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Abstract 

 

Given the multifactorial feature of drug response, portraying its systematic control 

mechanism is, despite being challenging, crucial for pharmacogenomic research. We 

describe a new norm of statistical mechanics to reconstruct informative, dynamic, 

omnidirectional, and personalized networks (idopNetworks) that cover all 

pharmacogenomic factors and their interconnection, interdependence, and 

mechanistic role. IdopNetworks can characterize how cell-cell crosstalk is mediated 

by genes and proteins to shape body-drug reactions and identify key roadmaps of 

information flow and propagation towards drug efficacy and toxicity. We argue that 

idopNetworks could potentially gain insight into the genomic machineries of drug 

response and provide scientific guidance to design drugs whose potency is maximized 

at a lower dose. 

 

Keywords: drug response, gene regulatory network, idopNetwork, statistical 

mechanics, cell-cell crosstalk 

 

 

Networks are fundamental to body-drug reactions 

 

There is great inter-individual variability in how a drug acts on the body, leading to 

physiological effects at its specific site [1-5]. Traditional genomic approaches have 

been instrumental for identifying significant factors, such as genes, proteins, 

metabolites, pathways, or microbes, which cause variation in drug response [6-9]. 

However, these approaches based on a reductionist thinking have limited power to 

portray the overall atlas of pharmacogenomic control, making it difficult to translate 

pharmacogenetics into a clinical practice. Drug response involves multifactorial 

mechanisms [10,11], which can better be described as a dynamic system [12], where 

its constituent components interact with each other to form an intricate network. For 

this reason, network modeling may hold a great promise to unveil the genomic 

machineries of drug response. 

 

As a commonly used approach, network tools have well been developed in physical 
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and social sciences [13,14]. The use of networks to biological, biomedical and 

pharmacological problems starts after a massive amount of omics data has been 

produced at a reasonably low cost [15-18]. However, most existing networks are still 

far from reaching a standard at which pharmacological mechanisms can be revealed at 

high resolution. For example, correlated-based networks can only estimate the 

strength of interactions, but failing to identify their causality, whereas Bayesian 

network can find the direction of interactions but cannot estimate their strength and 

sign [19]. More recently, a new norm of statistical mechanics has been proposed [20-

23], which can distill all drug response-related factors into idopNetworks. Such 

networks enable us to chart the detailed atlas of how each pharmaco-agent interacts 

with every other one to mediate drug response. 

 

Topology theory [24] is implemented into idopNetworks to better understand how a 

pharmacogenomic network functions. Based on network topology diagrams, the best 

placements for each pharmacological factor (i.e., node) and the optimal path for 

information flow from one node to the next can be determined. With a well-defined 

and planned-out network topology, pharmacologists can more easily locate key 

factors and their pathways to improve pharmacogenetic translation efficiency. GLMY 

theory, pioneered by S.-T. Yau and co-workers [25-27], to describe the path homology 

of digraphs has increasingly emerged as a mathematical tool to extract the topological 

features of data that persist across multiple scales. For example, this tool can capture 

the connected components or holes in networks, which serve as indicators of node 

importance [28,29]. By estimating the existence and distribution of structural holes in 

networks, network comparison and classification can be made [30]. 

 

This article aims to introduce idopNetworks into the pharmacological research 

community. We describe the basic principle of idopNetwork reconstruction from 

omics data collected in commonly designed genomic studies of drug response. We 

show that the integration of GLMY theory into pharmacogenomic idopNetworks can 

leverage the genomic studies of drug response to a new height in both theory and 

applications. We demonstrate the utilization and usefulness of idopNetworks by 

analyzing and interpreting a published genomic dataset from an antipsychotic study. 
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A framework for pharmacogenomic idopNetworks 

 

Network pharmacology has emerged as a new discipline to understand drug actions 

and interactions with multiple targets [15,18]. Reconstructing genomic interactome 

networks in pharmacological response to medications from omics data is the key first 

step towards the translation of network pharmacology. Nodes in pharmacogenomic 

networks are biological agents, such as genes, proteins, metabolites, or pathways 

related to drug response, which are linked by lines termed edges. The edges represent 

the nature of how different agents interact with each other, usually unknown to 

pharmacologists but inferable from genomic data. Although many approaches are 

available for inferring pharmacogenomic networks, idopNetworks shall represent one 

of the advanced tools to reconstruct the most detailed networks from a wide spectrum 

of data domains. 

 

IdopNetworks are derived from the seamless integration of many disciplines, 

including evolutionary game theory, allometrical scaling law, and graph theory. By 

analyzing and modeling omics data collected from a pharmacological experiment or 

practice, such networks can be used to study drug response. Consider a drug aimed to 

treat a disease. Drug response occurs if this drug produces any physiological and 

pathological processes in terms of effectiveness and adverse reactions. For a regular 

design of pharmacogenomic research, biological agents at pre- and post-intervention 

of the drug are measured, from which a set of significant agents associated with drug 

response are identified. A classic reductionist-based approach aims to find single 

significant agents by comparing and testing the difference of abundance of each agent 

between pre- and post-intervention (Fig. 1A). Significant agents can serve as a 

predictive biomarker of drug response; for example, BRAF V600E mutations were 

detected as a biomarker to be associated with response to BRAF inhibitors in 

melanoma [31]. This approach ignores the existence of inter-agent interaction and 

dependence, making it difficult to find the true role of individual significant agents. 

For example, by statistical testing, agent 1 is differentially expressed between pre- and 

post-intervention (Fig. 1A), indicating that this agent can be used as a biomarker of 

drug response. However, this differentiated expression may be due to change in its 

regulatory relationship with other agents; e.g., it is promoted by agent 6 at pre-
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intervention, but promoted, to a much larger extent, by both agents 2 and 3 at post-

intervention (Fig. 1B). A similar phenomenon is held for differentially expressed 

agent 3. 

 

To model how different agents interact with each other to mediate drug response, we 

view each sample (e.g., an individual, an organ, a tissue, or even a cell) as an 

ecosystem consisting of many interdependent agents. We collect the data of these 

agents before and after a drug is administrated. Following game theory, we argue that 

each agent attempts to maximize the amount of its expression (“payoff”) by adopting 

an optimal strategy, in response to other agents [32]. This attempt proceeds until the 

Nash equilibrium is reached, at which no agent can alter its expression by changing its 

own strategy (holding all other agents' expression fixed). Game theory is combined 

with evolutionary biology to generate evolutionary game theory [33] in which the 

Nash equilibrium was refined by the notion of evolutionarily stable strategy (ESS). 

Sun et al. [22] developed a system of mixed ordinary differential equations (mODEs) 

to characterize the dynamic change of ESS. In pharmacogenomic studies, such 

mODEs characterize the abundance levels of different genes expressed at pre- or post-

intervention. The mODE of each gene in the system contains two terms: the first 

specifying the independent expression component derived from the intrinsic strategy 

of this gene and the second specifying the dependent expression component from its 

extrinsic influence by other genes. We code the independent components as nodes and 

the dependent components as edges into pharmacogenomic networks at pre- or post-

intervention (Fig. 1B). These networks are idopNetworks because they are fully 

informative (characterized by bidirectional, signed, and weighted interactions), 

dynamic (modeling how interactions change across time and space), omnidirectional 

(complete identification of all direct and indirect interactions for each node), and 

personalized (discerning sample-specific variability in network structure). 

 

In general, mODEs are built from temporal data. However, such data are difficult or 

impossible to collect because of technical, economic or ethical reasons. Chen et al. 

[20] introduced niche theory to define the “productivity” of each sample (ecosystem) 

by summing the expression values of all agents (coined ecosystem index). Thus, the 

power law is used to describe allometric scaling relationships between the expression 

of individual agents and ecosystem index [34]. These relationships are implemented 
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into mODE to formulize quasi-dynamic mODE (qdMODE) in which the time 

derivative is replaced by the ecosystem index derivative [35]. The formulation of 

qdMODE makes it idopNetwork a widespread use across various data domains. 

Rather than comparing the differentiated expression of a single gene at pre- or post-

intervention, idopNetworks, by implementing GLMY theory, can find topological 

features in gene co-regulation that cause intervention-induced differences. This 

approach promotes a paradigm shift of pharmacogenomic studies from a reductionist 

thinking to a systems-oriented thinking. Systems pharmacology holds great promise 

to rationally design the next generation of drugs with improved therapeutic safety and 

efficacy. 

 

A concept of proof: How idopNetworks work 

 

As one of the largest types of prescribed drugs to treat mental health problems 

including schizophrenia, bipolar disorder, depression, dementia, and autism among 

other clinical conditions [36-38], antipsychotic drugs would induce weight gain, 

which are indirectly responsible for psychosis relapses [39]. Crespo-Facorro et al. 

[40] identified 115 genes that are differentially expressed in the antipsychotic-induced 

weight gain (AIWG) group (18 patients) before and after 3 months of intervention and 

156 differentially expressed genes in the no weight gain group (18 patients) before 

and after 3 months of intervention. Although these discoveries provide a first step 

toward explaining the genomic causes of AIWG, they are still far away from a 

mechanistic understanding of how individual genes influence AIWD directly or 

through indirect pathways. 

 

To address the above issue, we reconstruct idopNetworks for both the weight gain 

group and the no weight gain group before and after intervention using a complete set 

of 45,281 genes profiled in Crespo-Facorro et al.’s [40] study. We view each sample 

(patient) as an ecosystem and calculate ecosystem index by summing the values of 

expression over all genes for each sample. The relationship between the expression 

level of each gene and ecosystem index across samples can be fitted by the power 

equation, but with great inter-gene variability in the shape of the power curve (Fig. 

1S). As our goal to demonstrate how idopNetworks is useful for revealing the 

genomic mechanisms of drug response, we focus our presentation on comparing 
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network differences for the no weight gain group before and after intervention.  

 

Given a large number of genes considered, we implement functional clustering 

[41,42] to classify all genes into 67 and 61 distinct modules pre- and post-

intervention, respectively (Fig. 2S). If the number of genes within a module is still too 

large, we further implement functional clustering to classify them into distinct 

submodules. This process repeats until the number of genes within a unit reaches 

Dubar’s number, i.e., a “cognitive” limit of genes, beyond which members within a 

community cannot establish stable mutual relationships [43-45]. After a series of 

classification, we assign each gene into a Dunbar community, which encompasses all 

of its virtually existing interactions. We reconstruct idopNetworks of all Dunbar 

communities for the no weight gain group before and after intervention. As example, 

our analysis is focused on idopNetworks containing several genes detected to be 

differentially expressed pre- and post-intervention by standard statistical approaches. 

Such genes should be regarded as target genes of practical significance because they 

can inhibit psychotic symptoms but with no influence on weight gain. 

 

Gene OTOF is observed to increase its expression dramatically from pre- to post-

intervention for the no weigh gain group. OTOF encodes otoferlin, a critical protein at 

the synapse of auditory sensory cells, whose absence causes impaired release of 

synaptic vesicles, making it interrupted to transmit signals from the ear to the brain 

[46,47]. Increasing expression of OTOF helps patients improve their psychotic state. 

IdopNetworks containing this gene reconstructed before and after 3 months of 

intervention are illustrated in Figure 2A, from which OTOF is found to be promoted 

by PLOD2 pre-intervention but inhibited by POUSF1 post-intervention. A detailed 

decomposition analysis shows that the antipsychotic-induced function of OTOF 

depends on the expression of the other gene (Fig. 2A). It displays a much lower level 

of independent gene expression (due to its intrinsic capacity) before than after 

antipsychotic intervention. OTOF is only slightly promoted by PLOD2 pre-

intervention, making its observed expression level to be quite close to its independent 

expression level, yet it is heavily inhibited by POUSF1 post-intervention, leading to 

its observed expression level to be much lower than its observed expression level. 

This finding suggests that the expression of OTOF post-intervention can be further 

strengthened by repressing the expression of negative regulator POUSF1 via gene 
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editing, which can potentially improve drug efficacy in treating psychotic diseases. It 

is interesting to note that gene POUSF1, as a hub of inhibiting many other genes in 

the post-intervention network, promotes the proliferation, migration, and invasion of 

gastric cancer cells [48]. This implies that the repression of POUSF1 may not only 

enhance the efficacy of antipsychotic drugs, but also inhibit the development of 

gastric cancer. It appears that antipsychotic-drug efficacy can be increased through 

releasing the expression of gene LOC100190986 via the repression of CCDC85C 

(Fig. 2B). 

 

Decreasing expression of gene HBG1 is positively associated with the efficacy of 

antipsychotic drugs (Fig. 2C). It is only slightly promoted by BLVRB pre-intervention, 

but it is strikingly promoted by PCGF5 and also inhibited by RBM38 to a similar 

extent. In practice, by silencing the expression of PCGF5, the expression level of 

HBG1 can be largely reduced, leading to the increase of antipsychotic-drug efficacy. 

As shown in Figure 2D, decreasing the expression of AnKRD22 can help improve 

drug efficacy. However, the independent expression of this gene increases 

considerably from pre- to post-intervention, which suggests that this gene cannot be 

used alone as a target to treat psychotic diseases, rather than using a dyad composed 

of it and its negative regulator SPTSSB. By reconstructing IdopNetworks of each 

differentiated gene, we can better understand the mechanistic underpinnings of how 

these genes function to determine drug response. 

 

Leveraging idopNetworks to pharmacogenomic translation 

 

IdopNetworks are often too complicated to ascertain explicit patterns of information 

flow. Path homology, known as GLMY homology theory, has emerged as an advanced 

tool in algebraic topology to dissect the topological architecture of digraphs [25-27]. 

This theory has been used to reveal the mechanistic pathways of how each node flows 

its signal to every other one in many fields including material synthesis [49], complex 

disease etiology [23], and ecological functioning of the soil microbiome [50]. We 

implement GLMY theory to characterize the topological features of idopNetworks 

pre- and post-intervention. 
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Figure 3 illustrates the GLMY dissection of idopNetworks involving gene OTOF pre- 

and post-intervention for the no weight gain group. Pre- and post-intervention 

idopNetworks display similar 0- and 1-dimensional homologies, but while the former 

has no 2-dimensional homology, the latter is characterized by such homologies. This 

difference suggests that post-intervention networks are much complex in structure and 

function than pre-intervention networks. It is interesting to note that OTOF and 

POU5F1 establishes an antagonistic relationship through one 1-dimensional 

homology and eight 2-dimensional homologies. Such multiple pathways make it 

possible and feasible to promote the expression of OTOF to enhance the efficacy and 

safety of antipsychotic drugs by knocking out POU5F1. Both OTOF and POU5F1 

inhibit LEFRS (lowly expressed in rheumatoid fibroblast-like synoviocytes)[51]. The 

silence of POU5F1 can enhance the expression of LERFS, which is detected to inhibit 

rheumatoid synovial aggression and proliferation. From this perspective, POU5F1 

should be chosen as a central target for genomic editing not only to improve drug 

efficacy, but also to repress gastric cancer and rheumatoid arthritis. 

 

Efficacy genes and toxicity genes are combined into a network 

 

The most desirable drug should possess the following features: high efficacy, low 

toxicity (side effects), low chance of drug resistance, low cost, and low deleterious 

effect on the environment [52]. In treating psychotic diseases, antipsychotic drugs 

produce side effects, i.e., weight gain, which may lead to psychosis relapses. Crespo-

Facorro et al.’s [40]design allows us to distinguish between specific genes for drug 

efficacy or drug toxicity and common genes for both drug processes. This information 

can be used to design optimal therapeutic strategies that maximize drug efficacy and 

minimize drug toxicity. The value of this information can be leveraged by 

implementing idopNetworks. 

 

For a gene, if its expression is different between before and after intervention for the 

no weight gain group, then it is certain that this gene is associated with antipsychotic 

drug response. However, if a gene is differentially expressed pre- and post-

intervention for the weight gain group, then we cannot precisely judge whether this 

gene is only responsible for either weight gain or drug response, or both. Based on 
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this analysis, we classify all genes into four categories: 

 

(1) Weight gain-specific genes, i.e., those whose expression has no difference pre- 

and post-intervention for the no weight gain group but displays a difference pre- 

and post-intervention for the weight gain group; 

 

(2) Weight gain-drug response antagonism genes, i.e., those whose expression 

displays a difference pre- and post-intervention for the no weight gain group but 

has no difference pre- and post-intervention for the weight gain group. The former 

suggests that these genes are responsible for antipsychotic drugs, whereas the 

latter implies that the direction by which these genes are associated with drug 

response and weight gain is different, which cancels out to zero; 

 

(3) Weight gain-drug response cooperation genes, i.e., those whose expression 

displays a difference pre- and post-intervention for the no weight gain group, with 

this difference becoming dramatically increased for the weight gain group; 

 

(4) Neutral genes to weight gain and drug response, i.e., those whose expression has 

no difference pre- and post-intervention for both no weight gain group and weight 

gain group. 

 

In clinical practice, different gene therapies for optimizing drug response against drug 

toxicity should be developed, depending on which category of genes is used. For 

category 1, weight gain can be controlled by regulating their expression, although 

they may be not related to drug response. If genes of this category to be considered 

for minimizing weight gain are independent of genes for drug response, drug toxicity 

and drug efficacy can be manipulated separately. The second category of genes 

governs the antagonism between weight gain and drug response; i.e., their positive 

effect on antipsychotic drug response is associated with their negative effect on 

weight gain. Then, if the strategy for gene therapy is designed to increase drug 

efficacy based on the decomposition of gene expression in the no weight gain group, 

drug toxicity can automatically reduce at the same time. 

 

The third category of genes mediates weight gain-drug response cooperation, which 
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means that the increasing drug efficacy (improving psychotic diseases) is often 

associated with the increasing drug toxicity (weight gain). The therapeutic use of this 

category of genes may lead to the change of both pharmacological features, which 

thus should be considered with caution. We find that the majority of genes belong to 

category (4), in which a gene participates neither in weight gain nor in drug response 

according to traditional statistical inference. When the idopNetwork model 

decomposes the overall expression level of such a gene into its independent 

component and dependent component, we find that these two components may each 

display different ecosystem index-varying trajectories between before and after 

intervention. For example, gene SPT8 is observed to be neutral for wight gain and 

drug response, but its independent component is strikingly larger after than before 

intervention for both no weight gain group and weigh gain group (Fig. 4). The 

independent component is promoted by positive regulators pre-invention, but 

inhibited by negative regulators post-intervention, which leads the observed 

expression level to be similar after and before intervention. While traditional analysis 

claims no clinical usefulness of SPT8, the idopNetwork model excavates its hidden 

information which can be translated into clinical practice to enhance drug efficacy. 

For the no weight gain group, knocking out the expression of OLIG2 may promote the 

function of SPTB, in which case drug efficacy can be improved. For the weight gain 

group, we can elevate drug efficacy by repressing the expression of H2AC7, but at a 

risk of weight gain. As can be seen, idopNetworks provide a powerful tool to reveal 

the genomic machineries of drug efficacy, drug safety, and drug side-effects, 

producing information of greater value for the clinical practice of translational 

genomics. 

 

Concluding remarks 

 

Network pharmacology presents an immense implication for how drug response can 

be more comprehensively defined and cohered into a mechanistic network and how 

this information is implemented to resolve the current problems that challenge the 

drug discovery industry. Despite the recognized role of networks in understanding 

pharmacology, however, we are still less knowledgeable about the application of 

network pharmacology mainly because of the lack of such informative 
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pharmacological networks. In this article, we introduce an advanced network model – 

idopNetworks into pharmacological research. The remarkable merit of this model lies 

in its capacity to contextualize pharmaco-genes, pharmaco-proteins, or pharmaco-

metabolites into a cohesive network, in which a detailed atlas of how each agent 

interacts with every other agent to mediate pharmacological response can be traced 

and monitored by an emerging topology theory – GLMY homology theory. 

 

IdopNetworks demonstrated multifaceted functionalities, including how each gene 

functions independently, how it functions depending on other genes, and whether a 

gene affects a single or multiple pharmacological processes. IdopNetworks classify all 

genes into different categories based on how they act in different types of drug 

response, from which the genomic machineries of drug efficacy vs. drug toxicity can 

be determined. All these pieces of information can be amplified from GLMY-based 

topology analysis. In summary, idopNetworks and their topological dissection give 

insight into the hidden knowledge of pharmacogenomics. The logical analysis of 

idopNetworks can be utilized to understand the pharmacogenomic mechanisms as 

well as to invent novel solutions for current pharmacological problems, reaching the 

goal of optimizing drug benefits but minimizing drug side-effects. 
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Figure Legends 

 

Figure 1 A scheme of analyzing drug response data collected pre- and post-

intervention. (A) Significance t-tests for intervention-dependent differences based on 

individual agents 1 – 6. Solid thick and thin lines represent highly significant and 

significant differences, whereas broken lines represent no significance. The size of 

circles is proportional to the abundance level of agents. (B) An actual case of genomic 

control over drug response, in which different agents interact with each other in a 

complicated manner different before and after intervention. Red and blue arrowed 

lines represent promotion and inhibition, respectively, with the thickness of lines 

proportional to the strength of interaction. 

 

Figure 2 Pre- and post-intervention idopNetworks at the gene level from specific 

modules involving differentially expressed genes OTOF (A), ANKRD22 (B), HBG1 

(C), and LOC100190986 (D) by t-tests, respectively, for the no weight gain group. 

Upper panel: Genomic interaction networks, where the above-mentioned genes are 

shown in red. Red and blue arrowed lines represent promotion and inhibition, 

respectively, with the thickness of lines proportional to the strength of interaction. 

Lower panel: Decomposition of the observed expression trajectory of a gene (as a 

function of ecosystem index) (blue line) into its independent component trajectory 

(red line) and dependent component trajectory (green line). The names of regulator 

genes are given proximal to green lines. 

 

Figure 3 The GLMY dissection of OTOF-related idopNetworks pre- and post-

intervention for the no weight gain group. Left panel: genomic interaction networks. 

Middel panel: Homology numbers (𝛽0, 𝛽1, 𝛽2) across filtration at different 

dimensions. Right panel: Concrete homological features at dimensions 1 and 2. 

 

Figure 4 Decomposition of the observed expression trajectory of OTOF (as a function 

of ecosystem index) (blue line) into its independent component trajectory (red line) 

and dependent component trajectory (green line) pre- and post-intervention for no 

weight gain and weigh gain groups, respectively. The names of regulator genes are 

given proximal to green lines. 
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