
Drug Discovery Today d Volume 28, Number 7 d July 2023 REVIEWS
G
E)
O
R
M
A
TI
C
S
(O

R
A
N

A personalized pharmaco-epistatic

network model of precision medicine IN

F

Li Feng 1, Wuyue Yang 2, Mengdong Ding 1, Luke Hou 3, Claudia Gragnoli 4,5,6,
Christopher Griffin 7, Rongling Wu 1,2,8,⇑
1 Center for Computational Biology, College of Biological Sciences and Tech
nology, Beijing Forestry University, Beijing 100083, China
2 Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing 101408, China
3Ward Melville High School, East Setauket, NY 11733, USA
4Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
5Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE 68124, USA
6Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome 00197, Italy
7 Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
8 Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
Precision medicine, the utilization of targeted treatments to address an individual’s disease, relies on
knowledge about the genetic cause of that individual’s drug response. Here, we present a functional
graph (FunGraph) theory to chart comprehensive pharmacogenetic architecture for each and every
patient. FunGraph is the combination of functional mapping – a dynamic model for genetic mapping
and evolutionary game theory guiding interactive strategies. It coalesces all pharmacogenetic factors
into multilayer and multiplex networks that fully capture bidirectional, signed and weighted epistasis.
It can visualize and interrogate how epistasis moves in the cell and how this movement leads to
patient- and context-specific genetic architecture in response to organismic physiology. We discuss the
future implementation of FunGraph to achieve precision medicine.
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Introduction
Unlike traditional one-size-fits-all approaches, the goal of preci-
sion medicine is to tailor medical decisions, practices and inter-
ventions for individual patients based on their predicted
response or risk of disease.1 The more precise targeting of sub-
groups of disease with specific therapies makes precision medi-
cine a powerful approach for maximizing therapeutic efficacies
and minimizing toxic effects.2–6 The cornerstone of precision
medicine is pharmacogenomics – the study of how genes affect
a person’s response to drugs.7,8 In modern medicine, pharmaco-
genetics, expanded to pharmacogenomics (studying a complete
⇑ Corresponding author: Wu, R. (ronglingwu@bimsa.cn)
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set of genes for drug response), has become a distinct discipline
in life sciences.9–13

Despite tremendous efforts in pharmacogenetics research, our
capacity to chart a complete portrait of pharmacogenetics archi-
tecture remains limited owing to challenges arising from phar-
macological characteristics. First, the therapeutic effect of a
drug involves a cascade of pharmacokinetic (PK) and pharmaco-
dynamic (PD) interactions between the drug and body.14,15 Map-
ping an endpoint phenotypic trait as drug response, as is the case
in most pharmacogenetics research, fails to reveal the genetic
machinery that shapes the PK and PD processes of drug–body
interactions toward drug effects. Second, genetic associations
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using single markers ignore the nonlinear multifactorial charac-
teristic of the drug response.16,17 Epistasis (i.e., the masking of
the effect of allelic substitution at one locus by the allelic state
at a second locus)18 plays a pivotal part in the drug
response.19–21 This definition of epistasis, as well as its extension
to nonadditive interaction variance,22 has a limited use because
it cannot capture the full property of epistasis.

Third, drug response as a complex trait is polygenic but it
might be better explained by omnigenic theory.23 This theory
proposes that all genes distributed throughout the genome can
jointly affect a complex trait, including a small portion of core
genes that are directly associated to key pathways that drive
pharmacological etiology and vast numbers of peripheral genes
whose function is transmitted to pharmacological pathways
through interconnected networks. Although omnigenic theory
can refresh our view about pharmacogenetics architecture, its
implementation into practical genetic research is extremely diffi-
cult. To estimate the indirect effects of peripheral genes, which
are small, an extremely huge sample size that cannot be met in
practice is required.

Here, we present an emerging functional graph (FunGraph)
theory that can address the three major challenges in pharmaco-
genetics studies. We review the basic principle of FunGraph con-
struction, illustrate the merits and application of FunGraph to
mapping pharmacogenomics and describe the statistical proce-
dure of using FunGraph. We also discuss the prospect of Fun-
Graph as a generic tool to unveil the regulatory mechanisms
underlying drug response.
Conceptual construction of FunGraph
FunGraph is derived from the combination between functional
mapping (FunMap) and evolutionary game theory into graph
theory.24–28 Treating drug response as a dynamic process, Fun-
Map is a mechanistically driven statistical model29,30 that inte-
grates the mathematical principles of what the body does to
the drug (PK) and what the drug does to the body (PD). It can
characterize the PK/PD pattern of genetic control exerted by indi-
vidual pharmacogenes. Because of its capacity to estimate
genotype-dependent pharmacological parameters at each marker
under consideration, FunMap can chart different genotypic
curves at individual markers, from which to estimate the curves
of single-locus genetic variances over time or drug concentration.
FunMap has been instrumental for the identification of signifi-
cant genes, known as quantitative trait loci (QTLs), which govern
drug response.31–34 These QTLs acting singly are a small set of the
whole genes that form a complete picture of pharmacogenetic
architecture. Some studies attempted to map epistatic QTLs35

but they were often based on a marginal analysis, failing to take
into account how all QTLs interact simultaneously with each
other in a rock-paper-scissors network.

The above issues can be overcome by introducing evolution-
ary game theory36 – a strategic formulation of competition and
cooperation, widely applied in various fields of social and life
sciences.37–39 Game theory suggests that the strategies with
which individual players in a community act and interact to
maximize their expression (fitness) are determined by their
own intrinsic capacity and the will and resolution their
2 www.drugdiscoverytoday.com
counterparts have on them. The fundamental notion of game
theory is Nash equilibrium40 in which no player can gain any
payoff by only changing its own strategy. This notation is gener-
alized and refined as evolutionarily stable strategy in evolution-
ary game theory, which can be used to model strategic
processes without the rationality assumption. Sun et al.24 com-
bine evolutionary game theory and predator–prey theory to
derive a generalized Lotka–Volterra (LV) ordinary differential
equation (gLVODE) used to distinguish and model the payoffs
due to a player’s own strategy and the strategies of other co-
existing players. By solving a system of gLVODEs, these two
types of payoff, each representing a different mechanism for a
player to gain, can be estimated, tested and compared over time.

Taken together, FunMap estimates the genotypic curve of PK/
PD at each locus in a mapping or association population. Each
subject can be assigned such a genotypic curve based on the
genotype carried by this subject. For a specific subject, gLVODEs
decompose the genotypic value at a gene (estimated by margin-
ally based FunMap) into the intrinsically driven independent
‘payoff’ of this gene (expressed in isolation) and the extrinsically
induced dependent payoff (resulting from the influence of other
genes on this gene). FunGraph codes the independent payoffs of
individual genes as nodes and the dependent payoffs of individ-
ual gene pairs as edges into graphs. These graphs provide a chart
for the roadmap of how each gene affects drug response, directly
or through an indirect path.
A fully informative model of epistasis
Existing quantitative models in human genetics have two major
limitations for epistasis estimation. First, they can only estimate
aggregated epistasis from a large number of patients, failing to
characterize interindividual variability. For example, genotype
Aa at gene 1 promotes the expression of genotype AA at a differ-
ent gene s to enhance subject 1’s drug efficacy; but such a non-
allelic interaction might cause drug toxicity for subject 2 (Fig-
ure 1). Also, it is possible that the genotype at gene 2 interacting
with the same genotype AA at gene s is subject-dependent (i.e.,
aa for subject 1 and Aa for subject 2), which is expected to pro-
duce subject-typic drug effects. The lack of a systematic charac-
terization of personalized interactions involving a complete set
of genes has limited the effective translation of genetic informa-
tion into precision medicine in clinical practice.

Second, current approaches can only estimate the overall
strength of epistasis between a pair of loci. However, they can
identify neither the causality of epistasis nor the sign or (bi)direc-
tionality of the causality. For example, positive epistasis detected
from current quantitative genetic theory can derive from the
mutual promotion of two loci, the unidirectional promotion of
one locus for the second or the promotion of one locus for the
second even although the second inhibits the first but to a lesser
extent (Figure 2). Similarly, negative epistasis detected can arise
from one of three possible types. Furthermore, current epistasis
detection is based on a pairwise analysis but genes often co-
occur in a community and, thus, co-act in a generalized rock-
paper-scissors manner.41

Epistatic networks inferred by FunGraph are bidirectional,
signed and weighted, leveraging Bateson’s18 and Fisher’s22 defini-
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FIGURE 1
Diagram showing how epistasis changes from subject to subject. Subjects i and i0 have the same genotype AA at a typical SNP s; but the influence this
genotype receives from other loci varies between two subjects. For example, genotype AA at SNP s is affected by genotype AA in subject i but aa in subject i0

at SNP s � 1, by genotype aa in subject i but Aa in subject i0 at SNP s + 1, etc. We argue that the difference of subject i from subject i0 is not only due to
genotypic differences at different loci but also due to epistasis expressed at the genotype level, both causes of which can be characterized by functional
graph theory.
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tions of epistasis by capturing the full information. Comparing
reciprocal dependent payoffs between two genes in terms of their
sign and magnitude estimated from gLVODE allows us to classify
epistasis into different types: symmetrical positive epistasis – two
genes promote each other at the same strength; asymmetrical
positive epistasis – two genes promote each other but to different
extents; directional positive epistasis – one gene promotes the
other but the second has no effect on the first; altruistic/parasitic
epistasis – one gene promotes the other but the second inhibits
the first; symmetrical negative epistasis – two genes inhibit each
other at the same strength; asymmetrical negative epistasis – two
genes inhibit each other but to different extents; and directional
negative epistasis – one gene inhibits the other but the second is
neutral to the first.

FunGraph shows its practical utility to map the genetic archi-
tecture of drug response for individual subjects from an associa-
tion population (Figure 3). FunMap incorporates the Hill
equation to estimate genotypic curves of heart rate for each sub-
ject in response to different dosages of dobutamine at each single
nucleotide polymorphism (SNP).31,35 A system of gLVODEs is
implemented to estimate the independent and dependent com-
ponents of genotypic values that are coded into personalized epi-
static networks. We find that five randomly chosen subjects vary
in the strength, sign and causality of genetic interactions within
five-node SNP–SNP networks (Figure 3a). These topological dis-
crepancies are related to different genetic mechanisms that each
subject uses to respond to dobutamine. By comparing the inde-
pendent and dependent dose–response curves, one can better
characterize the role of how each SNP mediates drug response
for a specific subject (Figure 3b). For subject 1, genotype AA at
codon49 is inhibited by genotypes at other SNPs, its net geno-
typic value becomes less responsive to dobutamine compared
with its independent value. This finding suggests that manipulat-
ing the interactive relationship of codon49 with its regulators
can better improve the heart rate of subject 1 by dobutamine
than targeting codon49 alone.
Stratification-specific networks: A shift from
personalized medicine to precision medicine
Personalized medicine aims to tailor unique disease treatments
and preventions for each patient by reconstructing his or her indi-
vidualized networks. In clinical practice, precision medicine is
more feasible by focusing on subgroups of disease risk via popula-
tion stratification rather than the individual.42 Precisionmedicine
relies on the general rule that governs the network structure of
patients from the same stratification. FunGraph implements func-
tional clustering43,44 to classify all patients into distinct categories
based on the similarity of genotypic curves for drug response.

As an example, we identify three categories of subjects in five-
SNP genotypic dose–response curves from 142 subjects (Figure 4).
There are very few subjects in category 2, whose drug response is
under genetic control in a way that is different from the majority
of the association panel. In general, the joint mean dose–re-
sponse curve of five SNPs differs dramatically among three cate-
gories (Figure 4); but such a difference is SNP-dependent.
FunGraph reconstructs five-node pharmacogenetic networks for
each category using its mean genotypic curves (Figure 4a). We
find that interaction architecture differs dramatically among cat-
egories, suggesting that the genetic mechanisms underlying drug
response are category-dependent. Subjects from the same cate-
gory initiate a similar genetic mechanism to mediate their
response to dobutamine, whereas those from different categories
use different mechanisms. For subjects from categories 1 and 3,
codon49 from the b1AR gene promotes codon16 from the b2AR
gene, whereas the latter inhibits the former; but this altruistic
www.drugdiscoverytoday.com 3
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FIGURE 2
Observed epistasis attributed to different types of SNP–SNP interactions. Non-arrowed lines between SNP s and s0 denote their non-causal epistasis, whereas
arrowed lines stand for the casualty of epistasis, with the thickness of lines proportional to the strength of epistasis. Red and blue lines represent promotion
and inhibition, respectively.
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parasitic relationship does not take place in category 2. In cate-
gory 1, codon49 inhibits codon492 from the a1A gene but this
asymmetrical antagonism does not occur in categories 2 and 3.
Codon389 from the b1AR gene establishes symmetric antago-
nism with codon16 from the b2AR gene in category 3 but with
codon492 from the a1A gene in category 2.

FunGraph further decomposes the net genotypic curve of
each category at each SNP into its independent and dependent
components (Figure 4b), from which a clearer picture of the role
of genetic interactions in modulating drug response can be
charted. Codon49 from the b1AR gene has a greater genotypic
independent value of drug effect, with a greater slope of drug
response, than its net genotypic value in categories 1 and 3,
which is due to negative regulation from codon16 from the
b2AR gene. Because of small positive regulation received from
codon492 of the a1A gene, the net genotypic value of codon49
from the b1AR gene is not much different from its independent
value. For categories 1 and 3, heart rate can be improved through
codon49 from the b1AR gene by altering the activity of codon16
from the b2AR gene. Taken together, we can design an optimal
strategy to improve the heart rate of patients from specific
categories.
Sparsity theory and modularity theory: from
pharmacogenetic networks to pharmacogenomic
networks
Pharmacogenetics is the study of genetic variability in drug
response due to key genes, whereas pharmacogenomics is the
4 www.drugdiscoverytoday.com
study of the role of the genome in drug response. In general,
pharmacogenetic networks deal with a limited number of inter-
active genes but pharmacogenomic networks cover all genes
throughout the genome. The complexity of network reconstruc-
tion increases exponentially with the increasing number of
genes. It is computationally impossible to reconstruct fully inter-
connected networks among thousands of thousands of genes as
genotyped in a typical pharmacogenomic study.

To infer pharmacogenomics networks, we implement sparsity
theory and modularity theory into FunGraph. Sparsity theory
states that the stability of a living system is positively associated
with its sparsity in certain domains; a dense system is usually vul-
nerable to stochastic perturbations.45–47 Network sparsity theory
has been proposed to interpret system stability, according to
which the percentage of the active interactions is inversely pro-
portional to the system size.48–51 Through statistical variable
selection, we introduce this theory to choose a subset of the most
significant genes that are linked to a given gene, because we
believe that not all other genes are linked with the focal gene.
This process shifts a fully interconnected network to a sparsely
connected network.

In a big living system, different entities display functional
similarities and differences and, therefore, are organized into dis-
tinct modules within each of which entities are more function-
ally correlated with each other than with those from other
modules.52,53 In pharmacogenomics, some SNPs can change
their genetic effects in a similar pattern, which are thus coalesced
into the same communities of networks. SNPs with different pat-
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FIGURE 3
Subject-specific genetic networks reconstructed by functional graph theory. (a) Five-node interaction networks underlying heart rate response to
dobutamine for five randomly chosen subjects from a panel of candidate gene association study population, in which nodes represent the independent
genotypic values of each SNP, with circle size proportional to the value, and edges represent directed epistasis from one SNP to next, with line thickness
proportional to the strength of epistasis. Red and blue arrowed lines denote promotion and inhibition, respectively. (b) Decomposition of net genotypic
dose–response curve at each SNP (blue line) into its independent genotypic curve (red line) and dependent genotypic curve (green line) for five randomly
chosen subjects. Five SNPs: codon49, codon389, codon16, codon27 and codon492, are denoted as S1–S5 in order. Adapted, with permission, from 64 with
the data used, with permission, from 31.
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terns of genetic effect change are located in different network
communities. Thus, by clustering all SNPs into different mod-
ules, FunGraph can determine the number and size of network
communities. Ultimately, we dissolve a big network into a set
of multiple communities, each representing a subnetwork,
which form multilayer and multiplex networks. This process
has two advantages: first, this is a sparse network that could be
more stable than a full network; second, the number of SNPs
within a community reduces so that computational efficiency
increases.

In summary, one significant merit of FunGraph is to recon-
struct an omnigenic network from a complete set of genome-
wide genes by implementing developmental modularity theory.
According to this theory, all genes, no matter how many, can be
classified into distinct modules of smaller size. If a module is still
too big, FunGraph classifies it into its distinct submodules. This
procedure is repeated until the number of genes within a unit
reduces to a tractable level. At the end, FunGraph can coalesce
all genes into multilayer and multiplex interactome networks.
Because FunGraph is constructed as a system of ordinary differ-
ential equations expressed as a function of dose, it does not rely
on an extremely big sample size that is crucial for reconstructing
large-scale genome-wide networks according to a usual thinking.
FunGraph capitalizes on the result from functional mapping,
thus relying on the precision of functional mapping. Because
functional mapping is based on a single marker analysis, how-
ever, its requirement for sample size is not as strong as required
by network reconstruction.
Concluding remarks and future perspectives
Networks are central features of complex systems. The genetic
architecture of drug response can be viewed as a system in which
several genes, perhaps all genome-wide distributed genes, as pre-
dicted by omnigenic theory,23 act and interact with each other in
a complicated way.54–57 As such, reconstructing pharmacoge-
netic networks to disentangle the genetic machineries of how
patients respond to medications opens up a new gateway to
pharmacogenomic research standing in the core of precision
medicine. There have been several attempts to identify genetic
networks for drug response58,59 but these attempts can be limited
when they are applied in practice. Their main disadvantages
www.drugdiscoverytoday.com 5
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include that the networks reconstructed by existing approaches
are not informative in terms of network architecture.

FunGraph can overcome the limitations of existing network
models.24–28 In statistical genetics, FunMap has been proposed
to map the developmental pattern of genetic effects exerted by
individual genes.29–35 FunGraph integrates FunMap, evolution-
ary game theory and the Lotka–Volterra prey–predator model
into mathematical graphs, in which nodes represent the inde-
pendent genetic effects of genes assumed to be expressed in iso-
lation and the edges denote directional, signed and weighted
interactions between pairs of genes. FunGraph has been applied
to reconstruct genetic interactome networks mediating growth
traits in Euphrates poplar26,27 and microbial resistance to antibi-
otics28 from a number of samples, and it can be generalized to
characterize subject-specific genetic networks, which are sorely
needed for precision medicine.

FunGraph uses a system of gLVODEs for genotypic decompo-
sition at each SNP to characterize how each SNP regulates, and
also is regulated by, every other SNP in a community of genes.
Such a rock-paper-scissors loop of genetic interactions circum-
vents the limitation of traditional approaches that can only ana-
lyze a pair of SNPs at a time.41 Beyond this, FunGraph
reconstructs fully informative networks that capture all funda-
mental features of epistatic interactions. Epistasis is traditionally
defined as a population concept54,58 but FunGraph leverages
epistasis to describe individual members in the population. It
can discern which genotype at one locus epistatically promotes
or inhibits the expression of the genotype at the other locus
for each subject, rather than measuring epistasis as a genetic vari-
ance.22 Such individualized informative networks are expected to
have an immediate implication for designing personalized med-
icine. From genetic networks of a specific subject, we can more
precisely alter the activity of certain genotypes toward maximiz-
ing drug efficacy.

FunGraph is powerful for inferring multilayer and multiplex
pharmacogenomic SNP–SNP interactome networks from a classi-
cal genome-wide association study. However, there is much
room to improve FunGraph, making it a more practically useful
tool. First, the process from SNP to drug response includes gene
regulatory networks composed of transcriptional genes, proteins,
metabolites and even microbes. Genetic variants modulate the
expression of causal genes under the regulatory mechanisms
shaped by the functional elements. FunGraph should integrate
intermediate molecular traits, such as gene expression, protein
expression and metabolite abundance, to deduct possible molec-
ular mechanisms underlying drug response. Second, FunGraph
relies on the mathematical solving of ODEs. Current AI
approaches can provide a more powerful and more general solu-
FIGURE 4
Category-specific genetic networks by functional graph theory. (a) Five-node in
categories, in which nodes represent the independent genotypic values of ea
directed epistasis from one SNP to the next, with line thickness proportional to
inhibition, respectively. (b) Decomposition of net genotypic dose–response curv
dependent genotypic curve (green line) for three categories. Five SNPs: codon
order. Adapted, with permission, from 64 with the data used, with permission,
tion of nonlinear dynamic equations. Third, more-robust
dynamic equations, such as stochastic differential equations,
should be implemented into FunGraph, capturing the random
effect of genes and their interactions on drug response (Box 1).
Box 1 A statistical procedure of FunGraph
The original formulation of FunGraph was systematically given in

previous articles25–28,60 and summarized in by Wu and col-

leagues.61 For this article to be self-contained, we briefly describe

its procedure as below. Suppose we sample n subjects from a

natural population to build a pharmacogenetic association study.

To investigate drug response, these subjects are administered by

a drug at a series of dosages, deigned to improve a physiological
parameter of patients. Considering differences in administration

schedule, let (ci0, ci1, . . ., ciTi ) denote different dosages for a

specific subject i (where ci0 = 0) (i = 1, . . ., n) and (yi(ci0), yi(ci1),

. . ., yi(ciTi )) denote the observed values of drug response param-

eter of this subject. All these subjects are genotyped at a panel of

m genome-wide distributed SNP loci. In the subsequent analysis,

we use adjusted phenotypic data of drug response that are cor-

rected for all possible covariates including demographic factors,
lifestyle and population structure detected from all m SNPs. Data

structure for association studies is illustrated in Figure S1a (see

Supplementary material online).

The genotypic curve of a subject at a SNP is decomposed into

two components: the independent component that is expressed

when this SNP is assumed to be in isolation; and the dependent

component that results from the influence of other SNPs on this

SNP.24–28 This argument can be formulated by a system of
gLVODEs, by which the zs cð Þ value at SNP s is expressed as

shown in Eq. (1):

_zs cð Þ ¼ Qs zs cð Þð Þ þPm¼5
s0¼1;s0–sQss0 zs0 cð Þð Þ þ �sðcÞ (1)

where Qs �ð Þ is the independent component, determined by

SNP s0 own genotypic value zs cð Þ, Qss0 �ð Þ is the dependent com-

ponent, determined by the genotypic value zs0 cð Þ of SNP s0 , and

�sðcÞ is the residual error, distributed as N(0, r2
s ðcÞÞ. Because

there is no explicit form for Qs �ð Þ and Qss0 �ð Þ, FunGraph imple-

ments a nonparametric smoothing approach, such as Legendre

Orthogonal Polynomials (LOP), to model their dynamic
changes.62,63 The residual error might be antedependent (i.e.,

the error at a drug dose is influenced by those at its previous

dose). Thus, FunGraph implements an autoregressive approach,

such as the first-order structured antedependent model (SAD

(1)),60,64 to fit the residual covariance structure.
teraction networks underlying heart rate response to dobutamine for three
ch SNP, with circle size proportional to the value, and edges representing
the strength of epistasis. Red and blue arrowed lines denote promotion and
e at each SNP (blue line) into its independent genotypic curve (red line) and
49, codon389, codon16, codon27 and codon492, are denoted as S1–S5 in
from 31.
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Data availability
No data was used for the research described in the article.
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Appendix A. Supplementary material
Supplementary material to this article can be found online at
https://doi.org/10.1016/j.drudis.2023.103608.
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