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Abstract. A modular tensor category is a non-degenerate ribbon finite tensor
category and a ribbon factorizable Hopf algebra is a Hopf algebra whose finite-
dimensional representations form a modular tensor category. In this paper, we
provide a method of constructing ribbon factorizable Hopf algebras using central
extensions. We then apply this method to n-rank Taft algebras, which are consid-
ered finite-dimensional quantum groups associated with abelian Lie algebras (see
Section 2 for the definition), and obtain a family of non-semisimple ribbon factor-
izable Hopf algebras Eq, thus producing non-semisimple modular tensor categories
using their representation categories. And we provide a prime decomposition of
Rep(Eq) (the representation category of Eq). By further studying the simplicity of
Eq (whether it is a simple Hopf algebra or not), we conclude that

(1) there exists a twist J of uq(sl
⊕3
2 ) such that uq(sl

⊕3
2 )J is a simple Hopf algebra,

(2) there is no relation between the simplicity of a Hopf algebra H and the pri-
mality of Rep(H),

(3) there are many ribbon factorizable Hopf algebras that are distinct from some
known ones, i.e., not isomorphic to any tensor products of trivial Hopf algebras
(group algebras or their dual), Drinfeld doubles, and small quantum groups.

1. Introduction

Originally, a modular tensor category meant a ribbon fusion category whose S-matrix
is invertible. Modular tensor categories have been widely researched in connection
with conformal field theories, topological quantum field theories, and quantum com-
puting (e.g., [27, 35, 21]). For example, a modular tensor category provides a topo-
logical quantum field theory in dimension 3, and in particular, invariants of links and
3-manifolds [25]. As pointed out in [12], a large source of modular tensor categories is
provided by the representation categories of Hopf algebras. In [37]-[39], Lyubashenko
studied the “non-semisimple” generalization of a modular tensor category. Kerler and
Lyubashenko used the term “modular tensor category” to mean a non-degenerate
ribbon finite tensor category [34]. Moreover, they showed that a “non-semisimple”
modular tensor category also yields an invariant of closed 3-manifolds and a projec-
tive representation of the mapping class group of a closed surface as in the semisimple
case in [34].
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Given a Hopf algebra H, it is known that Rep(H) (the representation category of
H) is a modular tensor category if and only if H is a ribbon factorizable Hopf alge-
bra (see, e.g., [18]). Modular tensor categories arising from ribbon factorizable Hopf
algebras have many ideal properties. For example, they have Verlinde formula even
in non-semisimple cases [20]. Perhaps the most well-known examples of ribbon fac-
torizable Hopf algebras come from quantum doubles D(H), which were introduced
by Drinfeld in [36]. In [19], Kauffman and Radford characterized the conditions for
D(H) to be a ribbon Hopf algebra, i.e., all the ribbon factorizable Hopf algebras
coming from quantum doubles were determined abstractly. Using this result, many
ribbon factorizable Hopf algebras can be constructed concretely. For example, Hu
and Wang obtained ribbon factorizable Hopf algebras by studying restricted two-
parameter quantum groups in this way [24]. Aside from considering quantum doubles
directly, Gelaki and Westreich determined when a quantum group Uq(sln)′ has ribbon
elements and when it is a factorizable Hopf algebra in [29], hence providing ribbon
factorizable Hopf algebras. Another celebrated work related to ribbon factorizable
Hopf algebras was that by Laugwitz and Waton in 2022 [28]. They mainly used
Shimizu’s result [17] on relative Muger centers to obtain modular tensor categories.
In particular, they recovered some small quantum groups by applying this method
and constructed a family of non-semisimple modular tensor categories in [28]. These
modular tensor categories are also representation categories of ribbon factorizable
Hopf algebras. Inspired by this method and the fact (pointed out in [12]) that rep-
resentation categories of Hopf algebras provide a significant source of modular tensor
categories, we will explore the construction of ribbon factorizable Hopf algebras in
this work, thus providing modular tensor categories through their representations.

It has been shown in many previous works (such as [18, 9, 27, 34]) that typical and
known ribbon factorizable Hopf algebras are tensor products of trivial Hopf algebras
(group algebras or their dual), quantum doubles, and small quantum groups. In this
paper, we will see that there are many ribbon factorizable Hopf algebras that do not
belong to these cases. In addition, from the result of [22, 28], we know that every
modular tensor category is a finite direct product of prime modular tensor categories.
In [22], Muger studied the prime decomposition of Rep(D(G)) concretely, where G is
a finite abelian group. Using his decomposition, he showed that there is no relation
between the simplicity of G and the primality of Rep(D(G)). This fact motivates us
to further determine if there is any relation between the simplicity of H itself and
the primality of Rep(H) when H is a ribbon factorizable Hopf algebra. Since there
has been little work on the prime decomposition of modular tensor categories (see,
e.g., [22, 7, 31]), this problem has not yet been addressed. In this paper, we will
study how Hopf algebras can be used to perform a prime decomposition and try to
answer this question. Beyond considering the above relationship, we will also study
whether the simplicity of H is determined by its tensor category of representations
when H is a ribbon factorizable Hopf algebra. This exploration is mainly inspired by
the work of Galindo and Natale [10]. In that paper, they showed that the notion of
simplicity of a semisimple Hopf algebra is not determined by its tensor category of
representations. We will further see that the notion of simplicity of a Hopf algebra H
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is not determined by its tensor category of representations even if H is assumed to
be a ribbon factorizable Hopf algebra.

This paper is organized as follows. In Section 1, we first recall some preliminary
knowledge, which mainly includes the definitions of a modular tensor category and
a ribbon factorizable Hopf algebra, central extensions, n-rank Taft algebras, small
quantum groups. Section 2 is devoted to giving a general way to construct ribbon
factorizable Hopf algebras. To do this, we employ the double centralizer theorem of
modular tensor categories to central extensions. In the final section, we apply our
method to n-rank Taft algebras, yielding a family of ribbon factorizable Hopf alge-
bras denoted as Eq. We proceed to describe Eq using generators and relations, and
explicitly provide its universal R-matrix and ribbon element. Utilizing these descrip-
tions, we offer a prime decomposition of Rep(Eq). By investigating the simplicity of
Eq, we address previous inquiries. Furthermore, we compare Eq with known ribbon
factorizable Hopf algebras, including those presented in [28, Example 5.18] in 2022.

Convention 1.1. Throughout this paper we work over an algebraically closed field
k of characteristic 0. All Hopf algebras in this paper are finite-dimensional. For the
symbol δ, we mean the classical Kronecker’s symbol. Our references for the theory of
Hopf algebras are [11, 33]. For a Hopf algebra H, the set of group-like elements in H
will be denoted by G(H).

2. Preliminaries

We collect some necessary notions and results in this section.

2.1. Modular tensor categories and ribbon factorizable Hopf algebras. A
finite tensor category (C,⊗,1) [27] is defined as a rigid monoidal category where C is
a finite abelian category, the tensor product of C is k-linear in each variable, and the
unit object of C is a simple object. If (C,⊗,1) is equipped with a braiding c, then it is
termed a braided finite tensor category [27]. In such a case, the Muger center C′ is the
full subcategory on the objects Ob(C′) = {X ∈ C| cY,XcX,Y = IdX⊗Y for all Y ∈ C}.
Denote the tensor category of finite-dimensional vector spaces over k as vectk. Recall
the following equivalent definition of a non-degenerate braided finite tensor category,
as provided by [17, Theorem 1.1].

Definition 2.1. A braided finite tensor category (C,⊗,1, c) is called non-degenerate
if the Muger center C′ is equal to vectk.

To review the definition of a modular tensor category, we need ribbon tensor cate-
gory. A braided tensor category (C,⊗,1, c) is ribbon if it is equipped with a natural

isomorphism θX : X
∼−→ X (a twist) satisfying θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y and

(θX)∗ = θX∗ for all X,Y ∈ C. Now we recall:

Definition 2.2. [34, Definition 5.2.7], [17, Theorem 1] A braided finite tensor category
is called modular if it is non-degenerate and ribbon.
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Recall that a full subcategory of an abelian category is called topologizing subcate-
gory [3, 17] if it is closed under finite direct sums and subquotients. By a braided
tensor subcategory of a braided tensor category (C,⊗,1, c) we mean a subcategory of
C containing the unit object of C, closed under the tensor product of C, and contain-
ing the braiding isomorphisms. Let S be a subset of objects of a braided category
(C,⊗,1, c), the Muger centralizer CC(S) [22, Definition 2.6] of S in C is defined as the
full subcategory of C with objects

Ob(CC(S)) := {X ∈ C| cY,XcX,Y = IdX⊗Y for all Y ∈ S}.
The following theorem was implied by [28, Theorem 4.3].

Theorem 2.3. Let (D,⊗,1, c) be a non-degenerate finite braided tensor category, let
E be a topologizing braided tensor subcategory of D. Then CD(E) is a non-degenerate
braided tensor category if and only if E is a non-degenerate braided tensor category.

Now we recall general prime modular tensor categories (including non-semisimple
cases).

Definition 2.4. [22, 28] A modular tensor category C is prime if every topologizing
non-degenerate braided tensor subcategory is equivalent to either C or vectk.

A fact that every modular tensor category is equivalent to a finite Deligne tensor
product of prime modular tensor categories is shown in [28, Corollary 4.20]. In Section
4, we will use following result to study prime decomposition.

Theorem 2.5. Let D be a modular tensor category, with a topologizing non-degenerate
braided tensor subcategory E. Then there is an equivalence of ribbon categories:

D ' E � CD(E).

To construct modular tensor categories utilizing Hopf algebras, we need ribbon fac-
torizable Hopf algebras. Recall that a quasitriangular Hopf algebra is a pair (H,R)

where H is a Hopf algebra over k and R =
∑
R(1) ⊗ R(2) is an invertible element in

H ⊗H such that

(∆⊗ Id)(R) = R13R23, (Id⊗∆)(R) = R13R12, ∆op(h)R = R∆(h),

for h ∈ H. Here by definition R12 =
∑
R(1) ⊗ R(2) ⊗ 1 and similarly for R13 and

R23. A quasitriangular Hopf algebra (H,R) is a ribbon Hopf algebra if there exists a
central element θ in H satisfying the relations:

∆(θ) = (R21R)−1(θ ⊗ θ), ε(θ) = 1, S(θ) = θ.

For a quasitriangular Hopf algebra (H,R), there are linear maps fR21R : H∗cop → H
and gR21R : H∗op → H, given respectively by

(2.1) fR21R(a) := (a⊗ Id)(R21R), gR21R(a) := (Id⊗a)(R21R), a ∈ H∗.
A factorizable Hopf algebra is a quasitriangular Hopf algebra (H,R) such that fR21R,
or equivalently gR21R, is a linear isomorphism. Let us introduce following lemma.

Lemma 2.6. [11, Lemma 12.4.6] Suppose that (H,R) is a factorizable Hopf algebra.
Then (Hcop, R−1) is also a factorizable Hopf algebra.
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If a quasitriangular Hopf algebra is both a ribbon Hopf algebra and a factorizable
Hopf algebra, then it is called a ribbon factorizable Hopf algebra.

Let (H,R) be a quasitriangular Hopf algebra. Denote the category of finite-dimensional
representations of H as Rep(H). Let (Rep(H),⊗, k, c) be the finite braided tensor
category with braiding structure given by τ ◦R, where τ is the flip map. Then Rep(H)
is non-degenerate if and only if (H,R) is a factorizable Hopf algebra. Moreover, it is
modular if and only if (H,R) is a ribbon factorizable Hopf algebra (see [18, Section
2.5] for example).

2.2. Hopf exact sequence, n-rank Taft algebras, small quantum groups, and
the Drinfeld double.

Definition 2.7. A short exact sequence of Hopf algebras is a sequence of Hopf algebras
and Hopf algebra maps

(2.2) K
ι−→ H

π−→ H

such that

(i) ι is injective,
(ii) π is surjective,
(iii) Ker(π) = HK+, K+ is the kernel of the counit of K,

here we view K as a sub-Hopf algebra of H through the map ι. Take an exact
sequence (2.2), then K is a normal Hopf subalgebra of H, i.e. h(1)kS(h(2)) ∈ K for
all k ∈ K,h ∈ H. Conversely, if K is a normal Hopf subalgebra of a Hopf algebra H,
then the quotient coalgebra H = H/HK+ = H/K+H is a quotient Hopf algebra and
H fits into an extension (2.2), where ι and π are the canonical maps. In particular,
if K ⊆ Z(H) (center of H) is a sub-Hopf algebra and let H = H/HK+, then there is
a exact sequence (2.2) corresponding to K which is called central extension. Central
extensions are extensively employed in the study of Hopf algebras (see e.g, [26, 32, 5]).
For instance, central extensions play important roles in Natale’s classification work
[32].

If H has no non-trivial normal Hopf subalgebras, then it is called a simple Hopf
algebra. If H fits into an extension (2.2), then dim(H) = dim(K) dim(H) (see [15]
for example).

To obtain non-semisimple ribbon factorizable Hopf algebras, we will employ the n-
rank Taft algebras as delineated in Hu’s work [23, Section 5]. These Hopf algebras,
which can be regarded as finite-dimensional quantum groups associated with abelian
Lie algebras, have been extensively investigated by various researchers (for instance,
[8, 40, 13]). Assume n ∈ N∗ and let M = {(i, j)| 1 ≤ i, j ≤ n}. Define the map
θ : M ×M −→ k as follows

θ(i, j) =

 q i > j
1 i = j
q−1 i < j

.
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Suppose l ∈ N∗ and q is a primitive l-th root of unity. Then, the n-rank Taft algebra
A q(n) is generated as an algebra by x1, ..., xn and g1, ..., gn, with the relations

(2.3) gigj = gjgi, g
l
i = 1, gixj = θ(i, j)qδi,jxjgi, xixj = θ(i, j)xjxi, x

l
i = 0.

The coproduct, counit and antipode are defined as follows

∆(gi) = gi ⊗ gi, ∆(xi) = xi ⊗ 1 + gi ⊗ xi,(2.4)

ε(gi) = 1, ε(xi) = 0,(2.5)

S(gi) = g−1i , S(xi) = −g−1i xi,(2.6)

where 1 ≤ i, j ≤ n. If n = 1 then A q(1) is exactly the Taft algebra with dimension
l2.

Next, we revisit the definition of small quantum groups which will be employed in
Section 4. Let g be a complex simple Lie algebra of rank l. Assume {α1, · · · , αl}
are simple roots of g. Then, the Cartan matrix of g is given by (aij)1≤i,j≤l, where
aij = 2(αi, αj)/(αi, αi). Let n ≥ 2 be an integer, not divisible by 3 if g = G2 and let
q be a primitive root of unity of order n. For integers 0 ≤ r ≤ m, let us recall the

analogue of q-binomial coefficient

[
m
r

]
q

which is defined by

[
m
r

]
q

=
[m]q !

[r]q ![m−r]q !
,

where [r]q! =
∏r
i=1

qi−q−i
q−q−1 . Then, the small quantum group uq(g) (see [4, 14] for

example) is generated by ei, fi, ki, 1 ≤ i ≤ l as an algebra, with the relations

kikj = kjki, kiejk
−1
i = q

aij
i ej , kifjk

−1
i = q

−aij
i fj ,

eifj − fjei = δi,j
ki − k−1i
qi − q−1i

, kni = 1, eni = fni = 0,

1−aij∑
r=0

(−1)r
[

1− aij
r

]
q

e
1−aij−r
i eje

r
i = 0, i 6= j,

1−aij∑
r=0

(−1)r
[

1− aij
r

]
q

f
1−aij−r
i fjf

r
i = 0, i 6= j,

where 1 ≤ i, j ≤ l and qi = q
(αi,αi)

2 . The coproduct, counit and antipode are given by

∆(ei) = 1⊗ ei + ei ⊗ ki, ∆(fi) = k−1i ⊗ fi + fi ⊗ 1, ∆(ki) = ki ⊗ ki,
ε(ei) = ε(fi) = 0, ε(ki) = 1,

S(ei) = −eik−1i , S(fi) = −kifi, S(ki) = k−1i .

Lastly, let us recall the Drinfeld double of a Hopf algebgra H, denoted by D(H). As
a coalgebra, D(H) = (H∗)cop ⊗H where (H∗)cop means the Hopf algebra associated
with H∗, which has an opposite coalgebra structure. The multiplication of D(H) is
defined as (f⊗h)(g⊗k) = f [h(1) ⇀ g ↼ S−1(h(3))]⊗h(2)k, where f, g ∈ H∗, h, k ∈ H
and 〈a ⇀ g ↼ b, c〉 := 〈g, bca〉 for a, b, c ∈ H. For convenience, we represent fh as
f ⊗ h in the subsequent discussion. Let R be the standard universal R-matrix of
D(H), i.e. R =

∑n
i=1 hi ⊗ hi, where n = dim(H) and {hi}ni=1, {hi}ni=1 are dual basis
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of H. To discuss ribbon Hopf algebras, let us recall the following result demonstrated
in [19, Theorem 3].

Theorem 2.8. Let g and α be the distinguished grouplike elements of H and H∗,
respectively. Then (D(H),R) has a ribbon element if and only if there are a ∈ G(H)
and β ∈ G(H∗) such that

(i) a2 = g and β2 = α;
(ii) S2(h) = a(β ⇀ h ↼ β−1)a−1, h ∈ H.

3. Constructing ribbon factorizable Hopf algebras by central
extensions

This section is dedicated to giving a way to construct ribbon factorizable Hopf al-
gebras. Before proceeding, let us introduce some notations. Let (H,R) be a qua-
sitriangular Hopf algebra and let π : H → K be a surjective Hopf map. Then
(K, (π⊗π)(R)) is a quasitriangular Hopf algebra. In particular, if I is a Hopf ideal of
H, then (H/I,R) is also a quasitriangular Hopf algebra, where R is induced by the
quotient map. For simplicity, we denote K+ as Ker ε for a Hopf algebra K, where ε
denote the counit of K.

To state the main result in this section, we need to recall a lemma given by [16,
Lemma 4.17]. Assume G = 〈xi| xnii = 1, xixj = xjxi, 1 ≤ i, j ≤ m〉 as groups.

Suppose η is bicharacter on G defined by η(xi, xj) = t
mij
j , where tj is a primitive njth

root of unity. Denote the matrix (mij)1≤i,j≤m as M .

Lemma 3.1. The matrix [η(g, h)]g,h∈G is non-degenerate if and only if the following
equation has a unique solution in Zn1 × ...× Znm

(i1, ..., im)M = (0, ..., 0), (i1, ..., im) ∈ Zn1 × ...× Znm .

Proof. Let us denote the dual group of G as Ĝ. Define γ : G→ Ĝ by γ(g)(h) = η(g, h)
for g, h ∈ G. Directly, we observe that [η(g, h)]g,h∈G is non-degenerate if and only if
γ is injective. By definition, γ is injective if and only if the following equation has a
unique solution

(i1, ..., im)M = (0, ..., 0), (i1, ..., im) ∈ Zn1 × ...× Znm .

�

Let m ∈ N and let H be a Hopf algebra. Assume G ⊆ G(H) is a subgroup such
that G = Zn1 × · · · × Znm = 〈g1, · · · , gm| gnii = 1, gigj = gjgi, 1 ≤ i, j ≤ m〉 as

groups. Suppose that G ⊆ G(H∗) is a subgroup such that G = Zn1 × · · · × Znm =
〈χ1, · · · , χm| χnii = 1, χiχj = χjχi, 1 ≤ i, j ≤ m〉 as groups. Let tj be a primitive

njth root of 1 and let χi(gj)χj(gi) = t
mij
j for 1 ≤ i, j ≤ m. And we also denote the

matrix (mij)≤i,j≤m as M . Then we have

Theorem 3.2. Keeping the above notation, assume H is generated by {ai| 1 ≤ i ≤ n}
as an algebra. If the following conditions hold
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(i) χi ⇀ aj ↼ χ−1i = g−1i ajgi for 1 ≤ i ≤ m, 1 ≤ j ≤ n;
(ii) (i1, ..., im)M = (0, ..., 0), (i1, ..., im) ∈ Zn1 × ...× Znm has a unique solution;

then 〈χigi| 1 ≤ i ≤ m〉 ⊆ Z(D(H)) and (D(H)/I,R) is factorizable Hopf algebra,
where I = D(H)〈χigi| 1 ≤ i ≤ m〉+ and R is the standard universal R-matrix of
D(H).

Proof. By definition of D(H), we know χiajχ
−1
i = χi ⇀ aj ↼ χ−1i . Combing this

fact with (i), we deduce that χigi ∈ Z(D(H)). For convenience, we denote D(H)/I
as K. Since K is quotient Hopf algebra of D(H), we can view the braided tensor
category (Rep(K),⊗, k, c) as a braided tensor subcategory of (Rep(D(H)),⊗, k, c),
where c (resp. c) is given by τ ◦ R (resp. τ ◦ R). Let D = Rep(D(H)) and let
E = Rep(K). Then we will apply Theorem 2.3 to complete the proof.

Since G ⊆ [G(D(H)) ∩ Z(D(H))], we know f−1R21R(g) ∈ G(D(H)∗) for g ∈ G, here

fR21R is defined by (2.1) for (D(H),R). Let g ∈ G and let kg be the one-dimensional

representation of D(H) determined by s.1 = f−1R21R(g)(s)1 for s ∈ D(H). Let F be
the full subcategory of D with objects

Ob(F) := {finite direct sums of {kg, g ∈ G}}.

By definition of F , it is a topologizing braided tensor subcategory of D. Let V ∈
D. By definition of CD(F), we know V ∈ CD(F) if and only if g.v = v for all
g ∈ G, v ∈ V . i.e. I.V = 0. This implies that E = CD(F). By Theorem 2.3,
we know that F is non-degenerate if and only if E is non-degenerate. Since Lemma
3.1 and (f−1R21R(χigi))(χjgj) = χi(gj)χj(gi) = t

mij
j for 1 ≤ i, j ≤ m, we know F is

non-degenerate. Hence E is non-degenerate. �

Remark 3.3. Combing this theorem with previous Theorem 2.8 given by Radford,
we actually obtain a method for constructing ribbon factorizable Hopf algebras. Using
this approach, it’s not difficult to recover many interesting ribbon factorizable Hopf
algebras, including small quantum groups uq(g). In practice, it’s often straightforward
to find grouplike elements χigi(1 ≤ i ≤ m) satisfying the conditions of above theorem,
making this method convenient to use. In the next section, we will explore this
advantage further.

4. Ribbon factorizable Hopf algebras Eq and related conclusions

4.1. A family of ribbon factorizable Hopf algebras Eq. In this subsection, we
will apply Theorem 3.2 to construct a family of ribbon factorizable Hopf algebras
denoted by Eq. Subsequently, we will provide an explicit description of Eq, including
its universal R-matrix and its unique ribbon element.

Recall the n-rank Taft algebra A q(n) defined by (2.3)-(2.6). Let χi : A q(n) −→ k be

the algebra map determined by χi(xj) = 0, χi(gj) = θ(i, j)qδi,j , where 1 ≤ j ≤ n.

Proposition 4.1. If l is odd, then the Hopf algebra D(A q(n))/I is a factorizable

Hopf algebra with dimension l3n, where I = D(A q(n))〈χigi| 1 ≤ i ≤ n〉+.



MODULAR TENSOR CATEGORIES ARISING FROM CENTRAL EXTENSIONS AND RELATED APPLICATIONS9

Proof. We only need to demonstrate that the Hopf algebra A q(n) satisfies the con-

ditions of Theorem 3.2. By definition of A q(n), it is generated by {gi, xi| 1 ≤ i ≤ n}.
Directly, we know gixjg

−1
i = χ−1i ⇀ xj ↼ χi = χi(gj)xj . Hence the condition (i)

of Theorem 3.2 holds. To verify the condition (ii) of Theorem 3.2, we will show
that the matrix [χi(gj)χj(gi)]1≤i,j≤n is non-degenerate. Let sij = χn−i(gj)χj(gn−i)

for 1 ≤ i, j ≤ n. By definition, [χi(gj)χj(gi)]1≤i,j≤n is non-degenerate if and only if

[sij ]1≤i,j≤n is non-degenerate. Let 1 ≤ i, j ≤ n. Define

mij =

{
2 i+ j ≤ n+ 1
−2 i+ j > n+ 1

.

Obviously, the following equation has a unique solution in Znl
(i1, ..., im)M = (0, ..., 0), (i1, ..., im) ∈ Znl ,

where M = (mij)1≤i,j≤n. By Lemma 3.1, [sij ]1≤i,j≤n is non-degenerate and hence

the condition (ii) holds. Consider the natural exact sequence 〈χigi| 1 ≤ i ≤ n〉 ↪→
D(A q(n)) → D(A q(n))/I, and hence we know the dimension of D(A q(n))/I is
l3n. �

Remark 4.2. Denote the above Hopf algebra D(A q(n))/I as E(n, q). If n = 1,
then E(1, q) recovers the small quantum group uq(sl2) by definition. Since our goal,
we will only focus on discussing E(3, q) in the following content. In fact, most of
following conclusions and proofs can also be generalized to E(n, q) just by adjusting
the number n. For simplicity, we just denote E(3, q) as Eq in following content.

To describe the Hopf algebra Eq explicitly, we need to understand more about the

dual Hopf algebra A q(3)∗. For this purpose, we require an alternative description

of A q(3)∗ distinct from the approach in [13]. Let β1, ...β3, γ1, ..., γ3 ∈ G(A q(3)∗) be
given by

βi(gj) = θ(j, i)qδj,i , βi(xj) = 0, 1 ≤ i, j ≤ 3,

γi(gj) = q2δi,j , γi(xj) = 0, 1 ≤ i, j ≤ 3,

and define X1, ..., X3 ∈ A q(3)∗ by

Xi(gx
j1
1 x

j2
2 x

j3
3 ) = δji,1

∏
k 6=i

δjk,0, 0 ≤ i, ji ≤ l − 1.

Let 1 ≤ i, j, k ≤ l and define e
gi1g

j
2g
k
3
∈ A q(3)∗ by

e
gi1g

j
2g
k
3

:=
1

|G|
∑

1≤u,v,w≤l
q−2iuq−2jvq−2kwγu1 γ

v
2γ

w
3 .

Let 1 ≤ i, j, k ≤ l and define λ(i, j, k) = q−i(j+k)−jkq
−i(i−1)

2
+
−j(j−1)

2
+
−k(k−1)

2 . For
convenience, the above notations will be freely used in the following content.

Lemma 4.3. Keeping the above notations, we have

(i) γ1 = χ1χ3, γ2 = χ−11 χ2, γ3 = χ−12 χ3;

(ii) β1 = χ3, β2 = χ−11 , β3 = χ−12 ;
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(iii) The set {λ(u, v, w)−1e
gi+u1 gj+v2 gk+w3

Xu
1X

v
2X

w
3 | 0 ≤ i, j, k, u, v, w ≤ l − 1} is the

dual basis of {gi1g
j
2g
k
3x

u
1x

v
2x

w
3 | 0 ≤ i, j, k, u, v, w ≤ l − 1};

Proof. By definition, we have γ1(gi) = χ1χ3(gi) = q2δi,1 for 1 ≤ i ≤ 3. Thus γ1 =
χ1χ3. Similarly, the equations in (i)-(ii) hold. To verify (iii), note that the coproduct

of A q(3) preserves the degree, hence (Xu
1X

v
2X

w
3 )(gxu

′
1 x

v′
2 x

w′
3 ) = 0 if (u′, v′, w′) 6=

(u, v, w). Next, we claim that Xu
i (gxui ) = q−

u(u−1)
2 . Let bu = Xu

i (gxui ) for 0 ≤ u ≤
l − 1. By definition, we have 〈Xu

i , gx
u
i 〉 = 〈Xi ⊗ Xu−1

i ,∆(gxi)∆(xu−1i )〉. Since we

have shown (Xv
i )(gxv

′
i ) = 0 if v 6= v′, it’s not difficult to see

〈Xu
i , gx

u
i 〉 = 〈Xi ⊗Xu−1

i , ggu−11 xi ⊗ gxu−1i 〉 = q−1bu−1.

Thus bu = q−1bu−1 for 1 ≤ u ≤ l − 1. Due to b0 = 1, we obtain Xu
i (gxui ) = q−

u(u−1)
2

which is our claim. To complete the proof, we only need to show:

(e
gi1g

j
2g
k
3
Xu

1X
v
2X

w
3 )(gi

′
1 g

j′

2 g
k′
3 x

u′
1 x

v′
2 x

w′
3 ) = λ(u, v, w)δi,i′+uδj,j′+vδk,k′+wδu,u′δv,v′δw,w′ .

Assume 1 ≤ i, j, k, u, v, w ≤ l and r + s+ t ≥ 1. By definition, we have

e
gi1g

j
2g
k
3
(gu1g

v
2g
w
3 ) = δi,uδj,vδk,w, egi1g

j
2g
k
3
(gxr1x

s
2x
t
3) = 0.(4.1)

By the previous claim, we have Xu
i (gxui ) = q−

u(u−1)
2 . Hence we get

〈Xu
1X

v
2X

w
3 , gx

u
1x

v
2x

w
3 〉 = 〈Xu

1 ⊗Xv
2 ⊗Xw

3 ,∆
(2)(gxu1x

v
2x

w
3 )〉

= 〈Xu
1 ⊗Xv

2 ⊗Xw
3 , gx

u
1g
v
2g
w
3 ⊗ gxv2gw3 ⊗ gxw3 〉

= q−u(v+w)−vw〈Xu
1 ⊗Xv

2 ⊗Xw
3 , gg

v
2g
w
3 x

u
1 ⊗ ggw3 xv2 ⊗ gxw3 〉

= λ(u, v, w).

Combining this fact with equation (4.1), we obtain

(e
gi1g

j
2g
k
3
Xu

1X
v
2X

w
3 )(gi

′
1 g

j′

2 g
k′
3 x

u
1x

v
2x

w
3 ) = λ(u, v, w)δi,i′+uδj,j′+vδk,k′+w.

Using the fact that the coproduct of A q(3) preserves the degree again, we obtain
what we want. �

As a result, we obtain

Corollary 4.4. The A q(3)∗ is generated by {χi, Xi| 1 ≤ i ≤ 3} as an algebra, with
the relations

χiχj = χjχi, χ
l
i = 1, χiXj = θ(i, j)qδi,jXjχi, XiXj = θ(i, j)XjXi, X

l
i = 0.

The coproduct, counit and antipode are given by

∆(χi) = χi ⊗ χi, ∆(Xi) = 1⊗Xi +Xi ⊗ β−1i ,

ε(χi) = 1, ε(χi) = 0,

S(χi) = χ−1i , S(Xi) = −Xiβi,
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Proof. Directly, we know that G(A q(n)∗) = 〈χi| 1 ≤ i ≤ 3〉. By (iii) of Lemma 4.3,

we obtain that {χi, Xi| 1 ≤ i ≤ 3} generates A q(n)∗ as an algebra. To complete the
proof, we only need to show following non-trivial equalities

χiXj = θ(i, j)qδi,jXjχi, XiXj = θ(i, j)XjXi, ∆(Xi) = 1⊗Xi +Xi ⊗ β−1i .

Firstly, we show χiXj = θ(i, j)qδi,jXjχi. Since the degree reason, we only need to

prove 〈χiXj , gxk〉 = θ(i, j)qδi,j 〈Xjχi, gxk〉 for 1 ≤ k ≤ 3. Directly, we have

〈χiXj , gxk〉 = θ(i, j)qδi,j 〈Xjχi, gxk〉 = χi(ggj)δj,k.

Hence we get χiXj = θ(i, j)qδi,jXjχi. Similarly, we have

〈XiXj , gxkxl〉 = 〈θ(i, j)XjX,gxkxl〉 = θ(i, j)δi,kδj,l.

So we get XiXj = θ(i, j)XjXi. Since the degree reason and following equalities

〈∆(Xi), g⊗hxi〉 = 〈ε⊗Xi, g⊗hxi〉 = 1, 〈∆(Xi), hxi⊗g〉 = 〈Xi⊗β−1i , hxi⊗g〉 = β−1i (g),

we obtain ∆(Xi) = 1⊗Xi +Xi ⊗ β−1i . �

Now we can describe the Hopf algebra Eq explicitly.

Proposition 4.5. The Hopf algebra Eq is generated by {gi, xi, Xi| 1 ≤ i ≤ 3} as an
algebra with relations

gigj = gjgi, g
l
i = 1, gixj = βj(gi)xjgi, giXj = βj(gi)

−1Xjgi,

xixj = θ(i, j)xjxi, XiXj = θ(i, j)XjXi, x
l
i = 0;X l

i = 0

xiXj − βj(gi)−1xiXj = δi,j(1− hi), where (h1, h2, h3) = (g1g3, g
−1
1 g2, g

−1
2 g3),

where gi ∈ G(Eq). The coproduct, counit and antipode are given by

∆(xi) = xi ⊗ 1 + gi ⊗ xi, ∆(Xi) = 1⊗Xi +Xi ⊗ hig−1i ,

ε(xi) = ε(Xi) = 0, S(xi) = −g−1i xi, S(Xi) = −Xih
−1
i gi.

Proof. Corollary 4.4 tells us that the union of {gi| 1 ≤ i ≤ 3} and {xi, Xi| 1 ≤ i ≤ 3}
generates Eq as an algebra. Next, we show xiXj − βj(gi)−1Xjxi = δi,j(1− hi). Since
xiXj = [(xi)(1) ⇀ Xj ↼ S−1(xi)(3)](xi)(2) and

∆(2)(xi) = xi ⊗ 1⊗ 1 + gi ⊗ xi ⊗ 1 + gi ⊗ gi ⊗ xi,

we have

xiXj = xi ⇀ Xj + (gi ⇀ Xj)xi + (gi ⇀ Xj ↼ S−1(xi))gi.(4.2)

By definition, we get

xi ⇀ Xj = δi,j1, gi ⇀ Xj = βj(gi)
−1Xj , gi ⇀ Xj ↼ S−1(xi) = −δi,jβ−1i .(4.3)

Due to Lemma 4.3, we have (β1, β2, β3) = (χ3, χ
−1
1 , χ−12 ). By definition of Eq, we get

χi = g−1i for 1 ≤ i ≤ 3. This implies β−1i = hig
−1
i . Combining this with equations

(4.2)-(4.3), we know xiXj − βj(gi)−1Xjxi = δi,j(1− hi).
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Since Corollary 4.4, we get ∆(Xi) = 1 ⊗ Xi + Xi ⊗ β−1i . Note that β−1i = hig
−1
i ,

hence the equation ∆(Xi) = 1 ⊗Xi + Xi ⊗ hig−1i holds. Using Corollary 4.4 again,
we obtain other equations. �

Moreover, we can provide the universalR-matrix of Eq and the unique ribbon element
as follows.

Proposition 4.6. Keeping the notations in Proposition 4.5, then the induced univer-
sal R-matrix of Eq is given by

R =
∑

0≤i,j,k,u,v,w≤2
λ(u, v, w)−1gi1g

j
2g
k
3x

u
1x

v
2x

w
3 ⊗ ei+u,j+v,k+w(Xu

1X
v
2X

w
3 ).(4.4)

The unique ribbon element for (Eq, R) is given by θ = ug−13 , where u =
∑

i S(R
i
)Ri.

Proof. By Lemma 4.3, the set {λ(u, v, w)−1e
gi+u1 gj+v2 gk+w3

Xu
1X

v
2X

w
3 | 0 ≤ i, j, k, u, v, w ≤

l − 1} is the dual basis of {gi1g
j
2g
k
3x

u
1x

v
2x

w
3 | 0 ≤ i, j, k, u, v, w ≤ l − 1}. Since the defi-

nition of R, we know it is given by the equation (4.4).

Denote H as A q(3) for simplicity. To prove that (Eq, R) has ribbon element, we only

need to show (D(H),R) has a ribbon element. Let Λ = (
∑

g∈G(H) g)(xl−11 . . . xl−13 ).

By definition, we know Λ is a left integral of H. This implies α (the distinguished
grouplike element of H∗) is determined by α(gi) = q−3+2i and α(xi) = 0 for 1 ≤ i ≤ 3.

Similarly, we know that Λ′ = (
∑

χ∈Ĝ χ)(X l−1
1 . . . X l−1

3 ) is a left integral of H∗ by using

Corollary 4.4. Hence we have g0 = g−11 . . . g−13 (the distinguished grouplike element of
H). Since l is odd, we can assume l = 2m−1. Let a = gm0 , β = αm. By definition, we
know that a, β satisfy the conditions of Theorem 2.8. Thus (D(H),R) has a ribbon
element. Now we can assume v ∈ Eq is a ribbon element. Let g = vu−1. Then we have
g ∈ G(Eq) and S2(h) = g−1hg for h ∈ Eq. By definition, we also have S2(h) = g3hg3
for h ∈ Eq. To complete the proof, we only need to show that G(Eq) ∩ Z(Eq) = {1}.
Note that the set {βi| 1 ≤ i ≤ 3} generate Ĝ as a group, hence it’s not difficult to see
that G(Eq) ∩ Z(Eq) = {1}. �

Remark 4.7. For a general n-rank Taft algebra A q(n), we can use similar discussions
as above to conclude that E(n, q) has a unique ribbon element, i.e., E(n, q) is a ribbon
factorizable Hopf algebra for all n ∈ N+.

4.2. A prime decomposition of Rep(Eq). In this subsection, we will mainly show
the following result

Proposition 4.8. We have Rep(Eq) ' Rep(uq(sl2))
�3 as ribbon categories, thereby

providing a prime decomposition for Rep(Eq).

To provide a proof, we rely on following result that combines [6, Lemma 2.1] and [6,
Lemma 2.5] by P. Etingof et al.

Proposition 4.9. Suppose the order of q′ is odd and it is coprime to the determinant
of the Cartan matrix of g. Then uq′(g) has only two universal R-matrices.
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Suppose the order of q′ is odd and it is coprime to the determinant of the Cartan
matrix of g. It’s known that uq′(g) is a factorizable Hopf algebra (see [35, XI.6.3] for
example). Further, we have

Corollary 4.10. Suppose the order of q′ is odd and it is coprime to the determinant
of the Cartan matrix of g. Then any universal R-matrix of uq′(g) yields a factorizable
Hopf algebra.

Proof. Since uq′(g) is a factorizable Hopf algebra, we can assume R is a factorizable
universal R-matrix of uq′(g). Let R′ = τ(R−1), where τ is the flip map. By definition,
R′ is also a universal R-matrix. Since R is a factorizable universal R-matrix, we
know R′ 6= R. By Lemma 2.6, R′ is also a factorizable universal R-matrix. Since
Proposition 4.9, we know the set {R,R′} gives all the universal R-matrices. Hence
we get what we want. �

For the Hopf algebra Eq, let 1 ≤ i ≤ 3 and let Ii be the Hopf ideal generated by the
following set

{xj , Xj , 1− hj | 1 ≤ j 6= i ≤ 3}.
Denote the quotient Hopf algebra Eq/Ii as Hi. Then Hi is a quasitriangular Hopf

algebra with an induced universal R-matrix denoted by Ri. Hence (Rep(Hi),⊗, k, ci)
is a braided tensor category, where ci is given by τ ◦ Ri. And it can be viewed as a
braided tensor subcategory of (Rep(Eq),⊗,k, c) naturally, where c is given by τ ◦ R
(see Proposition 4.6 for definition of R).

Lemma 4.11. Let 1 ≤ i 6= j ≤ 3. Then any object of Rep(Hi) belongs to the Muger
centralizer of Rep(Hj).

Proof. Assume Vi is an object of Rep(Hi) and Vj is an object of Rep(Hj). By def-

inition, we only need to prove that R21R(vi ⊗ vj) = vi ⊗ vj for vi ∈ Vi, vj ∈ Vj .
To begin, we’ll demonstrate this for the case i = 1, j = 2. For simplicity, we de-

fine g(i,j,k) := gi1g
j
2g
k
3 . By definition, we have xj .V1 = Xj .V1 = {0} for j 6= 1 and

xk.V2 = Xk.V2 = {0} for k 6= 2. Using this fact and λ(0, 0, 0) = 1, we know

that R =
∑

0≤i,j,k≤2 g
(i,j,k) ⊗ ei,j,k when they act on V1 ⊗ V2. By a similar dis-

cussion and the relations gixj = βj(gi)xjgi, giXj = βj(gi)
−1Xjgi, we know that

R21R =
∑

0≤i,i′,j,j′,k,k′≤2[ei′,j′,k′g
(i,j,k) ⊗ gi′,j′,k′ei,j,k] when they act on V1 ⊗ V2. By

definition, we have

e
gi1g

j
2g
k
3

=
1

|G|
∑

1≤u,v,w≤l
q−2iuq−2jvq−2kwγu1 γ

v
2γ

w
3 .

Using (i) of Lemma 4.3 and χkgk = 1 for 1 ≤ k ≤ 3, we get

e
gi1g

j
2g
k
3

=
1

|G|
∑

1≤u,v,w≤l
q−2iuq−2jvq−2kwh−u1 h−v2 h−w3 .

Since (hj − 1).V1 = {0} for j 6= 1, we know ei,j,k = δj,0δk,0ei,0,0 when they act on V1.
Similarly, since (hk − 1).V2 = {0} for j 6= 2, we know that ei,j,k = δi,0δk,0e0,j,0 when
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they act on V2. Thus the following equation holds when both sides act on V1 ⊗ V2

R21R =
1

l2

∑
i,j′,u,v

q−2iug−2u1 gj
′

2 ⊗ q
−2j′vgi1g

−2v
2 .

By definition, we know g2 = g1 when they act on V1. Similarly, we obtain g2 = g−11
when they act on V2. Hence the following equation holds when both sides act on
V1 ⊗ V2

R21R =
1

l2

∑
i,j′,u,v

q−2iug−2u+j
′

1 ⊗ q−2j′vg−2v−i2 .

Let 1 ≤ j ≤ 2. Since glj = 1, we know gj is diagonalizable when it acts on Vj . Thus
we can assume that vj ∈ Vj such that gj .vj = qmj . Then we get

(R21R).(v1 ⊗ v2) = (
1

l2

∑
i,j′,u,v

q−2iu−2m1u+m1j′ ⊗ q−2j′v−2m2v−m2i)(v1 ⊗ v2).

Directly, we have ( 1
l2
∑

i,j′,u,v q
−2iu−2m1u+m1j′ ⊗ q−2j′v−2m2v−m2i) = 1. Hence we get

(R21R).(v1 ⊗ v2) = (v1 ⊗ v2), i.e. we have shown that any object of Rep(H1) belongs
to the Muger centralizer of Rep(H2). Similarly, we can show R21R(vi ⊗ vj) = vi ⊗ vj
for other cases i 6= j.

�

Now we can give following proof.

Proof of Proposition 4.8. Let 1 ≤ i ≤ 3. By definition, we know Hi
∼= uq(sl2) as

Hopf algebras. Since Corollary 4.10, we know Rep(Hi) is a non-degenerate braided
tensor subcategory. Moreover, it is a topologizing subcategory by definition. By The-
orem 2.5, we can get Rep(Eq) = Rep(H1) � Rep(H2) � Rep(H3). Since Hi

∼= uq(sl2)
and it’s known that Rep(uq(sl2)) with any braiding structure is a prime modular
tensor category (see [6, Lemma 2.5] for example), we know the above decomposition
for Rep(Eq) is a prime decomposition. Hence, we get what we want. �

Recall that a normalized twist for a Hopf algebra H is an invertible element J ∈ H⊗H
which satisfies (ε⊗ Id)(J) = (Id⊗ε)(J) = 1 and

(∆⊗ Id)(J)(J ⊗ 1) = (Id⊗∆)(J)(1⊗ J).

Then there is a twisted Hopf algebra HJ whose coproduct ∆J is given by ∆J(h) =
J−1∆(h)J for h ∈ H and its algebra is same with H. By [30, Theorem 2.2], two Hopf
algebras H and H ′ are gauge equivalent (their representation categories are equivalent
as tensor categories) if and only if there exists a twist J of H such that H ′ ∼= HJ as
Hopf algebras. Then we have

Corollary 4.12. There is a twist J of uq(sl
⊕3
2 ) such that Eq ∼= uq(sl

⊕3
2 )J as Hopf

algebras.

Proof. By Proposition 4.8 and above discussion, we get what we want. �
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4.3. Compare Eq with some known ribbon factorizable Hopf algebras. We
call a Hopf algebra trivial if it is a group algebra or its dual. This subsection is devoted
to proving following Theorem 4.14. To do this, we introduce following proposition.
Denote the center of H as Z(H).

Proposition 4.13. The Hopf algebra Eq is a simple Hopf algebra.

Proof. Suppose K 6= k.1 is normal sub-Hopf algebra of Eq. To complete the proof,
we only need to show {gi, xi, Xi| 1 ≤ i ≤ n} ⊆ K.

Since K is finite dimensional pointed Hopf algebra over k of characteristic 0, we can
find 1 6= g ∈ G(K). Let 1 ≤ j ≤ 3. Denote the dual group of G(A q(3)) as Ĝ.
Directly, we have adxj (g) = (1− χj(g))gxj for 1 ≤ j ≤ 3, where the ”ad” means the

adjoint action. Since g 6= 1 and {χj | 1 ≤ j ≤ 3} generates Ĝ as group, there is some
1 ≤ j0 ≤ 3 such that χj0(g) 6= 1. This implies that gxj0 ∈ K by normality of K. Then
we know xj0 ∈ K and gj0 ∈ K. For 1 ≤ j ≤ 3, we get adxj (gj0) = (1− χj0(gj))xjgj0
by definition. Since χj0(gj) 6= 1, we get xj ∈ K for 1 ≤ j ≤ 3. Using ∆(xj) ∈ K ⊗K,

we obtain gj ∈ K for 1 ≤ j ≤ 3. As a result, we have G(Eq) ⊆ K. Let kj = hjg
−1
j . By

definition, we get adXj (kj) = (1− βj(kj))Xj . Directly, we have βj(kj) = q. Hence we
know Xj ∈ K for 1 ≤ j ≤ 3. Since we have shown that {gi, xi, Xi| 1 ≤ i ≤ n} ⊆ K,
we know K = H. �

Now, we can give following comparison.

Theorem 4.14. If the order of q is not a square number, then the ribbon factorizable
Hopf algebra Eq is not isomorphic to any tensor products of trivial Hopf algebras,
Drinfeld doubles, and small quantum groups as Hopf algebras.

Proof. Denote the order of q as l. Since the assumption and the dimension of Eq is
l9, we know it is not isomorphic to any Drinfeld double. By Proposition 4.13, we only
need to show that Eq is not isomorphic to any small quantum group of a simple Lie
algebra. Let g be a complex simple Lie algebra and let q be a root of unity with odd
order not divisible by 3 if g = G2. Note that uq(g) has no non-trivial Hopf quotient
(see [6] for example), i.e. the only quotient Hopf algebras are k or itself. But we
have known that Eq has non-trivial quotient Hopf algebras, such as the quotient Hopf
algebra H1 in Lemma 4.11. Thus Eq 6∼= uq(g) as Hopf algebras. �

Remark 4.15. Since Corollary 4.12 and above theorem, we conclude that there exists
some twist J for uq(sl

⊕3
2 ) such that the twisted Hopf algbra is simple. This implies

that the notion of simplicity of a Hopf algebra H is not determined by its tensor cate-
gory of representations, even if H is assumed to be a ribbon factorizable Hopf algebra.
Hence, we have reinforced a part of the conclusion in [10]. Furthermore, the following
table illustrates that there is no relation between simplicity of H and primality of
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Rep(H), thereby providing answers to the questions posed in the introduction.

H H simple Hopf algebra? Rep(H) prime?
D(Z2) No Yes
D(Z2 × Z2) No No
Z3 Yes Yes
Eq Yes No

Lastly, let us recall the ribbon factorizable Hopf algebras given in [28, Example 5.18]
and compare them with Eq. Let q′ be a primitive 2n-th root of unity, where n ≥ 1 is an
odd integer. The Hopf algebra DrinK∗(Bq′ ,B

∗
q′) is generated by {xi, yi, ki| 1 ≤ i ≤ 2}

as an algebra, subject to relations, for 1 ≤ i 6= j ≤ 2,

kikj = kjki, k
2n
i = 1, kixi = xiki, kiyi = yiki, kixj = q′xjki, kiyj = q′−1yjki,

xiyj + yjxi = δi,j(1− ki), x2i = y2i = 0, (x1x2 − x2x1)2n = (y2y1 − y1y2)2n = 0,

The coproduct, counit and antipode are given by ∆(ki) = ki ⊗ ki and

∆(x1) = x1 ⊗ 1 + kn2 ⊗ x1, ∆(x2) = x2 ⊗ 1 + kn1 k2 ⊗ x2,
∆(y1) = y1 ⊗ 1 + k1k

n
2 ⊗ y1, ∆(y2) = y2 ⊗ 1 + kn1 ⊗ y2,

ε(ki) = 1, ε(xi) = ε(yi) = 0,

S(ki) = k−1i , S(x1) = −k−n2 x1, S(x2) = −k−n1 k−12 x2,

S(y1) = −k−11 k−n2 y1, S(y2) = −k−n1 y2.

The dimension of DrinK∗(Bq′ ,B
∗
q′) is 256n4 ([28, Example 5.18]). Due to dimen-

sion reason, we know that Rep(Eq) is not equivalent to representation category of
DrinK∗(Bq′ ,B

∗
q′) as tensor categories.
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