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Abstract--The Hopfield-type networks with asymmetric interconnections are studied from the standpoint o f  taking 
them as computational models. Two fundamental properties, feasibility and reliability, o f  the networks related to 
their use are established with a newly-developed convergence principle and a classification theory on energy functions. 
The convergence principle generalizes that previously known for symmetric networks and underlies the feasibility. 
The classification theory, which categorizes the traditional energy functions into regular, normal and complete ones 
according to their roles played in connection with the corresponding networks, implies that the reliability and high 
efficiency o f  the networks can follow respectively from the regularity and the normality o f  the corresponding energy 
functions. The theories developed have been applied to solve a classical NP-hard graph theory problem: finding the 
maximal independent set of  a graph. Simulations demonstrate that the algorithms deduced from the asymmetric 
theories outperform those deduced from the symmetric theory. Copyright © 1996 Elsevier Science Ltd. 
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1. INTRODUCTION 

The neural network model we will consider is the 
binary Hopfield-type network represented by the 
weighted and undirected graph N = (W, T). This 
type of  network has been intensively studied and 
applied in the literature and with a common 
assumption that the interconnection weight W is 
symmetric (e.g., Kohonen, 1974, 1989; Little, 1974; 
Hopfield, 1982; Goles et al., 1985; Hopfield & Tank, 
1985; Personnaz et al., 1985; Kanter & Sompolinsky, 
1987; McEliece et al., 1987; Bruck, 1990; Bruck & 
Goodman, 1988; Bruck & Blaum, 1989; Bruck & 
Roychowdhury,1989; Cottrel, 1988; Aiyer et al., 
1990). In this paper our aim is to provide detailed 
studies on the Hopfield-type networks with asym- 
metric interconnections. 

This research has been inspired by several facts: 
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first, the Hopfield network (Hopfield, 1982) is known 
to be one of the most successful and influential 
models in both biological and artificial neural 
systems. Many other models, say, bidirectional 
associative memories (BAM) (Kosko, 1988), Boltz- 
mann machines (Hinton and Sejnowski, 1983), Q- 
state attractor neural networks (Kohring, 1993) are 
either direct variants or generalizations of this type. 
Therefore, any more deep understanding of the 
Hopfield-type networks can naturally shed some 
light on those models. Second, the symmetry 
assumption is somewhat unnatural and unacceptable 
for physiological reasons. It precludes many applica- 
tions that are biologically or practically important 
(e.g., see Porat, 1989; Hertz et al., 1991; Coolen & 
Sherrington, 1993; Xu et al., 1994). For example, 
when used as knowledge representation, the sym- 
metric connection of the BAM, viewed as a Hopfield- 
type network for storing pattern pairs 
Z (i) = X(O, y(O)x in product space, implies that the 
logical implication "X(0 if and only if y(O ,, must 
exist between X(0 and y(0. Consequently it is 
impossible to apply this type of network in 
developing connectionist expert systems in which 
asymmetric logical relations ordinarily hold (Xu et 
al., 1994). Thus it is imperative to apply the Hopfield 
networks with asymmetric connections. Finally, even 
if a theoretically well-designed symmetric Hopfield 
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network is justified to be an effective and appropriate 
model for a specific application task, it is almost 
impossible to implement the hardware network 
precisely conserving symmetry connections (Hertz et 
al., 1991). So the physically realized network (an 
appliance) actually is asymmetric. This raises the 
importance of  developing an asymmetric Hopfield 
network theory based on which the actual perfor- 
mance of  the network can be evaluated. 

There have been quite a few papers on asymmetric 
neutral networks (e.g., Hopfield, 1982; Sompolinsky, 
1987, 1988; Hertz et al., 1986, 1991; Goles, 1986; 
Parisi, 1986; van Hemmen & Kiihn, 1986; Crisanti & 
Sompolinsky, 1987; Derrida et al., 1987; Coolen et 
al., 1993; Xu et al., 1994, 1995). However all these 
previous studies were either restricted only to a 
capacity analysis aspect, or less general (only dealing 
with the very weak asymmetry cases), or on some- 
what different models. In this paper some general 
theories of  asymmetric Hopfield-type networks will 
be developed from the standpoint of  taking them as 
computational models. Two fundamental issues, 
feasibility and reliability, related to the use of  the 
networks will be studied in particular. 

1.1. The Hopfieid-type Networks and Related 
Symmetric Theory 

A Hopfield network N = ( W, T) of  order n comprises 
n computational units, called neurons. In the pair 
(W, T), W = (wij) is an n x n real matrix with wij 
representing the interconnection weight from neurons 
j to i; T = (ti) is an n-dimensional real vector with ti 
representing the threshold attached to neuron i. 
There are two possible values for the state of  each 
neuron: +1 or - 1 .  Denote the state of  neuron i at 
time t as vi(t), the vector V ( t ) =  (vl(t), v2(t) , . . . ,  
vn(t)) T is then the state of  the whole network at 
time t. 

The state of  a neuron is updated according to the 
following equation: 

1, Hi(t) >10 (1.1)  
vi( t+ 1) = sgn{Hi(t)} = -1 ,  Hi(t) < 0 

where 

Hi(t) = ~ wqvj(t) -- ti. (1.2) 
j=l 

I f  only one neuron is allowed to change state at any 
time instant, the network is said to be operating in a 
serial mode. Otherwise, the network is operating in a 
parallel mode, or fully parallel mode when all the 
neurons are updated simultaneously. 

The Hopfield networks have been employed both 
as associative memories and as methods of solving 
optimization problems. The examples are those 
related to pattern recognition and image recovery 
(Hopfield, 1982; Cottrel, 1988; Kosko, 1988; Aiyer et 
al., 1990), and those related to computations of 
various NP-hard problems such as the traveling 
salesman problem (TSP) (Hopfield & Tank, 1985), 
minimal vertex covers of  undirected graphs (Shri- 
vastava et al., 1992), repair of  RAMs (Mazumadar & 
Yih, 1989), error correcting codes (Bruck & Blaum, 
1989; Bruck & Roychowdhury, 1989) and map 
coloring problems (Dahl, 1988). 

The performance of  any tasks listed above, is 
accomplished by Hopfield networks through the 
search for certain bipolar vectors known as stable 
state(s) of  these networks. A bipolar vector V* is said 
to be a stable state of  the network N = (W, 7) if it 
satisfies 

V * = s g . ( W V *  - r ) .  (1.3) 

In associative memory applications, for example, 
these stable states are treated as memorized patterns. 
Likewise in optimization applications the stable 
states correspond to possible suboptima of  the 
objective function, and one of the stable states is 
the expected global optimum. 

The success of  Hopfield networks thus rests on the 
assured convergence of  the state sequence of the 
networks. In the symmetric case, this is well studied. 
The basic results for instance are as follows: 

• The network N = ( W, T) will always converge to a 
stable state when operating in the serial mode, if 
the diagonal elements of  W are nonnegative 
(Hopfield, 1982). 

• The network N = (IV, T) will either converge to a 
stable state or encounter a two-cycle when 
operating in the fully parallel mode. In particular, 
N will converge to a stable state if Wis nonnegative 
definite (Goles et al., 1985). 

No  general result exists for assured convergence of 
the networks with asymmetric interconnections (but, 
see Goles, 1986; Xu & Kwong, 1995a). 

In this paper, we will be mainly concerned with 
computation applications of  asymmetric Hopfield- 
type networks (the Hopfield networks with asym- 
metric interconnections). In this case, as pointed out 
by Porat  (1989), the assured convergence property 
has then been considered as a prerequisite for 
accepting such networks as a feasible computational 
model. We will resolve this feasibility problem by 
developing a very general convergence principle for 
asymmetric Hopfield-type networks. 
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Besides the feasibility, another issue also critical to 
success of the optimization applications is the 
reliability of the networks. When a particular 
computation problem, say TSP, is prepared to be 
solved by using a Hopfield network, the first step of 
one's effort then is to transform the problem into a 
minimization of an energy function of the form 

1 ~-~ ~-~wijvivj+~-~tivi+C. 
E(V)  = - - ~  i=1 j=l i=l 

(1.4) 

Then, the deduced network N = (IV, 7') is imple- 
mented to minimize the energy. In this case, the 
reliability of N is concerned with the problem 
whether or not the optimum of the energy 
(equivalently, the optimal solution of the original 
computation problem) can be assuredly found by 
searching for stable states of the network. We will 
conduct a detailed study on this reliability issue. 

1.2. Contributions 

We first resolve the feasibility problem by developing 
a generalized convergence principle for asymmetric 
Hopfield-type networks. We prove that any Hopfield 
network N = (IV, T) will converge to a stable state 
when operating in the serial mode, whenever IV is 
diagonally dominant in certain mild sense such as 

(i) 

1 
w,i~>~ ~ Iw~j-wjiI, V i c {1 ,2 , . . . , n }  

j=l,j~i 

o r  

(ii) 

w, ~ ~ Iwjil+lt, h 
j=l,j~i 

or  

(iii) 

w, ~ ~ Iw,jl + lt~l. 
j=l,j~i 

The convergence of N in the parallel mode is also 
verified under corresponding nonnegative definiteness 
conditions. The results established not only generalize 
the global convergence theorems previously known 
for symmetric Hopfield networks, but also result in 
various new, easily verifiable tests for global 
convergence of asymmetric networks. They therefore 
underlie the feasibility of accepting the asymmetric 

Hopfield networks as computational models (Porat, 
1989). 

We also develop a classification theory on the 
energy functions associated with the Hopfield net- 
works, based on which a satisfactory settlement of 
the reliability problem is made. Let f~(N) denote the 
set of all stable states of a Hopfield network 
N = (W, T), and f~(E) the set of all local minimizers 
of the energy function E(V) defined by (1.4). We 
classify the energy functions into three categories: 
complete energies, regular energies or normal energies, 
according to [2(N)=f~(E),  f~(N) 3_f~(E) or 
f~(N) C_ f~(E). The conditions for an energy func- 
tion to be complete, regular or normal are 
characterized, and are found to be inversely related, 
as illustrated in the following specializations: 

(i) E is a regular energy if 

1 ~ iwo_wjil(i= 1, 2 , . . . , n ) ;  
Wii ~ 2 j=l,j~i 

(ii) E is a normal energy if 

wii <~ - ~  Iwij-wjil(i = 1, 2 . . . . .  n); 
j=l,j~i 

(iii) E is a complete energy if W is symmetric and 
with wii = O. 

We show that the regularity of an energy function 
implies the reliability of the deduced Hopfield 
network, and that the normality implies the high 
efficiency. The theory thus provides a solid founda- 
tion on reliability and high efficiency of both 
symmetric and asymmetric Hopfield networks in 
performing optimization computations. Further- 
more, the theory reveals also some new, exclusive 
properties of symmetric networks. For instance, 
we conclude that the network with zero diagonals 
in the weight matrix has the least spurious stable 
states among all symmetric networks with weight 
matrices having nonnegative diagonals. This find- 
ing has led to a general strategy of improving 
the performance of existing symmetric networks of 
the Hop field-type. 

To demonstrate the power of the theories 
developed, we have applied the theories to a well- 
known graph theory problem: finding the maximal 
independent set of a graph (MIS problem), which is 
known to model wide-ranging applications in many 
fields (see, e.g. Bondy & Murty, 1976; Mazumadar & 
Yih, 1989; Pramanick, 199 l) but be NP-hard in compu- 
tation. By making use of a particular asymmetric 
Hopfield network structure (precisely, a triangular 
network), we propose two novel algorithms for 
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finding the best quality suboptimal solution(s) of the 
problem within computer memory permission. Un- 
like most of the existing algorithms that can only 
result in suboptimal solution(s), one of our algo- 
rithms can find global optimal solutions whenever the 
memory capacity is permissible. Another algorithm 
provides an elaborated trade-off strategy between the 
memory capacity and the computation time, which 
can always give the best quality suboptimal solu- 
tion(s) within the memory capacity permission and by 
using less computation time. Simulations reveal that 
the algorithm outperforms the Hopfield's algorithm 
(Shrivastava et al., 1992) deduced directly from 
symmetric Hopfield networks. 

The generalized convergence principle of asym- 
metric Hopfield networks is developed in Section 
2. The classification theory on energy functions is 
enunciated in Section 3. The application to MIS 
problem and a series of simulations are presented 
respectively in Sections 4 and 5 to demonstrate 
the power of  the established theoretical results. 
The paper then concludes with a summary in 
Section 6. 

2. GENERALIZED CONVERGENCE 
PRINCIPLE 

In this section we derive general conditions under 
which any Hopfield-type network converges to a 
stable state. The difficulty with this derivation 
was well recognized (e.g., see Goles, 1986; Porat, 
1989). Our basic trick in this paper then is to 
develop a parameter matrix skill combined with a 
carefully modified energy function reasoning. A 
diagonal n x n matrix, say R = diag{al,  O r E , . . .  , an}, 
is said to be a parameter if o~ i > - - 1  for any 
i E {1, 2 , . . . , n} .  Thus, in our derivation we will, 
instead of (1.1) and (1.2), consider the Hopfield 
network N in the serial and the fully parallel modes 
of operation respectively as 

if/=  

vi(t), if i / : k  
(2.1) 

and 

V(t+ l) = sgn{(R+l)(WV(t) - T)}, t >10. (2.2) 

It should be noted that (2.1) and (2.2) really 
are no different in trajectories from the original 
updated models. However, the representations of 
(2.1) and (2.2) have their key benefit in uniformly 
deriving the general convergence conditions. In 

particular, this enables us to state and prove the 
convergence principle in a very general and uni- 
form framework. 

For any parameter matrix R and any small real 
number e > 0, we denote 

k , ( ~ , ) = ( l + ~ , ) - ' ( j ~ , , j ~ i  ~ Iwji=~,w,jl 

+(1 +e) l a , -  l l l / i l)  (2.3) 

K(R) = 

(kl (al) 0 ... 0 h 
0 k 2  (o~2) . , .  o ) : : " , .  - -  

0 0 . , .  k n ( a . )  

(2.4) 

and 

W*(R) = W -  K(R). (2.5) 

The basic result of  this section then is stated as 
follows. 

THEOREM 1. Let N = (W, T) be a Hopfield network, 
W not necessarily symmetric. Then N will converge to 
a stable state f rom any initial state V(O), i f  it satisfies 
either (P1) or (P2) listed below: 

(P1): N is operat&g in ser&l mode and W is weakly 
diagonal dominant in the sense that there exists a 
parameter matrix R such that 

wii>~ki(a,), Vi = 1, 2, . . .  ,n. (2.6) 

(P2): N is operating in parallel mode and there exists a 
parameter matrix R such that W*(R) is nonnegative 
definite. 

Proof. See Appendix A. 

Theorem 1 provides us with a very general 
convergence test for Hopfield-type networks. In 
particular, owing to existence of the parameter R in 
the listed conditions, which can be chosen arbitrarily, 
a series of specific tests for global convergence of the 
networks can be derived. For examples, we have: 

COROLLARY 1. Any one o f  the conditions (C1)-(C5) 
listed below is sufficient for  the network N : (IV, T) to 
globally converge to a stable state when operating in 
the serial mode. 

For any i =  1, 2 , . . . , n ,  
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(C1): Wis symmetric and wii ~0; 
(C2): W is /~-symmetric, l with 

Wii />(1 + fli)-l lfli - l l l t i l ;  

(C3): wii ~ 1 ~ [wij - wji 1; 
j=l,j¢i 

n 
(C4):wii >~ ~ Iwjil+(l+~)lt i l;  

(C5): wii 

j=l,j#i 

± 
j=l,j¢i 

Iwijl + (1 + ~)lt, I. 

/ 3 , .> -1  and 

Proof. This follows directly from Theorem 1, 
provided we notice that, when ai is chosen to be 1, 
/~i, 1, 0, and tend to positive infinity, the condition 
(2.6) then reduces to (C1), (C2), (C3), (C4) and (C5), 
respectively. 

Similarly, we have the following corollary: 

COROLLARY 2. Any one of the conditions (C1)'-(C5)'  
listed below is sufficient for the network N = (W, T) to 
converge globally to a stable state when operating in 
parallel mode. 

(C1)': W is symmetric, nonnegative definite; 
(C2)': W is/3-symmetric wi th /3/> - 1 ,  and the matrix 

W -  diag{l +/3i)-11fli - lllt~l : i = 1, 2 , . . . ,n}  

is nonnegative defnite; 
(C3)': I V -  diag 

{~ j=,,j~i ~ Iw,j-wjil : i : l ,2 , . . . ,n} 

is nonnegative definite; 
(C4)': W -  diag 

{ ~ Iwjil+(l+e)Jti[ :i=l, 2,...,n} 
j=l,j~i 

is nonnegative definite; 
(C5)': W - diag 

{ ~-~ Iw,jl+(l+e)lt, I : i = 1 , 2  . . . .  ,;n} 
j=l,j~i 

is nonnegative definite. 

1 A matrix W is ~3-symmetric if there is an n-vector 
= (/~1,/~2...~n) such that /3~ = w#/wji for any j ¢  i and 

w~ ~ 0. In this term, clearly a symmetric matrix is 1-symmetric 
and an anti-symmetric matrix is (-1)-syrnmetric. 

Observe that the conditions (C1), (C1)' and (C3), 
(C3)' are exactly those derived by Hopfield (1982), 
Goles et al. (1985) and Xu et al. (1995). However, in 
Corollaries 1 and 2, the conditions (C2), (C4) and 
(C5), (C2)' and (C4)' and (C5)' all are new findings 
for convergence of  asymmetric Hopfield networks. 

The following example shows that the conditions 
(C3)-(C5) [correspondingly, (C3)'-(C5)'] may be very 
different. Given a Hopfield network N = ( W, 0) with 

( 0  0 i) -0.5 

b -0.4 (2.7) 
W = 0.3 0.1 c 

0.1 0.1 0 

then (C3) implies global convergence of  N when 
a i>0.45, b i>0.35, c ~>0.45 and d 1>0.35, but (C4) and 
(C5) imply the same respectively when a/>0.4,  
b/>0.3, c~>0.4 and d~>0.5 as well as a i>0.5, 
b ~>0.4, c t>0.5 and d~>0.2. 

The existence of  the so many different conditions 
listed can not only increase one's ability to evaluate 
global convergence of  various existing Hopfield-type 
networks, but also often make it possible to modify a 
given network or to develop a network so as to 
achieve the most desirable performance. In Section 4, 
we will explain this in more detail by considering its 
application in a classical graph theory problem. 
There, one will see that using the weakest conver- 
gence condition (if available) will be the most 
expected. 

Thus, in Theorem 1, to use an optimal choice of  R 
such that every ki(oti) is minimized will be of  
particular importance. We state this as Corollary 3. 

COROLLARY 3. Let R* = diag{a~, oL~, . . . ,an} be 
such that 

k, (,~) = inf { ( l+a)- l  ( ~-~ Iwj,-~w,jl -l<ot<~ j=l,j~i 

+ ( l + e ) ' c ~ - - l ] ' t i ' ) l .  (2.8) 

If 

(C6): Wii > ki(oz*) for any i E {1, 2 , . . .  ,n}, 

then the network N = (W, T) globally converges to a 
stable state when operating in the serial mode; if 

(C6)': W -  K(R*) is positive definite, 

then N converges to a stable state when operating in the 
parallel model. 

In general, it is difficult (but not impossible) to 



488 Z.-B. Xu et al. 

obtain the optimal values ki (a~). But, we can find the 
values in some particular cases. For  example, we 
calculate in example (2.7) considered above that the 
optimal values are 

kl(t~]) = 0.375, k2(a~) = 0.2, k3(ol;) = 0.4, k4(c~) = 0.2. 

More generally, if N = (B, T) is a lower triangular 
network [namely, B = (bij)n×~ with bij = 0 for any 
j > i], just as will be encountered in our application in 
Section 4, we can easily find 

k , ( ~ 7 )  = 

(ai+b,)/2; if c,>~[a~-b,I/2 
bi+ci; if ci < [ai -bi[ /2  and ai >>-bi 
ai + ci; if ci < l ai - bi I/2 and ai < bi 

(2.9) 

where 

ai = E I b,jl, bi = [hi j I, and ci = I ti I. 
j=l j=~+l 

(2.10) 

The global convergence property (or total stability, 
as also used in some other literature) of  a connec- 
tionist model has been considered as a prerequisite 
for accepting the model as a feasible computational 
one (Porat, 1989). In this sense, the analysis 
conducted in this section has underlain the feasibil i ty 
of  asymmetric Hopfield-type networks as computa- 
tional models. In the next section we will further 
consider the reliability aspect of  the networks when 
used as computational models. 

3. CLASSIFICATION THEORY ON ENERGY 
FUNCTIONS 

We now study the reliability problem of  Hopfield 
networks by establishing a classification theory on 
energy functions. This investigation, as observed in 
the Introduction to the paper, is original in the 
context of Hopfield-type networks both in symmetric 
and asymmetric cases. 

3.1. The Classification Theory 

Consider the problem 

minimize{E(V) : V= (vl, v2,... ,vn) E {-1, + 1} n} 

(3.1) 

where E (V) is a quadratic function of  the form (1.4), 
which is modeling, for example, the TSP or the MIS 
problem. Associated with (3.1), we consider the 
Hopfield network N =  ( W T )  as an algorithm (i.e., 
a computational model) of  solving the problem (3.1). 

Then, in this case, the classification theory to be 
developed, in essence, will characterize the reliability 
of  such applications of  N. To specify this more 
clearly, let us start with introducing a definition of 
local minimizer of  E. 

DEFINITION 1. A vector V* is said to be a local 
minimizer o f  E i f  E ( V * ) < < , E ( V ) f o r  any 
VEBH(V*, 1)={V:dI - I (V ,V*)  ~<1}, where dH(V, V*) 
denotes the Hamming  distance between V and V*; 
a local minimizer V* is said to be a global minimizer 
i rE(V*)  <~E(V) for any V ~  { -1 ,  + 1} n. 

It is clear that any global minimizer of  E is an 
optimal solution of  (3.1). Consequently, to find such 
a global minimizer will be ideal for solving problem 
(3.1). However, (3.1) is clearly NP-hard. Its optimal 
solution can in general only be found after 
performing an exponential number of computa- 
tions, which very often is an infeasible proposition. 
Thus, instead of  finding optimal solution, one usually 
solves (3.1) by obtaining certain suboptimal solutions 
through a polynomial number of  computations. 
There is no exact definition on what a suboptimal 
solution means. However the local minimizer notion 
introduced in Definition 1 can safely serve as a 
candidate for suboptimal solutions in any case. 

Thus, solving the problem (3.1) may be based on 
two different purposes: either to find an optimal 
solution or to find a suboptimal solution. Since any 
Hopfield network finds such solutions through 
searching its certain stable states, it requires that, 
for the first purpose, any local minimizer of  E must be 
in the stable states of  N, in case the optimal solution 
(global minimizer) is lost. Similarly it should be 
required for the second purpose that any stable state 
of  N is a local minimizer of  E, assuring that any 
solution generated by N is a reasonable candidate of  
suboptimal solutions. 

In characterizing the different requirements above, 
the following Definition 2 will be shown to be useful. 
We let 

• Q(E) be the set of  all local minimizers of  E, and 
• ~ ( N )  be the set of  all stable states of  N. 

DEFINITION 2. (i) E is called a regular energy o f  N i f  
f~(E) C_ f~(N) (i.e, any local minimizer o r E  is a stable 
state o f  N ) ;  in this case, N is said to have regular 
correspondence property; 

(ii) E is called a normal energy o f  N i f  12(E) 2 
f~(N) (i.e., any stable state o f  N is a local minimizer o f  
E)  . In this case, N is said to have normal correspondence 
property; 

(iii) E is called a complete energy o f  N i f  ~2(E) = 
~ ( N )  (i.e., there is a one-to-one correspondence 
between the local minimizers o f  E and the stable 
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states o f  N ) .  In this case, N is said to have complete 
correspondence property. 

From Definition 2, E is both regular and normal if 
it is complete. Nevertheless, it will be seen that the 
regular energy property (regular correspondence 
property) and normal energy property (normal 
correspondence property) are in general conversely 
related. 

THEOREM 2. For any parameter matrix R, let 

= (1 ( Iwi,- ,wol 
j=l , j~i  

+ Is,- lilt, I). (3.2) 

(i) I f  there is an R such that 

wii ~a(ai) ,  Vi E {1, 2 , . . . ,n} (3.3) 

then E is a regular energy o f  N; 
(ii) I f  there is an R such that 

Wii ~ - - i f ( O / ) ,  V i E {1,2 . . . .  ,/1} (3.4) 

then E is a normal energy o f  N; 
(iii) I f  there is an R such that 

wii = tr(c~,) = 0, Vi E {1, 2 , . . .  ,n} (3.5) 

then E is a complete energy o f  N. 

Proof. See Appendix B. 

The inequalities (3.3) and (3.4) can be shown to be 
most possibly tight conditions for E to be a regular, 
normal or complete energy. To see this, let us look 
through the Hopfield network N = (IV, 73 and the 
corresponding energy function E, specified by 

( 1  0 0 ) a n d T = ( ~ ) "  

It is easy to show that, in this case, (3.3) implies r />  0 
is a condition under which E becomes regular (in fact, 
[2(E) = f~(N) = {(1, 1) T, ( -1 ,  - 1)T}). By loosen- 
ing this condition very slightly, e.g., to r /=  0, we then 
find f~(N)={(1 ,  1)r}, ~)(E)={(1,  1) T, ( -1 ,  - 1)T}. 
That is, f~ (E)Cf~(N) ,  E is no longer regular. 
This shows that r />  0 is the weakest condition for 
regularity of  E. In the same way, we can show that 
r/ ~< 0, implied by (3.4), is also the weakest condition 
for normality of  E. 

It is interesting to observe that in Theorem 2, the 
regular energy condition (3.3) and the normal energy 
condition (3.4) are exactly symmetric about  zero. 
Therefore, once (3.3) is satisfied, that E is a regular 
energy of  N = ( W, 7 3 is equivalent to - E  is a normal 
energy of  - N  = ( - W ,  - 73 and vice versa. 

Observe also that the regular energy condition 
(3.3) differs from the global convergence condition 
(2.6) in Theorem 1 only because of  the existence of  
the infinitesimal, e, in (2.3) (that is, they are almost 
the same). This pleasantly surprising relationship can 
greatly facilitate applications of  the networks. For  
instance, the same criteria (C1)-(C6) can then be used 
both to test global convergence and to test the regular 
correspondence property of  a network. 

Thus, we give the following corollary. 

COROLLARY 4. I f  any one o f  the conditions (C1) - (C6)  
in Section 2 is satisfied, then N has regular 
correspondence property. 

In particular, as in (C1), we take R =  
d i a g { 1 , 1 , . . . , 1 }  in Theorem 2 (iii), yielding the 
following: 

COROLLARY 5. I f  W is symmetric, with all diagonal 
elements being zero, then N has a complete correspon- 
dence property. 

Theorem 2 (Corollaries 4 and 5) will be of  great 
significance in applications of  Hopfield-type net- 
works. We will further explain this in the next 
subsection. 

3.2. Significance 
(1) When the I-Iopfield network N is applied as an 
algorithm for solving (3.1), as mentioned above, no 
solid foundation has been known with regard to its 
reliability. Theorem 2 has provided an answer to this 
question: if an optimal solution of  (3.1) is needed, the 
necessary condition for its reliability is that N has a 
regular correspondence property. That is, the 
regularity of  N implies the reliability. 

On the other hand, if N has a normal correspon- 
dence property, the network N searches for the 
solution(s) of  (3.1) only among its local minimizers, 
i.e., in the cheapest way. We can then also conclude 
that the normality of  N implies high efficiency of  the 
network. 

Thus, a network N having a complete correspon- 
dence property will be most ideal for solving (3.1), 
because it is both regular and normal (hence is both 
reliable and efficient). By Corollary 5, this ideal case 
can always happen whenever W is symmetric [in fact, 
as the basic variable V in (1.4) is bipolar, we can 
adjust the diagonal elements of  W, which is 
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equivalent to adding an appropriate constant into E, 
such that E becomes the complete energy of a 
network N]. But this is unlikely in general for 
asymmetric cases. 

However, in every case, we can easily construct 
(e.g., by adjusting the diagonal elements of W 
appropriately) a Hopfield network which has the 
expected regular correspondence property, and hence 
solve (3.1) reliably. To give an example, let us 
consider the function E specified by 

W = 3 0 , T = and C = 0. (3.6) 
1 2 

The function E itself is not a regular energy of the 
network N =  (W, 73 [hence, when used as an 
algorithm to minimize E, N = (W, 73 is then not 
reliable]. However, adjusting the diagonal elements of 
W into WI, as shown in (3.7), which functions as 
adding a constant - 2  --- ( -3/4)(vl)  2 + (1/4)(v2) 2 
+(-3/2)(v3)  2 into the E (note that vi E {-1,  1}), 
we then see that the function E +  1/2 is a regular 
energy of the network Nl = (W l, T) [Corollary 4 
with (C3)], where 

w ~ = w +  ( 000 o0): 
(3.7 / 

Thus NI has the expected regular correspondence 
property, and (3.1) in this case can be solved reliably 
by the asymmetric network Nl = (W1, 7"). 

To summarize the above analysis, we then propose 
the following tactical strategies for constructing 
Hopfield networks in performing the computation 
of  (3.1): 

• If  a symmetric network is expected to be used, 
construct the network such that it has the complete 
correspondence property; 

• I f  an asymmetric network is expected to be used, 
construct the network such that it has the regular 
correspondence property. 

These strategies should underlie the applications of 
Hopfield networks in solving (3.1). We will particu- 
larly use them in the next section. 

(2) When the Hopfield network N serves as a 
content addressable memory, its error-correction 
capability is known to be a fundamental feature. It 
has been known (Kanter & Sompolinsky, 1987; Xu 
and Kwong, 1995a; Xu et al., 1995) that this 
capability is essentially determined by how many 
spurious stable states N contains. The less spurious 
stable states N contains, the higher the error- 
correction capability of N. Therefore, for a given 
memory patterns set, say, I7" = { V(0, V(2),..., V (M) }, 
it is of  particular importance to recognize the 
network that has the least spurious stable states 
among all the applicable networks of Hopfield type. 
By saying a Hopfield network N is applicable we 
mean that N is globally convergent and ~" _c ~(N) .  

Theorem 2 (Corollary 4) can play an important 
part in recognizing such a network. For instance, 
taking {V (0, V ( z ) , . . . , V  (e)} to be the 26 English 
letters shown as in Figure 1, each of which is 
identified as a 49-dimensional vector, and let 
N~=(W*, T*) be the given applicable network 
specified by the pseudo-inverse rule: 

W*= I2~+= IY(I2TI?)-' ~'T ' T* = 0  

where P '=  [w(l)[ W(2)[... [ v(M)], V+ is the Moore-  
Penrose inverse of ~" and 0 is the n-dimensional zero 
vector. Then we can show that the network 
N ( D * )  = (W* - D*, T), where D* = diag{w~ l, 

J l l B | B / G / |  
 lllHH61 |li 
/|B|H J/I 

FIGURE 1. Sample memory patterns. 
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1 O0 
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N u m b e r  of  E r ro r  B i ts  in Inpu t  P a t t e r n s  

F IGURE 2. Comparison of error-correction capability between the network N = (W*, T*)  with pseudo-inverse rule and Its normal- 
correspondence based  m~llflceflon N = (W*  - D*,  T*), a s  appll~l  to ~-Engl i sh  le#ers  r ~ n l t l o n  task. 

w~2,.. .  , w l ,  }, is the one with least spurious stable 
states among the family of  applicable networks: 

{ N(D) = (W* + D, T*) : D 

= diag{dh d2 . . . .  , d,} is a parameter matrix}. 

It is based on finding the network with a complete 
correspondence property in the family that N(D*)  is 
found. Simulations conducted reveal that N(D*)  has 
yielded a dramatic improvement in both the storage 
capacity and the error-correction capability of N (of. 
Figure 2). The details, together with the applications 
of  the same principle to various other Hopfield-type 
networks, can be found in Xu et al. (1996). 

4. APPLICATION TO MIS PROBLEMS 

In this section we demonstrate an important 
application of the developed asymmetric theory of 
Hopfield networks in solving various NP-hard 
problems modeled by (3.1). The MIS problem in 
classical graph theory will be analyzed in detail as a 
typical example. 

4.1. Maximal Independent Set (MIS) Problem 

Consider an n-vertex undirected graph G in which no 
vertex has a selfloop. We will assume that the vertices 
of  G are labeled 1, 2 , . . . ,  n (hence V = { 1, 2 , . . . ,  n} is 
the set of  vertices of  G). 

Recall that a subset V' of  V is said to be 
independent if no two vertices in V' are adjacent. 
An independent subset V' of  V is maximal if every 
vertex in V \  V' is connected to at least one vertex in 
V'. As examples, the black vertices in graphs 1-7 
(Figure 4 later), are all maximal independent sets. 

To find a maximal independent set (MIS) of  a 
graph is a fundamental problem in graph theory. It is 
equivalent to that known as the vertex cover problem 
(Shrivastava et al., 1992), and has wide-ranging 
applications in many fields such as information 
retrieval, signal transmission, computer vision, 
computer networking, and repair of  RAMs (Bondy 
& Murty, 1976; Mazumadar & Yih, 1989; Pramanick, 
1991; Shrivastava et al., 1992). 

Shrivastava and associates (1992) have shown that 
a class of  symmetric Hopfield networks can be 
applied to finding the MISs of a graph more 
efficiently than most known algorithms. In this 
section, we will demonstrate that a particular 
asymmetric Hopfield network can in fact be applied 
to the MIS problem even much more efficiently than 
the symmetric network algorithms. Our approach 
differs completely from that of Shrivastava et al. 
(1992). 

4.2. A Minimization Model for Finding MISs 

Unlike the approach of  Shrivastava et al. (1992), we 
will transform the problem of finding the MISs of  a 
graph into a minimization problem of the form (3.1). 
To this end, for any given graph G, we let 
A = ( a U ) n x  n be its adjacency matrix, which is 
defined by 

1, 
aij = O, 

if vertices i and j are adjacent, 
otherwise. 

We also associate any subset V' of G with an n- 
vector, U =  (ul, u2, . . .  ,u , ) ,  defined by 

1, if vertex i is in V' 
ui = O, otherwise. 
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Then, the problem of finding a MIS of G is equivalent 
to that of finding an n-vector U* = (u~, u~, . . .  ,u*) T 
in {0, 1} n such that 

• U* has as many as possible non-zero elements; and 
• if ui* and u] are both nonzero, then aij = 0 (i.e., 

vertices i and j are not connected). 

Formulating these two requirements, we thus obtain 
the following optimization model for finding MISs in 
the graph G: 

Min{e(u) : UE {0, I}"} 

with 

E( U) = - uiuj + -~ aijuiuj 
i = [  j=] i = l  j=] 

(4.1) 

where K is any sufficiently large positive constant, 
understood as a Lagrange multiplier. The relation 
between the MISs of  the graph G and the solutions of 
(4.1) is presented in the following theorem. 

THEOREM 3. U* is a M I S  of  the graph G i f  and only if  
U* solves the problem (4.1) for any K >~2(2n + 1). 

Proof. See Appendix C. 

In order that  (4.1) can be solved by using the 
Hopfield networks discussed in the present paper, we 
rewrite (4.1), through the transformation U : ~ V = 
2 U - e ,  where e = (1, 1 , . . . ,  1) T, as a typical form 
(3.1) with 

1 ~-~ ~ (~ Kaq ) vivj E(V) = - ~  ~=, J=, 

-}- ~ aij n t- aji - -  Vi 
i = l  j : l  

(K ~-~ ~ n ) 
+ aq - ~1 nZ . 

i = l  j = l  

(4.2) 

4.3. An Asymmetric Network Model for Solving (3.1) 

The problem (3.1) with E specified by (4.2) can be 
solved, of  course, by suitable symmetric Hopfield 
networks. We will show, however, that a much 
simpler, but asymmetric, Hopfield network can be 
applied, even much more effectively. 

To be precise, we will construct a lower triangular 
Hopfield network N = (B, 13 to solve (3.1). Based on 
the discussions in Sections 2 and 3, this then requires 
the following: 

(i) B----(bij),×, which satisfies bij = 0 for any 
j >  i; 

(ii) N =  (B, 13 has the global convergence 
property; 

(iii) there is a constant C such that E(V) + C is a 
regular energy of N = (B, 13 (hence N has 
regular correspondence property); 

(iv) bii are as small as possible. 

Such a network N = (B, 13 will be constructed as 
follows: Tis the same as that in (3.1), but B is defined 
by 

( b'i, i = j 
bij = ! ] wij  -~ wji, j < i 

(0 ,  j > i  
(4.3) 

where b~. i = g i  ( a * ) ,  calculated according to (2.9) and 
(2.10) in Section 2. 

With such specified B and T, (i) is clearly satisfied. 
By Corollary 3, (4.3) and (2.9) and (2.10), (ii) and (iv) 
are also met. Furthermore, let 

l ~ ~ ~ b i j v i v j + ~ - ~ t i v i .  E,(V) = - 5  
i = l  j = l  i = l  

We observe from (4.3) that 

1 ~-~ ( ~ b i j v i v j + b i i ) + ~ - ~ t i v i  
E I ( V ) = - ~  i=1 kj=l i=l 

) 1 (wij+wji)vi l~j_~_wii . .}_di  -~- tivi 
2 i=l \ j=l i=l 

1 wq vi vj + ti vi '~ ~ di 
2 i=l j = l  i = l  i = l  

= E (V) + C, (4.4) 

where 

C1 = ~ d; - C. (4.5) 
i=1 

This implies (iii), also. 
The network N -- (B, T), specified by (4.3)-(4.5), 

is the asymmetric Hopfield network model based on 
which our algorithms for solving (3.1) [MIS problem 
(4.1) in particular] will be developed. 

4.4. Two Algorithms 

Now, it is clear that any possible optimal solution(s) 
of (3.1) are in the stable states of  the network 
N = (B, T). Our algorithms then will provide two 
elaborate strategies for searching for stable states of 
N. 
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4.4.1. Global Algorithm (GA). This algorithm is 
designed to directly make use of  the exclusive feature 
of  the triangular network N: any stable state of  N, 
say, V* = (v~, v~, . . . ,  v~,) T, satisfies 

{vs  iv i 
v * = s g n  iiv*-- ti--y~=l bqv; , 

Vi • {1, 2, . . . ,n}.  

(4.6) 

The solutions of  (4.6) are explicitly given by 

1, ~i <~ -bii 

v~. = -1, ~i > bii 

l o r - 1 ,  6 i • ( - b u ,  bii] 

Vi • {1, 2, . . . ,n}.  

(4.7) 

where 

i - I  

8i = t i -  E bqv; foranyi >.j. (4.8) 
j=l 

Thus, we can find the global optimum of  (3.1) 
through comparing all the stable states of  N, which 
are easily obtainable from (4.7). This is stated as a 
global algorithm for finding optimal solution(s) for 
(3.1), as follows: 

STEP 1. Find all the stable states, say, {V*(1), 
V*(2) , . . . ,  V*(m)}, of  the system (4.6) according to 
the formula (4.7). In doing so, it is suggested that the 
"'Binary Search Tree" algorithm is applied and, in each 

step of  the binary search, 
computed and stored, where 

493 

the following ~?i (k) 's are 

rh(k) = [bii V*(k) - 6i(k)] V~(k) Vk e {l, 2, . . .  ,m}, 

Vi E {1, 2, . . , ,n}.  (4.9) 

STEP 2. Set 

F(V*(k)) = - ~  ~l,(k), Vk E {1, 2 . . . .  ,m} 
j= l  

and let the optimal solution(s) of(3.1) be 

{V" E {V*(1),..., V*(m)} : F(V*) 

<~F(V*(k)), k = 1, 2,. . .  ,m}. 

(4.10) 

From (4.4), (4.5), (4.9) and (4.10), the values for 
F(V*(k)) differ from E(V*(k)) with only the constant 
C, defined as in (4.5), which has no effect obviously 
on the location of  the optimal solution(s) of  (3.1) and 
hence the validity of  the algorithm. 

The global algorithm can definitely lead to all the 
optimal solutions of  (3.1), provided the memory 
capacity of  the computer used is suitable (note that a 
large amount of  memory is needed in order to 
calculate all possible stable states for N). Simulations 
in the next section show that the algorithm indeed 
performs very efficiently as long as the memory 
capacity is sufficient. 

The next algorithm is designed to offer a tactical 
trade-off strategy between memory capacity require- 
ment and computation time. 

600  

500 

400  

300  

Z(K) 

200  

1 O0 

-'~0 0 20 40 60 80 1 O0 120 
K 

FIGURE 3. An Illustration for monotonically Increasing property of stable states x(b11, bag, . . .  ,b, ,)  of the network (B, T) with its 
d iagona l  e lements  bn. In the f igure,  X (K) = X (0.01 Kb;1, 0.01 Kb~=,..., 0.01Kb~,n) with fixed b; r  
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4.4.2. Compromise Algorithm (CA). This is an 
attempt to find suboptimal solutions of (3.1) as 
much as possible as allowed by the memory capacity. 
The basic idea is as follows: 

We regard the stable states of network N = (B, T) 
as a set-valued function of the diagonals bii 
(i = 1, 2 , . . . , n ) .  Denote this function by X 
(bl 1, b22,... ,bnn). Then it is easily seen (cf. Figure 3 
for an illustration) that x(bl l ,  b22, . . . ,B, , )  is 
monotonically increasing with bii, in the sense of a 
set inclusion. [Here we should observe the fact that 
for any two Hopfield networks Nl = (Wl, T) and 
N2 = (W2, .7') with W1 = (w~)) and I4"2 = (w~2)). 
If  wl~)= w~ ~ for any i ~ j ,  and ~I~ ) ~<~I~ ) for an~ 
i, then f~(Nl) C_ f~(N2), where f~(N) denotes the set 
of  stable states of  N. This fact can be very easily 
proved, if we notice that a vector V =  (vl, 
1~2,..., Vn) E Q(Nk) (k = 1, 2) if and only if 

j=i w,, vj) + v, v,) 

> 0, i = 1, 2, . . . ,n) .  

As a direct consequence, in the sense of  set-inclusion, 
we can thus conclude that f~(N) is an increasing 
function of the diagonal entries wii of W, i.e., the set 
f~(N) will get larger when the diagonal entries wii of 
W get larger. In particular, with b* i defined by (4.3), 
we can calculate that 

X(0, 0, . . .  ,0) = {V*} and x(b*l,, b[2,,.., b*,m ) = f~(N) 

where V # is the unique vector defined by 

v~ = sgn(h), (4.11) 

vi~=sgnl~-~ b i j v ~ - t i } , i :  l ,2 , . . . ,n  (4.12) 
[ , j= l  

and f~(N), as before, is the set of  all stable states of 
N = (B, T), which contains in particular the optimal 
solutions of (3.1) due to the regular correspondence 
property of N. Since X(bl 1, b22,. . . ,  bnn) is included 
in x(b*ll, b~2,...,bn, ) for every bii E [0, b~i], the 
optimal solution(s) of  (3.1) is also possible in 
X(bll, b22,...,bnn). Thus, we propose, instead of 
finding X (b] l, b[ 2, • • -, b~ n), to find X (bl l, 
b22,.. .  ,b , , )  for searching for a suboptimal solution 
of  (3.1) with a suitable {bl i, b22,.. .  ,bnn}. Note that 
computing X (0, 0 , . . . , 0 )  requires no memory space 
at all, yielding however, a most possibly lower quality 
suboptimal solution V #, but, as bii increase, 
computing x(bl l ,  b22, . . . ,b ,n)  requires larger and 
larger memory capacity, resulting accordingly in 
higher and higher quality suboptimum. This pro- 

vides a continuation strategy of  compromising the 
memory capacity and the quality of the suboptimal 
solutions. In particular, the algorithm can then 
always find the highest quality suboptimal solutions 
of (3.1) within the limits of the memory capacity. 

The algorithm deduced from the above idea is 
formally stated as follows: 

STEP 1. Set to = ½, k : 0; 
STEP 2. Let 

b,(k) = tkb~i, i = l, 2 , . . . ,n ;  (4.13) 

and then search for X (b! l(k), b22(k), . . . ,  bnn(k)) and 
find the minimizer for E(V) in x(bll(k),  
bzz(k),. . . ,b,n(k)) (by using a developed GA) if the 
memory capacity allows. Otherwise, let tk+l = tk/2 
and go to Step 4; 
STEP 3. I f  the minimizer found is desirable, stop the 
algorithm; otherwise, let tk+l = (k + 1)/(k + 2); 
STEP 4. Go to Step 2 with k : = k +  1. 

We will show through simulations in the next section 
that the proposed compromise algorithm is very 
promising in practice. We also state the following 
known Hopfield algorithm (Hopfield, 1982; Shrivas- 
tara  et al., 1992), to facilitate cross-comparisons in 
the next section. 

4.5. Symmetric Hopfield Algorithm (SHA) 

STEP 1. Let k = 1, V(O) be any initial state; 
STEP 2. Execute the Hopfield network N = (IV, T) in 
serial mode, starting from V(O); Find a stable state Vl 
of  N; 
STEP 3. I f  Vl is a desirable suboptimal solution of(3.1), 
then stop; otherwise, go to Step 2 with any other 
randomly chosen V (0). 

5. SIMULATIONS 

We now give simulation results comparing the 
performance of the global algorithm (GA), the 
compromise algorithm (CA) and the symmetric 
Hopfield algorithm (SHA), as applied to MIS 
problems. 

The example graphs used in the simulations are 
taken from the listed famous graphs in Bondy and 
Murty (1976), as shown in Figures 4a and 4b. In the 
simulations, whenever the memory capacity of the 
computer in use is suitable, all MISs of a graph were 
first calculated by using GA. The known cardinality 
of  the MIS was then used as a measure of judging if a 
local optimal solution is desirable in executing CA 
and SHA. For comparison purposes, SHA has been 
run 20 times (tests), and in each time, 1000 randomly 
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graph 1 graph 2 

graph 3 graph 4 

FIGURE 4a. The sample graphs (graphs 1-4). 

graph 5 graph 6 

graph 7 
FIGURE 4b. The sample graphs (graphs 5-7). 
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TABLE 1 
Comparison of Three Algorllhms for MIS Problems 

GA CA SHA 

Example 
No. Iv l  IEI IST.SI No.MIS IMISI k IST.SI No.MDS IMDSI MDS % IMDSI 

Optimal 
Solution 

1 7 12 40 1 3 4 
2 11 28 562 12 4 3 
3 14 21 904 2 7 2 
4 16 15 404 9 9 4 
5 34 56 3 
6 46 66 5 
7 46 69 5 

11 1 3 10.93 3 
28 4 4 43.9 4 

5 1 7 30.6 7 
4 2 9 61.64 9 

545 8 14 2.6 14 
1079 4 19 4.6 19 
3795 2 19 0.085 19 

chosen initial values were used. One then calculates 
the percentage of appearance of an MIS (or a same 
sized local MIS with that found by CA) among the 
total 20,000 runs. 

The simulation results are summarized in Table 1. 
The first column gives [ V[ and ]El, the cardinality of 
the vertices and edges of the corresponding graphs. 
The optimal solutions of graphs 1-4 are known and, 
therefore, their cardinality reported in the last 
column. In the "global algorithm" column we list 
the cardinality of optimal solution, [MIS[, the 
number of optimal solutions found, No.MIS, and 
the number of stable states, ]ST.S t, from which the 
optimal solutions had been selected. Correspond- 
ingly, in the "compromise algorithm" column, except 
for [ST.SI, also listed are k, the number of steps the 
algorithm had run, No.MDS, the number of the most 
desirable solutions found, and I MDS 1, the cardinality 
of the most desirable solutions obtained. In the 
"symmetric Hopfield algorithm" column we also list 
MDS%, the percentage of appearance of the most 
desirable solution in the total 20,000 runs, which 
provides a measure of reliability and efficiency of the 
Hopfield algorithm for solving MIS problems. 

The global algorithm is capable of assuredly 
finding all of the optimal solutions in principle. Its 
applicability, however, is severely limited by the 
available memory capacity of the computer used. 
This is supported by the simulation results shown in 
Table 1. (Note that GA does not work for graphs 5- 
7, owing to the memory capacity limitation.) 

The Hopfield algorithm, on the other hand, can be 
applied to any graphs without any memory require- 
ment. Furthermore, it can, in principle, find the 
optimal solution in sufficient time. However, as 
indicated by the simulations, this algorithm actually 
finds the optimal or a most desirable solution with a 
high probability, within a reasonable polynomial 
time, only for small graphs. Indeed, from Table 1 and 
Figure 5, it is seen that the Hopfield algorithm finds 
the optimal solution with a probability ranging from 
10.93% to 61.64% for graphs 1-4, but it finds the 
most desirable solution of graphs 5-7 only with a 

probability ranging from 0.085% to 2.6%. This 
performance implies that the high efficiency of the 
Hopfield algorithm, as it is applied to the MIS 
problem, is still questionable. 

The global algorithm can be regarded as an 
elaborated safety method for finding the optimal 
solutions of MIS problems at the expense of memory 
space. The Hopfield algorithm, on the other hand, 
can be regarded as a novel method for the same 
purpose at the cost of computation time. The 
compromise algorithm, as its name implies, is a 
strategy of compromising between the space expense 
and the time expense. It can be seen from Table 1 that 
this algorithm always finds the optimal or the most 
desirable solution from very few stable states. This is 
a very attractive performance. In particular, it 
requires much less memory space than the global 
algorithm does (comparing I ST.S [ s listed in "global 
algorithm" column and "compromise algorithm 
column"), and, at the same time, yields the solution 
without need for long iterations as needed by the 
Hopfield algorithm. 

Since the Hopfield algorithm generally performs as 
well as or better than some other algorithms in the 
literature (Shrivastava et al., 1992), the compromise 
algorithm then deserves recommendation for use in 
MIS problems. 

6. SUMMARY AND CONCLUSIONS 

We have studied in detail the asymmetric Hopfield- 
type networks and shown how more powerfully they 
perform than the symmetric networks do in solving a 
wide-ranging class of combinatorial optimization 
problems. 

The theoretical foundations of the networks are 
developed from the standpoint of taking the networks 
as computational models. Two key issues, feasibility 
and reliability, related to the use of networks are 
thoughtfully studied. Using a parameter matrix skill 
combined with a carefully modified energy function 
reasoning, a very general convergence theorem is 
proven, which underlies the feasibility of the net- 
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FIGURE 5a. Efficiency of symmetric Hopfleld algorithm applied to find MISs In graphs 1-4. 
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FIGURE 5b. Efficiency of symmelric Hopfleld algorithm applied to find MiSs In graphs 5-7. 

works. The theorem not only generalizes the known 
results for symmetric networks, but also yields 
various new, easily verifiable tests for global 
convergence of asymmetric networks of the Hopfield 
type. Perhaps the most important contribution of this 
paper is in introducing a classification theory of the 
energy functions, based on which the problem of how 
a combinatorial optimization problem can be solved 
both reliably and efficiently by Hopfield networks is 
resolved. 

The paper has mostly concentrated on studying 
asymmetric Hop field-type networks performing 
optimization tasks, the theories developed, however, 
are by no means only significant for computation use. 
In a forthcoming paper, we will examine in detail the 
associative memory aspects of these networks as 
capacity and error-correcting capability. In particu- 
lar, we will show that the classification theory for the 

energy functions established in this paper also plays 
an important role in improving the performance of 
existing symmetric associative memories. 

It is well known that the dynamics of symmetric 
Hop field-type networks can be understood in terms 
of the minimization of some scalar quantity (in 
equilibrium to be identified with the free energy). The 
analysis conducted in the present paper shows that 
this understanding is still valid for some general 
asymmetric Hopfield-type networks (i.e., asymmetric 
Hopfield-type networks still have their energy 
function in some cases). 
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A P P E N D I X  A: T H E  P R O O F  O F  T H E O R E M  1 

Let 

e i  = i n f  t i - ~ - ~ w i j v j : v j E { - l ,  1}, w i j v j < t ~ ,  
i=1 j=l 

1 7"= T - ~  (el, e2,...,en) T = (t'l, 2 . . . . .  ~,)T (A.l) 

and construct the energy function 

E ( V ) = - ~  ,=, E wiyvivj+ ~v,+C (A.2) 
j = l  i=l 

where C is an arbitrary constant. 
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W r i t i n g E ( V ) i n a m a t r i x f o r m E ( V ) -  ~ V x W V +  V x ] ' + C  - - ~  
and then expanding it about  V(t) into a Taylor series: 

E(V) = E(V(t)) + (~ V)~De,+ ~ (A V)~D~E(:, V) (A.3) 

where 

and 

Thus 

A V = V(t + I) -- V(t) 

DE = I ( W+ W T) V(t) + 
L 

D2 E= I (W+ w T ) .  

AE(t) = E(V(t + I)) - E(V(t)) 

= (Ae)" [-~ (W + W~)V(t) + ~'] 

__ ! (4 v)T(w+ wT)( A V). 
4 

With any parameter  matrix R = diag{al,  c~2,... ,¢x,}, this can be 
further written as 

AE(t) = - ~ (A F) T (R + l)[WV(t) - T] - o(t) (A.4)) 

where 

o(t) = ~ (AV)T{--R( WV(t)- T] + wT V(t) -- 7" 

-- ~(W+ WT)(A V(t))} 

= _l (A v)T[(w ~ -- RW) v(t) + (a - I) 
2 

+ ~(w+ w~)~ v(t)]. (A.5) 

We first prove that  --(AI/)T(R + I)[WV(t)  -- ]'] < O. Let 

at(t) = ~ . , : A ' )  - ~t = a t ( , ) + ~  
j = l  

where Ht(t) is defined as in (1.2). Then, from (A.I)  it is clear that  
Ht(t) ~>ed2 whenever H~(t) />0, and H i ( t ) < - e d 2  whenever 
Hi(t) < 0. Hence, from (1.1) and (1.2), and 

0, 

A v i ( t )  = vi( t  + 1 ) - -  vi(t) = - 2 ,  

2, 

vi(t) = v,(t + 1) 

vi(t) = l , v i ( t  + 1) ---- --1 

vi(t) = - - 1 , v i ( t +  1) = 1 

(A.6)  

we conclude that  if V( t+  1) # V(t) we always have 

- (AIOT(R + l)[WrCt) - f'] 
n 

= E Av,(t)(l +at)f-l,(t) < O, 
t=l 

(A.7) 
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which is the first term (of (A.4). For  the term a(t)  in (A.4), we 
expand (A.5) as follows. 

Let 

l , ( t )  = { i  E {1, 2 . . . . .  n} : Av,( t )  = 0} (A.8) 

and 

12(0 = {i E {1, 2 . . . . .  n} : Art(t)  # 0}. (A.9) 

We write 

~,(t) = ~ A~, (t (~j, - ,~,,~,j)~j (t) 
t=l 

1 ~ (w.+w.)~,At)} 

= E A'i(t) I E (Wji--OItWij)Vj(t) 
teh(t) L, .i~h(O 

+ (~, - i)~ + ~ [(w. - ~:~.).AO 
Y~h(O 

+½(WU-~'-Wjt)Avj(I)]I" (A.IO) 

However, from (A.6), vj(t) - i - - l a y / ,  Vj E 12(t). Then, in (A.10), 

1 
:¢:F_,l~(o [(wjt--cliwtj)vj(t) +~(wU+ wo)Avj(t) ] 

~6(t)  

Therefore (A.10)can  be rewritten as 

2o(t) = E Avi { E (wji-aiw.)vj(t) 
tel2(t) ~ldt) 

, } + ( ~ , - I ) ~ + ~ ( l + a t )  ~ wtjAvj 
]E~o) 

! 
= 2 ~ ~ (1 + ~,)w,/,,tA,j 

/Eh(O ~I2(t) 

(A.n) 

Since I v/(t) ] = 1, [Avt ] = 2 for any i E 12(t) and Ii (t) n 12(0 = 0 ,  
we have 
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E A v i {  E (Wji--O~iWu)Vj(t)+(Oli--1)ti} 
i~l~(t) ~(t)  

>>- - ~_, { ~ Iw~,-~,w,jllAv,(t)llvy(t)l 
i~l~(t) j~l~(t) 

+ I ~ -  1 II~llAv~(t) l / 

l { / 
- 2 ~ - ,  ~ I w ~ - c ~ , w ~ : l + l ~ , - l l l ~ l  (Av,)  e 

i~h(t) j~l~(t) 

/> - ~  ~ I w ~ , - ~ , w u l + l a , -  lllt~ I (Art) 2. 
iEl2(t) j= l , j~ i  

Combined with (A. 11), this implies 

1 
2o'(t) / > ~  E E (l+oti)WiyAViAVj 

i~h(t) j¢12(t) 

l {  I 2 ~ ~ I - ~,wuI + I c~, - 1 II i,I (Av,)2 
i~6(0 j=l,y#i 

i~h(O ~h)t) 

1 
>1 ~ E E w*jAvi(t)Avy(t). (A.12) 

i~l~(t) j~12(t) 

When N is operating in the serial mode, 12(0 =i and 
It(t) = {1, 2 . . . . .  n}/{i}. In this case, 

l , 2 2o(t)/> ~ ~,, [Av,(t) 

1 / =~ (1 + ~)w.  

- ( := , .~  ,w~,-a, wu,+la,-1[[~,)} >/0. 

For the parallel mode operation, if W* is positive semidefinite, its 
principal submatrices are positive semidefinite. This gives 

E E w~J Av'(t)Avi(t) >10 
~e~(~) j~(~) 

and hence we obtain from (A.12) that o(t) >10. Together with 
(A.7), we have proved that, under the said assumptions, (A.4) is 
nonnegative, i.e., E(V(t+ 1)) < E(V(t)) when V(t+ 1) # V(t). 
This completes the proof  of  Theorem 1. 

A P P E N D I X  B: T H E  P R O O F  O F  T H E O R E M  2 

(i) Let V* = (v~, v~,...,v*) x be a local minimizer of  E, i.e., 
E ( V ' )  ~<E(V) for any VGB~(V*, 1). We need to show that 
v~ = sgn{H~(V*)} for any i = 1, 2 , . . . , n ,  where 

For  any fixed k, we let V ~) be the vector whose kth component 
differs from v~ and other components are the same with that o f  V °. 
Then, clearly, I A~) ~ BH ( V*, l) and we can write V (~) = V* + A V* 
with A V* = (0 , . . .  ,0, - 2 v L . . .  ,0) T. Thus, we have 

n 
+ (A V')~] + ~ t,[~ + (~ V'),] + C 

i=l j=l j ~ l  1=1 

+)--~, y~wu(AV*)~(AV')/  + t~(AV'), 
i=l j = l  i~ l  

= ~ ( r ' ) - ~  " J=, 

) -- 2 ~ ti(A V*), -- 2wk~ 
l=1 

= E( V*) + V*k (Hk (V*) + ~ ' c  WIk " -- tk)  - 

This implies 

E(r(~)) - E(r') = ( ~  + 1)~;,x~ (v') 

+ ~ (wjk - ~k wkj)v; 

+ ( ~  - 1)(tk)~ - (l + ~)w~k. 
/ 

Since V* is a local minimizer o f  E, it then follows that 

(c~k + t)v*kHk (V') = E(V (k)) -- E(V*) + (1 + at)wtk 

--v*k(j~ (Wyk--CttWk,)v,+(ak--1)(tk)). 

>/(1 + ak)wa -- Iwjk - atwkyl 

+ (~ - 1 II t~D/- (B.t) 

From (B.I) and by using the assumptions (3.3) and c~k > - 1 ,  we 
now conclude that v~ Hk (V*) /> 0, i.e., v~ = sign{ Hk (V')  }. As k is 
arbitrarily fixed, this completes the proof  of  (i). 

(ii) Assume that V* = (v~, vL.. . ,v~,) T is a stable state o f  N, 
i.e., v~H~(V*) >10 for any i G { 1 , 2 , . . . , n } .  We need to show 
E(V*) ~<E(V)for any VEBH(V*, 1). 

For  any fixed V G BH(V*, 1), we can write V = V* + A V" with 
A V * = ( 0 , . . . , 0 ,  - 2 v ~ , . . . , 0 )  ~ for some k in {1,2 . . . . .  n}. 
Therefore, as in the proof  of  part (i), we can obtain 

E(v) - E(v') = (1 + ~k)v'~Hk (V') 

+v~ (wjk--~kwk/)v 2 
\ j # k  

+ (~k - l)(tk)~ - (I + Ott)wkk. 
/ 

i=, Since v~Hk(V') >t0 for any i E {1, 2 , . . .  ,n}, this implies 



Asymme t r i c  Hopfield-type Ne tworks  501 

E(V) - E(V ~) >~v* t (wjk - CtkWkj)V~ + (at -- l)(tt) 

-- (l + ctk)Wkk 

~ -- (J=I,j~IE ,wyk -- ak w.jl + [a. --1 'l ti,) 

- (1 + ak)wk, 

= (I + ak)(--O'(Otk)--Wkk). 

By (3.4), E(V*) <~E(V) then follows. This fimshes the proof of (ii). 
(Hi) Since there is an R such that o(crs)= 0 for any /, the 

conditions (3.3) and (3.4) are simultaneously met. Hence (Hi) 
follows directly from (i) and (ii). 

A P P E N D I X  C :  T H E  P R O O F  O F  T H E O R E M  3 

Let U" = (u'l, u~ , . . . ,u I )  be any MIS of  a graph G and U = (ul, 
u2, . . . ,  u, ) be any subset o f  the vertices of  G. Denote, respectively, 
the number of  non-zero components of  U* and U by r and i. Then 
we can write i = rz + r2, where r~ is the number of  vertices in Utha t  
belong to an independent set. Clearly we have r~ ~<r and 
E(U*) = - r  a. 

We need to show that E(U) >~E(U*) for any U. It is however 
calculated that 

E(U)=-(r-)2 + K  (r2)2=-(rl)2-2rlr2 + (K-1 ) ( r2 )  2. 

The inequality follows directly whenever K ~>2(2n + 1). This then 
completes the proof  of  Theorem 3. 


