016). When p is symplectic, this is the algebraic index theorem of Fedosov
(1996). In the case when the Poisson structure has constant rank, this is the algebraic index theorem for families cf. Nest and
Tsygan (1995a,b). The Atiyah-Singer index theorem can be deduced from it (Nest and Tsygan, 1996). For the case M¼ T�ℝn, cf
(Elliott et al., 1996).
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