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A B S T R A C T

Forecasting the overnight (close-to-open) return direction of a stock market index has recently attracted great
attention. Owing to the strong interactions among stock markets around the globe, one stock market would be
inevitably affected by others. In this study, we take global stock market indices as an informative source and
propose a deep learning approach combining genetic algorithm to forecast the overnight return direction of
a target stock market index. Starting from the multiple-branch input layers representing stock market indices
from various regions worldwide, we use multiple convolution units to extract the features from each region.
These features are then concatenated and connected with fully connected layers to forecast the daily direction
of the overnight return. To optimize the deep neural network, genetic algorithm is used to determine the
optimal network architecture and parameters. In the experimental study, we apply the proposed model to
forecasting the overnight return directions of nine target indices from Asia, Americas and Europe markets. The
experimental results indicate that compared with other competing methods, the proposed model is superior in
terms of the accuracy, F -measure and Sharpe ratio.
1. Introduction

Forecasting the direction of stock market index (SMI) movements is
an important issue in financial markets since it provides the investors
and regulators with useful information for decision-making. However,
because a stock market is essentially a dynamic, nonlinear, noisy and
chaotic system, forecasting the direction of SMI movements is regarded
as a challenging task for investors and researchers (Deboeck, 1994;
Zhong & Enke, 2017).

In previous studies, researchers have investigated the predictive
power of different factors such as historical prices or returns (Con-
stantinou et al., 2006; Kara et al., 2011; Orimoloye et al., 2020; Wang
et al., 2021), technical indicators (Kara et al., 2011; Zhong & Enke,
2017), news text (Kelly & Ahmad, 2018; Li et al., 2014; Tetlock,
2007), and public mood (Bollen et al., 2011; Oliveira et al., 2017;
Wang, Lu, et al., 2019; Xing et al., 2019). These studies, among others,
mainly focus on the effect of domestic market data on an SMI, paying
little attention to the influence of international stock markets. As the
trend of globalization becomes increasingly evident, many studies have
investigated the cross-correlations among global SMIs. Marschinski and
Kantz (2002) and Kwon and Yang (2008) employ the transfer entropy
to investigate the relationships among different SMIs and confirm the
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existence of information transfer. Furthermore, forecasting the SMI
movements based on international SMIs has become a hot research
topic in recent years, and there is a large body of literature that uses
international SMIs as the inputs of machine learning techniques to
forecast the target SMI’s movements (Hoseinzade & Haratizadeh, 2019;
Karaca et al., 2020; Kia et al., 2018; Malagrino et al., 2018).

Since it is difficult to forecast the exact value of an SMI, most studies
focus on the direction of SMI movements (Kia et al., 2018; Malagrino
et al., 2018; Qiu & Song, 2016). The direction of SMI movements is
generally calculated based on returns, which consists of three types,
i.e., close-to-close (𝑅𝐶−𝐶 ), close-to-open (𝑅𝐶−𝑂) and open-to-close (𝑅𝑂−𝐶 ).
Past research found that stock returns are more volatile during trading
hours than during nontrading hours (R.French & Roll, 1986), and
most studies focused on forecasting the direction of 𝑅𝐶−𝐶 (Hoseinzade
& Haratizadeh, 2019; Kia et al., 2018) and 𝑅𝑂−𝐶 (Li et al., 2014;
Shynkevich et al., 2016). In fact, many stock markets conduct open
trading with call auctions that batch orders together and match them
in predetermined time intervals to form the price. Consequently, the
opening price of a trading day is different from the closing price of
the previous trading day, and the return of the closing price compared
to the opening price is called the overnight return or non-trading
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return. Kelly and Clark (2011) find that the average returns of close-
to-open are higher than those of open-to-close. Lou et al. (2019) find
remarkable persistence in the overnight and intraday components of
firm-level returns. From these points of view, forecasting the direction
of overnight returns is helpful for investors to make decisions and
increase their profits during the periods of call auction and trading.

In this study, we focus on forecasting the daily direction of 𝑅𝐶−𝑂
of a target SMI by considering three main factors: (1) the historical
returns of the target SMI, (2) the historical returns of other SMIs, and
(3) the current returns of stock markets that open before the target
market on the same trading day. We illustrate the third factor by taking
the SSEC (Shanghai Stock Exchange Composite Index, China) as an
example. The SSEC opens at 1:30 (UTC) while most stock markets in
the Americas open at 14:30 and close at 21:00 (Daylight Savings Time,
UTC), and most stock markets in the Europe open at 7:00 and close
at 19:00 (UTC). Consequently, the current returns of SMIs in the above
two regions would inevitably have impact on the 𝑅𝐶−𝑂 of the SSEC and
hence should be used as an important informative source, in addition
to the historical returns of the target SMI and other SMIs.

There are generally three types of methods for forecasting a stock
market with these multisource data: (1) conventional machine learn-
ing techniques (Zhong & Enke, 2017), (2) ensemble learning tech-
niques (Weng et al., 2018), and (3) deep learning techniques (Long
et al., 2019). Furthermore, the input variables (features) are of critical
importance to the model performance in forecasting. However, con-
ventional machine learning, such as artificial neural network (ANN)
and support vector machine (SVM), and ensemble learning techniques
face two challenges when they are applied to forecasting the direc-
tion of a target SMI. The first challenge is that in practice, SMIs
within a region commonly have a strong correlation, which results in a
number of correlation clusters (i.e., intraregional SMIs exhibit similar
fluctuation trends) (Giese & Kouzmenko, 2019). If each SMI is used
as an input feature for learning, there would be a large number of
features with high correlations, which may lead to a biased forecasting
model. The second challenge is that learning using all SMIs would
cause overfitting, which means that the generalization ability is de-
graded, since many SMIs are redundant due to the high correlations.
The third type of method, i.e., deep learning techniques, is beneficial
for handling multisource data and has superior performance (Carta
et al., 2021; Long et al., 2020, 2019), especially those with multiple
branches or multiple filters (Gaetano et al., 2018; Long et al., 2019).
Compared with a single-structure deep learning model (e.g., recurrent
units, convolutional units, and long short-term memory units), deep
learning models with multiple branches or multiple filters are able to
adequately consider the characteristics of samples. For example, Long
et al. (2019) employ a multi-filter neural network to forecast the 1-
minute direction of stock price, and the results show that their model
outperforms traditional machine learning models and single-structure
deep learning methods. Gaetano et al. (2018) propose a two-branch
convolutional neural network to integrate multi-resolution data, and
their model achieves better results than recent classification methods.
Although deep learning methods with multiple branches or multiple
filters have certain advantages, the architecture and parameters of
a deep neural network commonly have significant influences on the
predictive performance (Sun et al., 2020). In other words, inappropri-
ate architectural designs and parameters might deteriorate the model
performance.

To address the above issues, we propose a Multiple Branch Con-
volutional Neural Network based on Genetic Algorithm (MBCNN-GA)
for forecasting the daily direction of 𝑅𝐶−𝑂. In the MBCNN-GA, the
convolutional unit of each branch extracts features from intraregional
SMIs by parameter sharing, which represents the overall features of
intraregional SMIs. The overall features of different regions are then
concatenated and put into the fully connected layer to forecast the
movements of the target SMI. There are two novelties of the proposed
2

model: (1) a multi-branch structure, where each branch extracts the
overall features of specific intraregional SMIs that describe the overall
influence of a region on the target SMI, is used in the proposed model;
and (2) given the predefined multi-branch blocks of the model, GA is
employed to automatically determine the optimal network architecture
and combination of parameters for forecasting the 𝑅𝐶−𝑂 direction. To
evaluate the effectiveness of the proposed model, we compare it with
some other methods on nine target SMIs. The experimental results show
that the proposed approach is superior to the competing methods in
terms of predictive performance.

The remainder of the paper is organized as follows. In Section 2, we
review the literature that is closely related to our study and summa-
rize our contributions. In Section 3, we present the data, techniques,
and proposed model. Section 4 reports the experimental study and
discussion. In the last section, we end this paper with some concluding
remarks.

2. Related work

2.1. Input variables for SMI forecasting

In general, the input variables (features) for SMI forecasting can
be divided into three types: historical price data, technical analy-
sis indicators, and market sentiment. In terms of the historical price
data, Constantinou et al. (2006) employ lagged stock returns to forecast
the stock return series of the Cyprus Stock Exchange general price in-
dex. Orimoloye et al. (2020) employ the opening prices, closing prices,
highest prices and lowest prices to forecast the direction of the closing
stock price. In addition to historical price data, many researchers
employ technical indicators to forecast the SMI. For example, Kara et al.
(2011) employ ten technical indicators to forecast the direction of daily
closing price movements in the Istanbul Stock Exchange National 100
Index. Zhong and Enke (2017) use a number of features, including
technical indicators, to forecast the closing prices of the S&P 500 Index
ETF. With the rapid development of text mining techniques, forecasting
SMI movements based on textual data, such as news text and investor
sentiment, has greatly attracted researchers’ attention (Cambria, 2016;
Kelly & Ahmad, 2018; Oliveira et al., 2017; Tetlock, 2007; Xing et al.,
2019). For example, Bollen et al. (2011) use Twitter emotion as the
public mood to forecast an SMI. Li et al. (2014) employ sentiment
polarity to predict the direction of individual stock, sector, and index
levels.

The above studies focus on the effect of indicators coming from
a single market only, which does not consider the influence of cross-
market data. With the development of globalization, many studies
employ cross-market indicators to forecast a target SMI. Marschinski
and Kantz (2002) and Kwon and Yang (2008) employ the transfer
entropy to investigate the relationships between different SMIs and
confirm the existence of information transfer. In addition, there are
many studies attempting to forecast a target SMI based on international
SMIs. Kia et al. (2018) employ a hybrid supervised semi-supervised
graph-based model to predict the daily movement of a target SMI
based on international SMIs. Malagrino et al. (2018) use 12 indices
worldwide to forecast IBOVESPA’s next day closing direction based
on a Bayesian network. Hoseinzade and Haratizadeh (2019) design a
convolutional neural network for extracting features from multiple vari-
ables of relevant markets to forecast the daily direction of a target SMI.
Karaca et al. (2020) employ the max-relevance and min-redundancy
(mRMR) to select the features, and use the multi-linear regression,
SVM, and ANN to forecast a target SMI.

2.2. SMI forecasting techniques

There are two main categories of forecasting techniques: statis-
tical techniques and machine learning techniques. Statistical tech-
niques used in SMI movement forecasting include the autoregressive

moving average (ARMA), autoregressive integrated moving average
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Table 1
Summary of key related works.

Authors Features Forecast target Forecast techniques Forecast type Evaluation metric

Kia et al.
(2018)

International stock indices Direction of 𝑅𝐶−𝐶 (daily) Hybrid supervised
semi-supervised
graph-based model

Classification Accuracy

Malagrino
et al. (2018)

International stock indices Direction of 𝑅𝐶−𝐶 (daily) Bayesian Network Classification Accuracy

Hoseinzade
and
Haratizadeh
(2019)

Historical records of
relevant markets

Direction of 𝑅𝐶−𝐶 (daily) CNN Classification F -measure

Karaca et al.
(2020)

Historical records of
relevant markets

Daily price Multi-linear regression,
Support Vector Regression
(SVR), ANN

Regression Mean squared error

Long et al.
(2019)

Market data (opening,
closing, highest, lowest
prices, etc.)

Direction of return (1-min
frequency)

Multi-filter neural network Classification Accuracy
𝑅

(ARIMA), and generalized autoregressive conditional heteroskedastic-
ity (GARCH) (Abul Basher & Sadorsky, 2016; Franses & Ghijsels, 1999),
among others. Since all of them are essentially linear models, their
performance tends to degrade in non-linear financial markets (Zhong
& Enke, 2017).

Recently, machine learning techniques, such as SVM (Li et al., 2014;
Pan et al., 2017; Xiao et al., 2020), ANN (Chen et al., 2003, 2017)
and random forest (RF) (Weng et al., 2018), have been successfully ap-
plied to forecast financial markets owing to their better generalization
ability. However, the performance of the above techniques is highly
affected by the input variables. As deep learning techniques, such as
convolutional neural network (CNN), recurrent neural network (RNN)
and long short-term memory (LSTM), have developed, they have been
widely used in many fields, such as marketing (Yilmazer & Birant,
2021), transportation (Wang, Zhang, et al., 2019), and financial market
prediction (Carta et al., 2021; Nabipour et al., 2020; Pang et al., 2020).
For example, Hoseinzade and Haratizadeh (2019) employ the CNN to
forecast the daily direction of a target SMI based on international SMIs.
Long et al. (2019) adopt the multi-filter deep learning model to forecast
the direction of 1-minute returns.

To provide an overview of the most related studies on machine
learning techniques for SMI forecasting, we summarize the represen-
tative studies in Table 1.

Table 1 indicates that current studies pay more attention to the
influence of international stock market on the target stock market, and
most of them focus on the classification task rather than the regression
task. The reason might be that it is difficult to forecast the exact value
of SMI (Qiu & Song, 2016). In addition, the accuracy and F -measure are
common metrics to evaluate the performance. Moreover, the common
methods used in the above studies include traditional machine learning
methods such as ANN and SVM, and deep learning methods such as
CNN and multi-filter neural network.

In machine learning techniques, hyperparameters have significant
impact on the predictive performance. Therefore, various evolutionary
algorithms, such as particle swarm optimization (PSO) (Hung, 2011;
Liu et al., 2018), firefly algorithm (FFA) (Kazem et al., 2013), and
genetic algorithm (GA) (Chang & Lee, 2017; Pan et al., 2017), have
been used to optimize these parameters. Among them, the GA inspired
by the Darwin’s theory is an effective optimization method because of
its parallel search mechanism. For instance, Pan et al. (2017) adopt
the GA to optimize the parameters of a multi-output SVM and achieve
better predictive performance than the competing methods.

2.3. Our contributions

Although previous related works have employed international SMIs
to forecast a target SMI, most of them have focused on the daily
3

direction of 𝑅𝐶−𝐶 and ignored the effect of international stock markets
on the daily direction of 𝑅𝐶−𝑂. In addition, these works mainly take
all international SMIs into the machine learning model rather than
considering the overall effect of intraregional stock markets. Therefore,
we contribute to the literature in the following aspects:

(1) We develop a novel deep learning framework based on a multi-
branch convolutional neural network and genetic algorithm to
forecast the daily direction of 𝑅𝐶−𝑂 using international SMIs.

(2) The multi-branch convolutional neural network extracts overall
features from each region to improve the predictive perfor-
mance.

(3) We utilize the GA to automatically determine the optimal net-
work architecture and parameters.

3. Materials and methods

3.1. Data

3.1.1. Calculation and distribution of SMI returns
In this study, we collect 30 SMIs worldwide from Investing.com,

one of the top three global financial websites. To avoid any possible
bias caused by a short time period, we set a long time frame from
October 21, 2013 to December 31, 2020. Since a stock market does
not open on every working day (e.g., due to local holidays), there
exists a synchronization problem: on some working days, some markets
are open while others are not. To address this problem, we remain
consistent with (Malagrino et al., 2018) by removing these working
days with missing values from the data set. Consequently, there are
a total of 1041 days in the data set. The reason we do not replace
the missing values with other values is as follows. Suppose the 𝑅𝐶−𝐶
of SPX increased 3% on Monday, but the Americas market would be
closed on Tuesday due to a holiday. Consequently, the missing value
on Tuesday will have no influence on other international SMIs the next
day, i.e., Wednesday; and it is unreasonable to replace the missing value
with other values.

As mentioned before, there are three types of returns, i.e., close-to-
close (𝑅𝐶-𝐶,𝑡), close-to-open (𝑅𝐶-𝑂,𝑡), and open-to-close (𝑅𝑂-𝐶,𝑡), for each
SMI on trading day 𝑡. These types of returns are illustrated in Fig. 1.

In Fig. 1, 𝐶𝑙𝑜𝑠𝑒𝑡 and 𝑂𝑝𝑒𝑛𝑡 denote the closing price and opening
price of an SMI on trading day 𝑡, respectively. The three types of returns
are calculated by the following:

𝑅𝐶-𝑂,𝑡 =
𝑂𝑝𝑒𝑛𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑡-1

𝐶𝑙𝑜𝑠𝑒𝑡-1
, (1)

𝑅𝑂-𝐶,𝑡 =
𝐶𝑙𝑜𝑠𝑒𝑡 − 𝑂𝑝𝑒𝑛𝑡

𝑂𝑝𝑒𝑛𝑡
, (2)

𝐶-𝐶,𝑡 =
𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑡-1 . (3)
𝐶𝑙𝑜𝑠𝑒𝑡-1
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Fig. 1. Three types of SMI returns.
Table 2
Brief description of the SMI returns.

Region Market Index Code % of up labels % of down labels Imbalance
ratio

Asia

China SSEC 40.193 59.807 1.488
Australiad AXJO 3.314 96.686 29.177c

Japan N225 52.378 47.622 1.100
South Korea KS11 59.910 40.090 1.494
Taiwan TWII 59.887 40.113 1.493
Hong Kong HSI 58.582 41.418 1.414
India BSESN 75.998 24.002 3.166b

Indonesia JKSE 55.290 44.710 1.237
Philippines PSI 56.971 43.029 1.324

Americas

United States SPX 55.543 44.457 1.249
Canada GSPTSE 50.360 49.640 1.014
Brazil BVSP 22.216 77.784 3.501b

Colombia COLCAP 0.228 99.772 437.0c

Mexico MXX 44.524 55.476 1.246
Peru SPBLPGPT 44.002 55.998 1.273

Europe

Belgium BEL 20 53.859 46.141 1.167
Denmark OMXC20 51.672 48.328 1.069
Finland OMXH25 47.366 52.634 1.111
France FCHI 52.391 47.609 1.10
Germany GDAXI 53.990 46.010 1.173
Greece ATG 54.989 45.011 1.222
Italy FTMIB 56.848 43.152 1.317
Netherlands AEX 55.652 44.348 1.255
Norway OBX 33.611 66.389 1.975a

Poland WIG30 58.919 41.081 1.434
Portugal PSI20 55.326 44.674 1.238
Russia IMOEX 48.122 51.878 1.078
Spain IBEX 35 54.807 45.193 1.213
Turkey BIST 100 69.464 30.536 2.275a

United Kingdom FTSE 0.055 99.945 1820.0c

alow imbalance.
bmedium imbalance.
chigh imbalance.
dThe reason we put Australia in Asia market is that their opening time is close.
Since it is difficult to forecast the exact value of an SMI, we divide
the 𝑅𝐶-𝑂,𝑡 into two classes, i.e., up (𝑅𝐶-𝑂,𝑡 > 0) and down (𝑅𝐶-𝑂,𝑡 ≤ 0),
which is consistent with previous studies (Bollen et al., 2011; Nam &
Seong, 2019; Shynkevich et al., 2016). Consequently, the forecasting
becomes a binary classification problem.

For each SMI in the data set, we calculate the percentages of
the up and down labels and the imbalance ratio (𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ). The results are shown in Table 2.

According to Fernández et al. (2008), imbalanced data can be
divided into three categories: low imbalance (the imbalance ratio is
between 1.5 and 3), medium imbalance (the imbalance ratio is between
3 and 9), and high imbalance (the imbalance ratio is higher than 9). We
can see from Table 2 that the entire data set is a mixture of balanced
data (23 out of 30), low imbalanced data (2 out of 30), medium
imbalanced data (2 out of 30), and high imbalanced data (3 out of 30).

3.1.2. Statistical analysis of SMI returns
To illustrate the trend of SMI volatility, we present box plots of the

returns of SPX, SSEC, and GDAXI (DAX 30 Index, Germany) in Fig. 2.
4

The reason we choose the above three SMIs is that they are typical and
important SMIs in the Americas, Asia, and Europe markets.

Fig. 2 shows that the volatility (standard deviation) of 𝑅𝐶-𝑂 has
increased over the six year. Specifically, the SPX increased from 0.104
in 2013 to 0.426 in 2018. It is noteworthy that the volatility of the
SSEC suddenly increased in 2015 because of the Chinese stock market
turbulence, which is an extreme event.

To illustrate the correlations among international SMIs, we present
the correlation matrix of the daily 𝑅𝐶-𝐶 and 𝑅𝐶-𝑂 from October 21,
2013 to December 31, 2020 in Fig. 3.

In Fig. 3, the SMIs from top to bottom along the 𝑦-axis come from
Asia, Europe, and Americas markets (corresponding to the 𝑥-axis from
left to right), and a darker lattice indicates a higher correlation. Fig. 3
shows that the overall color of graph (b) is darker than that of graph
(a), which means that the correlations of 𝑅𝐶-𝑂 among international
SMIs are greater than those of 𝑅𝐶-𝐶 . Besides, we can find from graph
(a) and graph (b) that the colors among intraregional SMIs are darker
than those among interregional SMIs, especially in the Asia and Europe
markets, which implies stronger correlations.
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Fig. 2. Box plots of three kinds of returns of SPX, SSEC, and GDAXI.
Fig. 3. Correlation matrix of daily 𝑅𝐶-𝐶 and 𝑅𝐶-𝑂 among international SMIs from October 21, 2013 to December 31, 2020.
3.2. Forecasting techniques

3.2.1. Convolutional neural network
Although ANN has remarkable nonlinear mapping and fitting ca-

pability and has been widely applied to various forecasting tasks, its
performance depends heavily on the quality of the input features.
With the introduction of deep neural network (DNN) by Hinton et al.
(2006), DNN has gradually become a prevalent forecasting method.
Compared to ANN, DNN has various types of units, such as CNN (Lecun
et al., 1998), RNN (Williams & Zipser, 1989), and LSTM (Hochreiter
5

& Schmidhuber, 1997), which enable the network to extract useful
features for specific objective tasks.

Among the above kinds of units, CNN works well in tasks such as im-
age recognition (Sun et al., 2020) and financial forecasting (Hoseinzade
& Haratizadeh, 2019). The convolutional layer in CNN uses the filters
to perform convolutional operations on the input data. During the con-
volutional operation, each filter utilizes shared weights to horizontally
slide and then vertically moves for the next horizontal slide until the
whole data set has been scanned. Based on the convolutional operation,
a new matrix called the feature map is formed. In this study, inspired
by the parameter (weight) sharing of CNN, we employ it to extract the
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feature from intraregional SMIs for forecasting the target SMI. For the
convolutional unit, the size of a filter and the number of filters are
important parameters for the model performance. Many tricks, such as
dropout (Srivastava et al., 2014), batch normalization (Ioffe & Szegedy,
2015), and residual (He et al., 2016), can be employed to improve the
model performance.

3.2.2. Genetic algorithm
GA is a metaheuristic optimization algorithm developed by Hol-

land (1992). It is based on a direct analogy to Darwinian natural
selection, and initially works with a set of candidate solutions (indi-
viduals) called a population. Combining the selection, crossover, and
mutation operations in successive generations, GA obtains an approx-
imate optimal solution by iteratively improving the fitness function
value of the individuals. Because of its parallel search mechanism,
GA has a lower probability of obtaining a local optimal solution than
other algorithms and has been widely used in stock market movement
prediction (Kaboudan, 2000; Nuij et al., 2014).

3.3. The proposed model

In this study, we use multiple SMIs from different regions to forecast
the target SMI. In practice, intraregional SMIs present similar fluctua-
tion trends, which usually have a similar influence on the target SMI.
To address the above issue and improve the predictive performance, we
employ the multiple-branch convolutional neural network (MBCNN) to
forecast the direction of target SMI based on international SMIs. In
the MBCNN, each single branch convolutional unit shares the same
weight for the intraregional SMIs, which describes the overall influence
of intraregional SMIs on the target SMI. To improve the predictive
performance of the MBCNN, we employ the GA to optimize the net-
work architecture and parameters of the model. The framework of the
proposed model MBCNN-GA is shown in Fig. 4.

(1) Multiple-branch input block
In Fig. 4, the first block is the multiple-branch input block. Specif-

ically, there are 5 branches. The inputs of Branch (1), Branch (2), and
Branch (3) are the returns (𝑅𝑂-𝐶,𝑡-1, 𝑅𝐶-𝐶,𝑡-1) of SMIs in the Asia, Europe,
nd Americas markets on trading day t-1, respectively. These three
egions are chosen because they are the major financial markets around
he world.

The input of Branch (4) is the returns (𝑅𝑂-𝐶,𝑡-1, 𝑅𝐶-𝐶,𝑡-1) of the target
MI. The reason we take the target index returns on trading day 𝑡-1
s a separate branch, rather than putting them in the former three
ranches, is that the historical prices of the target market can provide
ore insights into the future returns than other markets.

The input of Branch (5) is the returns (𝑅𝐶-𝑂,𝑡) of the Pre-Open
arket, i.e., stock markets that open before the target market on trading

ay t. According to the time zones, the sequence in which the stock
arket opens is the Asia, Europe, and Americas markets. Hence, there

re three types of structures in Branch (5), depending on which region
he target SMI belongs to. These types of structures are shown in
ig. 5.

In Fig. 5, three subgraphs correspond to three types of branch
tructures. If the target index is in the Asia market, the input of branch
5) is the returns (𝑅𝐶-𝑂,𝑡) of the Pre-Open Asia Market, i.e., some Asia
tock markets that open before the target market on trading day t. If
he target index is in the Europe market, the input of branch (5) is
he returns (𝑅𝑂-𝐶,𝑡, 𝑅𝐶-𝐶,𝑡) of the Asia stock markets and the returns
𝑅𝐶-𝑂,𝑡) of the Pre-Open Europe Market, i.e., some Europe stock markets
hat open before the target market on trading day t. If the target index
s in the Americas market, the input of branch (5) is the returns (𝑅𝑂-𝐶,𝑡,
𝐶-𝐶,𝑡) of the Asia stock markets, the returns (𝑅𝐶-𝑂,𝑡) of the Pre-Open
urope Market and Pre-Open Americas Market, i.e., some Europe and the
mericas stock markets that open before the target market on trading
ay t.
6

The multiple-branch input layer geographically segregates the mar-
ets to construct the multiple-branch input of the model. In what
ollows, the features of intraregional SMIs are extracted by the feature
xtraction block.

2) Multiple-branch feature extraction block
To extract multiple features from the multiple-branch input block,

-dimension (1D) convolutional unit is used. We choose the 1D con-
olutional unit to extract features for the following three reasons: (1)
he local connectivity and shared weights of the convolutional unit
re conducive to analyzing the correlation of intraregional SMIs, (2)
D CNN is more suitable for handling time-series data, and (3) the
omputational complexity of 1D CNN is significantly lower than that
f the 2-dimensional (2D) CNN.

Given the input matrix 1 ×𝑁 in input layer 𝑙 − 1 (corresponding to
ifferent returns of SMIs), the 1 × 𝐹 kernel function (filter) is used to
alculate the output as:

𝑙
𝑗 = 𝜃(

𝐹−1
∑

𝑘=0
𝑤𝑘𝑉

𝑙−1
𝑗+𝑘 ), (4)

here 𝑉 𝑙
𝑗 is the value in column 𝑗 of the layer 𝑙, 𝑤𝑘 is the weight in

olumn 𝑘 of the filter, and 𝜃 is the activation function:

(𝑥) = 𝑚𝑎𝑥(𝑥, 0). (5)

In what follows, the convolutional features are flattened to a single
ector. In order to better regularize the neural network, a normalization
ayer is employed to normalize the distribution of each layer’s inputs.
or a layer with d-dimensional input 𝑽 = {𝑉 (1), 𝑉 (2),… , 𝑉 (𝑑)}, each
imension is normalized by:

̂ (𝑘) =
𝑉 (𝑘) − 𝜇𝑽

𝜎𝑽
, (6)

(𝑘) = 𝛾 (𝑘)𝑉 (𝑘) + 𝛽(𝑘), (7)

here 𝜇𝑽 denotes the mean values, 𝜎𝑽 represents the standard devia-
ion, and 𝑦(𝑘) denotes the normalized value of the 𝑘𝑡ℎ dimension. The
air of parameters 𝛾 (𝑘)and 𝛽(𝑘) are determined along with the original
odel parameters.

3) Multiple-branch feature fusion block
The extracted features of multiple branches are concatenated by

concatenation layer in the feature fusion block. And then, a fully
onnected layer is used to convert the concatenated features into the
utput. The reason we use the fully connected layer is that compared
ith the convolutional layer, the fully connected layer is more suit-
ble for extracting the global features regardless of the dependence
etween two adjacent layers, which is helpful for improving the model
erformance.

In the fully connected layer, given the output of layer 𝑙 and activa-
ion function 𝜃, the output of the 𝑖th neuron at layer 𝑙+1 is obtained as
ollows:
𝑙+1
𝑖 = 𝜃(

∑

𝑘
𝑉 𝑙
𝑘𝑤

𝑙
𝑘,𝑖) (8)

In Fig. 4, the last layer is the fully connected layer with a softmax
unction (normalized exponential function) which is used for classifica-
ion. The probability 𝑝𝑖 of the 𝑖th category is calculated as follows:

𝑖 =
𝑒𝑧𝑖

∑𝑛
𝑗=1 𝑒

𝑧𝑗
(9)

where 𝑛 is the number of categories, and 𝑧𝑗 denotes the output of the
𝑗th neuron in the previous fully connected layer.
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Fig. 4. The framework of the proposed model.
w

(4) GA-based network architecture and parameter optimization
Different combinations of branches (each branch includes an input

block and a feature extraction block) in Fig. 4 form neural networks
with different architectures, which provide different predictive per-
formances. In addition to the network architecture, CNN has several
important hyperparameters such as the number of filters and filter
size of the convolutional unit, and the number of neurons in the fully
connected layer. In order to obtain a concise model with better gener-
alization ability, GA is employed to optimize the network architecture
and parameters.

Specifically, we take the SSEC (Shanghai Stock Exchange Composite
Index) as the target SMI to illustrate how an individual is encoded.
Suppose an individual is {0, 1, 1, 1, 0, 3, 3, 50}, which represents that (1)
the Branch 2, Branch 3, Branch 4 are selected; and (2) the number of
filters of the convolutional unit, the filter size of the convolutional unit
and the number of neurons of the fully connected layer are set to 3, 3
and 50, respectively.

The main steps of the GA-based network architecture and parameter
optimization are shown in Algorithm 1.

Given the population size, the maximal number of generations,
7

the maximal number of stalled generations (the best fitness function o
value does not change over the limited number) and the data set, the
proposed algorithm attempts to discover the best individual (the neural
network with the optimal architecture and parameters) to classify the
given data set using natural selection, crossover, and mutation over
successive generations.

The detailed steps of Algorithm 1 are illustrated as follows.

Step 1: Initializing population and individuals. First, the counter for the
current generation number and the current stalled generation number
are initialized to zero (line 1). And then, a population with the prede-
fined population size is randomly initialized (line 2), where 𝒙(𝑡)𝑝 denotes
the 𝑝th individual of the 𝑡th generation. Based on the initialized neural
network architecture, samples in the training data set are used to train
the model, and the fitness function value (loss value) of the individual
on the validation set is obtained by line 3 in Algorithm 1. The loss value
is obtained by binary cross-entropy:

𝐿𝑜𝑠𝑠 = − 1
𝑚

𝑚
∑

𝑖=1
[𝑦𝑖 ⋅ ln 𝑝(𝑦𝑖) + (1 − 𝑦𝑖) ⋅ ln(1 − 𝑝(𝑦𝑖))], (10)

here 𝑚 denotes the number of samples, 𝑦𝑖 represents the actual label

f the 𝑖th sample and 𝑝(𝑦𝑖) denotes the predicted probability of the 𝑖th
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Fig. 5. Three types of structures of Branch (5).
Fig. 6. An example of crossover and mutation.
sample. By comparing the fitness values among individuals in the first
generation, the individual 𝒙(𝑡)𝑏 (𝑏 ∈ {1, 2,… , 𝑛}) with the best (minimum)
fitness value is selected as the temporary optimal individual (line 4–5).

Step 2: Search for the optimal individual. During the successive genera-
tions, a specific proportion of individuals with top-ranked fitness values
in the previous generation are selected as the parents (elites) (line
7). Crossover and mutation operators are then conducted to generate
offspring based on the elites (line 8). The crossover operator is a
mechanism for exchanging genes between the two individuals using
a crossover point. The mutation operator randomly changes the genes
of an individual. If the gene in the first five genes (or seven genes)
is selected to mutate, 1 is changed to 0, and vice versa. If the gene
in the last three genes is selected to mutate, a random value from
8

the predefined range is chosen to replace the position. An example of
crossover and mutation (taking the target SMI in the Asia markets as
an example) is shown in Fig. 6.

Consequently, a new population is composed of elites and offspring
through crossover and mutation (line 9), and the fitness value of an
individual is evaluated (line 10). The individual 𝒙(𝑡)𝑏 with the best fitness
value (𝑓 (𝑡)

𝑏 ) is selected as the optimal individual in the new population
(line 11). In what follows, 𝒙(𝑡)𝑏 is compared with 𝒙𝑏, and the one with
a lower fitness value is selected as the current optimal individual 𝒙𝑏.

Step 3: Stopping criteria. Step 2 (line 7–18) is repeated until a termina-
tion condition has been reached. Termination conditions include (1) the
algorithm has reached the maximum number of generations (T ) and (2)
the best fitness function value has reached a plateau for a given number
of consecutive generations (H) (line 14). When Algorithm 1 terminates,
it outputs the optimal individual representing the optimal architecture

and parameters of the MBCNN.
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Algorithm 1: GA-based network architecture and parameter
optimization

Input : The population size 𝑛, the maximal generation
number 𝑇 , the maximal stall generation number 𝐻 ,
dataset 𝐷, learning algorithm of MBCNN 𝑀𝐵.

Output: The optimal individual (the neural network with the
optimal architecture and parameters) 𝒙𝑏.

1 𝑡 ← 0; ℎ ← 0;
2 Initialize a population 𝑃 (𝑡) ← {𝒙(𝑡)1 ,𝒙(𝑡)2 , ...,𝒙(𝑡)𝑝 , ...,𝒙(𝑡)𝑛 };
3 Evaluate each individual in the initial population

𝑓 (𝑡)
𝑝 ← 𝑓 (𝑀𝐵(𝐷

𝒙(𝑡)𝑝 ));
4 Select individual 𝒙(𝑡)𝑏 with the best 𝑓 (𝑡)

𝑏 in 𝑃 (𝑡);
5 𝒙𝑏 ← 𝒙𝑡𝑏; 𝑓𝑏 ← 𝑓 (𝑡)

𝑏 ;
6 while 𝑡 < 𝑇 do
7 Select the elite from 𝑃 (𝑡);
8 Generate offspring by crossover and mutation operation;
9 Generate a new population 𝑃 (𝑡);
10 Evaluate each individual in the new population

𝑓 (𝑡)
𝑝 ← 𝑓 (𝑀𝐵(𝐷

𝒙(𝑡)𝑝 ));
11 Select individual 𝒙(𝑡)𝑏 with the best 𝑓 (𝑡)

𝑏 in 𝑃 (𝑡);
12 if 𝑓 (𝑡)

𝑏 ≤ 𝑓𝑏 then
13 ℎ ← ℎ + 1;
14 if ℎ > 𝐻 then break;

15 else
16 ℎ ← 0; 𝒙𝑏 ← 𝒙𝑡𝑏; 𝑓𝑏 ← 𝑓 (𝑡)

𝑏 ;
17 end
18 𝑡 ← 𝑡 + 1;

19 end

4. Experimental study

In this section, we design the experiment and evaluate the effective-
ness of the proposed MBCNN-GA. Section 4.1 presents the evaluation
metrics. Section 4.2 describes the experimental setting. Section 4.3
reports the predictive results of the proposed approach and other
competing methods. Section 4.4 discusses the experimental results and
presents some possible applications of the proposed approach.

4.1. Evaluation metrics

Traditional cross-validation is not applicable for a time series data
set since the training set should only contain samples whose time
labels are earlier than those in the testing set. Therefore, we adopt the
time window slicing cross-validation strategy such that the training set
consists of samples earlier than those in the validation and testing sets.
Training periods with proportion of 40%, 45%, 50%, 55%, 60%, and
65% (testing periods with proportion of 40%, 35%, 30%, 25%, 20%,
and 15%, respectively) are used for training (testing) the model, and
20% of the data set is used as the validation set to prevent overfitting.
In this way, the testing sets in the time windows include samples from
2019 and 2020 and most samples from 2018, which considers the
bullish and bearish periods (2020 pandemic selloff). The slicing time
windows are shown in Fig. 7.

To evaluate the performance of the proposed model and other meth-
ods, we employ accuracy as the first evaluation metric. Because the data
9

n

Table 3
Confusion matrix for binary classification.

Actual/Predicted Positive Negative

Positive 𝑇𝑃 𝐹𝑁
Negative 𝐹𝑃 𝑇𝑁

Table 4
Parameters of the competing methods.

Competing methods Parameters description

ANN Epoch number: 50; Hidden layer neuron number: 20;
Optimizer: lbfgs.

SVM Kernel function: poly; C: 1; degree: 3.
RF The number of trees in the forest: 5.
CNN Epoch number: 50; Number and size of convolutional

unit: 30,3; Optimizer: adam.
RNN Epoch number: 50; Number of recurrent unit: 50;

Optimizer: adam.
LSTM Epoch number: 50; Number of LSTM unit: 50;

Optimizer: adam.

Table 5
Parameters of the proposed model.

MBCNN-GA Parameters description

MBCNN Optimizer: Adam;
Learning rate: 0.001;
Activation function of the convolutional layers and the

fully connected layer: the Rectified Linear Unit (ReLU);
Activation function of the last layer: Softmax.

GA Population size: 50;
Maximal generation number: 30;
Maximal stall generation number: 5;
Selection rate of population: 0.3;
Crossover rate of population(except for the elite): 0.8;
Mutation mechanism: random change a gene value of the
first

five genes and a gene value of the last three genes.

Parameters space Filter number of convolutional units: [1, 30];
Number of neurons in the fully connected layer: [10, 99];
Filter size of convolutional unit: {1, 3, 5, 7}.

set consists of imbalanced data (cf. Table 2), the F -measure (Gunduz
et al., 2017; Hoseinzade & Haratizadeh, 2019) is employed as the
second evaluation metric.

The accuracy and F -measure are calculated based on the confusion
matrix, which stores the counts of correctly and incorrectly classified
instances, as shown in Table 3. In the confusion matrix, TP (true
positive) means that the actual result and prediction are both ‘up’, and
TN (true negative) means that the actual result and prediction are both
‘down’. If the actual result is ‘down’ and the prediction is ‘up’, it is
denoted as FP (false positive). Similarly, if the actual result is ‘up’ and
the prediction is ‘down’, it is denoted as FN (false negative).

Based on Table 3, the precision, recall, F -measure, and accuracy are
computed by the following equations:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (11)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (12)

F-Measure = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, (13)

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

. (14)

.2. Experimental setting

First, we compare the performance of the model combining inter-
ational SMIs with that based only on historical data of the target SMI
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Fig. 7. Illustration of the slicing time windows.
Table 6
Average accuracy and F -measure of each model on multiple SMIs.

Method Input SPX GDAXI N225 FCHI KS11 FTMIB HSI SSEC AEX

Accuracy

ANN T 0.5363 0.5125 0.5143 0.5218 0.6004 0.5400 0.5839 0.5582 0.5314
T+I 0.6368 0.7112 0.6845 0.7077 0.7388 0.6983 0.6588 0.6150 0.7085

SVM T 0.5635 0.5328 0.5378 0.5067 0.6098 0.5525 0.5875 0.4861 0.5418
T+I 0.6068 0.6645 0.7122 0.7141 0.6854 0.6712 0.6670 0.5667 0.6565

RF T 0.4782 0.5422 0.4813 0.4998 0.5386 0.5207 0.5397 0.5362 0.5165
T+I 0.6289 0.6722 0.6813 0.6490 0.7216 0.6468 0.6906 0.6262 0.6555

CNN T 0.5356 0.4943 0.5489 0.5256 0.6044 0.5548 0.5702 0.5459 0.5336
T+I 0.6582 0.7129 0.7227 0.7227 0.7445 0.7431 0.7271 0.6477 0.6929

RNN T 0.5358 0.5208 0.5451 0.5121 0.6157 0.5458 0.5659 0.5554 0.5465
T+I 0.6910 0.7409 0.7409 0.7473 0.7699 0.7604 0.7236 0.6434 0.7280

LSTM T 0.5160 0.5260 0.5459 0.5170 0.6215 0.5469 0.5884 0.5328 0.5455
T+I 0.6923 0.7406 0.7259 0.7515 0.7510 0.7592 0.7250 0.6674 0.7105

F -measure

ANN T 0.5851 0.5981 0.5427 0.4355 0.7386 0.6482 0.7286 0.4362 0.6526
T+I 0.6670 0.7288 0.6997 0.7030 0.7825 0.7257 0.7187 0.6038 0.7282

SVM T 0.7196 0.6925 0.6993 0.6607 0.7573 0.7095 0.7401 0.0055 0.7028
T+I 0.7351 0.7301 0.7662 0.6925 0.7903 0.7596 0.7733 0.2742 0.7454

RF T 0.5426 0.5780 0.5203 0.5063 0.6390 0.5799 0.6257 0.4735 0.5623
T+I 0.6652 0.6954 0.6997 0.6595 0.7750 0.6865 0.7445 0.5949 0.6912

CNN T 0.6285 0.6072 0.5961 0.4592 0.7467 0.6764 0.7152 0.3704 0.6753
T+I 0.6845 0.7303 0.7167 0.7167 0.7933 0.7694 0.7759 0.6162 0.7156

RNN T 0.6301 0.6155 0.6143 0.5190 0.7586 0.6521 0.7128 0.3780 0.6817
T+I 0.7113 0.7543 0.7400 0.7437 0.8165 0.7798 0.7724 0.5980 0.7466

LSTM T 0.6187 0.6187 0.6232 0.4898 0.7628 0.6553 0.7346 0.3094 0.6875
T+I 0.7136 0.7547 0.7527 0.7506 0.7981 0.7856 0.7736 0.6358 0.7337
itself. Traditional machine learning models including the ANN (Hin-
ton, 1989), SVM (Chang & Lin, 2011) and RF (Breiman, 2001), and
deep learning models including the CNN (Krizhevsky et al., 2012),
RNN (Abadi et al., 2016), and LSTM (Hochreiter & Schmidhuber, 1997)
are used as the competing methods. The parameters of the above
methods are shown in Table 4.

Second, we compare the performance of different methods combin-
ing international SMIs. In addition to the above competing methods
shown in Table 4, we add a series of other competing methods.

(1) Naive baselines: Random prediction and label t -1 (using label
t -1 as the predicted label of trading day t).

(2) Standard machine learning and deep learning methods shown in
Table 4 with all international SMIs.

(3) Machine learning and deep learning methods combined with
the clustering method: ANN+Cluster, SVM+Cluster, RF+Cluster,
CNN+Cluster, RNN+Cluster, and LSTM+Cluster. In these meth-
ods, we first employ the K -means clustering method (Sculley,
2010) to form two clusters. And then, the SMIs in the same
10

category of the target index are chosen as the inputs.
(4) MBCNN: the standard multiple branch convolutional neural net-
work that is not optimized by GA.

The details of the architecture and parameters of the proposed
MBCNN-GA are shown in Table 5.

In this work, Scikit-learn 0.22.1 (Pedregosa et al., 2011) and Tensor-
flow 2.3.0 (Abadi et al., 2016) in Python 3.7 are utilized to implement
Algorithm 1 and the competing methods.

4.3. Experimental results

4.3.1. Predictive results combining international SMIs
First, we compare the performance of the model combining interna-

tional SMIs with that based only on historical data on nine target SMIs,
i.e., the SPX, GDAXI, N225, FCHI, KS11, FTMIB, HSI, SSEC, and AEX.
The above indices are chosen based on the following three rules: (1)
indices from Asia, Americas and Europe markets should be considered;
(2) the imbalanced ratio of the 𝑅𝐶−𝑂 should be low; and (3) the target

indices should be important in international stock markets.
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Table 7
Accuracy of each model on multiple target SMIs over different testing periods.

Train rate Train rate Train rate

Method 40% 45% 50% 55% 60% 65% 40% 45% 50% 55% 60% 65% 40% 45% 50% 55% 60% 65%

SPX GDAXI N225

Random Prediction 0.568 0.521 0.502 0.475 0.502 0.529 0.547 0.460 0.521 0.490 0.493 0.497 0.518 0.455 0.466 0.464 0.493 0.541
Label t-1 0.542 0.526 0.534 0.529 0.502 0.516 0.472 0.485 0.492 0.494 0.507 0.484 0.511 0.512 0.518 0.510 0.517 0.497
ANN 0.612 0.644 0.668 0.663 0.617 0.618 0.727 0.707 0.728 0.693 0.679 0.732 0.695 0.742 0.687 0.625 0.708 0.650
ANN+Cluster 0.655 0.597 0.658 0.636 0.632 0.567 0.686 0.668 0.674 0.598 0.656 0.573 0.727 0.715 0.706 0.670 0.689 0.694
SVM 0.588 0.575 0.601 0.625 0.622 0.631 0.650 0.666 0.728 0.648 0.646 0.650 0.671 0.677 0.728 0.705 0.746 0.745
SVM+Cluster 0.588 0.592 0.620 0.648 0.627 0.656 0.643 0.674 0.684 0.674 0.670 0.662 0.679 0.685 0.709 0.705 0.746 0.752
RF 0.628 0.592 0.594 0.667 0.617 0.675 0.674 0.679 0.687 0.670 0.679 0.643 0.700 0.679 0.671 0.705 0.689 0.643
RF+Cluster 0.609 0.616 0.620 0.636 0.636 0.656 0.640 0.701 0.626 0.613 0.589 0.631 0.621 0.647 0.671 0.709 0.670 0.694
CNN 0.640 0.633 0.658 0.674 0.675 0.669 0.736 0.718 0.719 0.709 0.689 0.707 0.712 0.718 0.725 0.716 0.713 0.752
CNN+Cluster 0.664 0.600 0.658 0.686 0.660 0.701 0.712 0.704 0.703 0.705 0.708 0.694 0.712 0.704 0.703 0.713 0.703 0.707
RNN 0.662 0.660 0.677 0.701 0.713 0.732 0.751 0.734 0.728 0.736 0.751 0.745 0.739 0.742 0.748 0.739 0.751 0.726
RNN+Cluster 0.659 0.668 0.684 0.709 0.675 0.720 0.739 0.732 0.725 0.739 0.737 0.758 0.703 0.707 0.712 0.705 0.718 0.739
LSTM 0.671 0.677 0.671 0.705 0.703 0.726 0.760 0.748 0.738 0.720 0.732 0.745 0.741 0.732 0.744 0.728 0.703 0.707
LSTM+Cluster 0.667 0.658 0.684 0.686 0.679 0.682 0.736 0.751 0.722 0.736 0.722 0.752 0.739 0.726 0.741 0.713 0.722 0.713
MBCNN 0.664 0.660 0.671 0.693 0.675 0.707 0.727 0.756 0.754 0.747 0.761 0.707 0.722 0.721 0.738 0.724 0.708 0.732
GA-MBCNN 0.715 0.677 0.732 0.747 0.718 0.764 0.763 0.762 0.767 0.751 0.785 0.771 0.770 0.759 0.741 0.770 0.766 0.752

FCHI KS11 FTMIB

Random Prediction 0.547 0.482 0.530 0.483 0.488 0.503 0.532 0.499 0.492 0.467 0.474 0.529 0.556 0.482 0.524 0.498 0.493 0.484
Label t-1 0.501 0.501 0.505 0.494 0.507 0.510 0.535 0.534 0.543 0.548 0.555 0.548 0.489 0.488 0.489 0.490 0.483 0.478
ANN 0.691 0.704 0.703 0.686 0.756 0.707 0.763 0.723 0.728 0.739 0.708 0.771 0.703 0.710 0.671 0.701 0.699 0.707
ANN+Cluster 0.659 0.682 0.639 0.655 0.675 0.637 0.755 0.712 0.706 0.724 0.737 0.656 0.712 0.696 0.684 0.686 0.694 0.675
SVM 0.679 0.726 0.709 0.720 0.699 0.752 0.669 0.666 0.674 0.670 0.713 0.720 0.681 0.655 0.681 0.670 0.665 0.675
SVM+Cluster 0.686 0.690 0.706 0.686 0.718 0.720 0.681 0.674 0.671 0.667 0.713 0.771 0.695 0.677 0.681 0.667 0.665 0.656
RF 0.647 0.660 0.658 0.644 0.660 0.624 0.727 0.682 0.712 0.766 0.742 0.701 0.652 0.633 0.655 0.625 0.641 0.675
RF+Cluster 0.604 0.647 0.633 0.674 0.608 0.599 0.739 0.712 0.687 0.678 0.689 0.752 0.604 0.627 0.658 0.651 0.689 0.675
CNN 0.712 0.718 0.725 0.716 0.713 0.752 0.739 0.721 0.741 0.732 0.732 0.803 0.712 0.751 0.754 0.728 0.718 0.796
CNN+Cluster 0.703 0.696 0.716 0.716 0.727 0.732 0.743 0.721 0.716 0.724 0.766 0.777 0.691 0.688 0.754 0.701 0.718 0.764
RNN 0.739 0.742 0.748 0.739 0.751 0.764 0.770 0.775 0.757 0.739 0.794 0.783 0.753 0.753 0.760 0.736 0.770 0.790
RNN+Cluster 0.703 0.707 0.712 0.705 0.718 0.739 0.767 0.751 0.735 0.743 0.770 0.777 0.717 0.721 0.732 0.728 0.751 0.783
LSTM 0.741 0.734 0.751 0.755 0.751 0.777 0.739 0.756 0.744 0.724 0.766 0.777 0.772 0.742 0.748 0.739 0.751 0.803
LSTM+Cluster 0.710 0.732 0.744 0.732 0.742 0.752 0.758 0.762 0.741 0.724 0.766 0.796 0.719 0.723 0.732 0.732 0.766 0.752
MBCNN 0.734 0.715 0.732 0.747 0.746 0.732 0.763 0.740 0.728 0.739 0.751 0.758 0.719 0.737 0.738 0.732 0.722 0.745
GA-MBCNN 0.765 0.751 0.751 0.774 0.780 0.771 0.770 0.792 0.767 0.801 0.823 0.803 0.775 0.786 0.796 0.770 0.789 0.783

HSI SSEC AEX

Random Prediction 0.554 0.496 0.476 0.475 0.488 0.541 0.492 0.474 0.505 0.502 0.555 0.529 0.564 0.485 0.540 0.513 0.493 0.478
Label t-1 0.523 0.526 0.534 0.544 0.560 0.605 0.516 0.512 0.505 0.510 0.498 0.510 0.518 0.526 0.534 0.536 0.522 0.516
ANN 0.669 0.663 0.620 0.651 0.675 0.675 0.609 0.619 0.639 0.605 0.593 0.624 0.707 0.690 0.725 0.674 0.727 0.726
ANN+Cluster 0.659 0.655 0.661 0.670 0.727 0.643 0.647 0.649 0.613 0.579 0.550 0.643 0.669 0.696 0.696 0.670 0.665 0.656
SVM 0.640 0.644 0.652 0.659 0.694 0.713 0.588 0.573 0.559 0.567 0.541 0.573 0.650 0.649 0.661 0.667 0.656 0.656
SVM+Cluster 0.657 0.655 0.649 0.655 0.699 0.726 0.616 0.603 0.588 0.598 0.560 0.605 0.650 0.641 0.636 0.628 0.646 0.637
RF 0.686 0.699 0.722 0.713 0.694 0.631 0.655 0.644 0.633 0.617 0.560 0.650 0.693 0.696 0.652 0.667 0.589 0.637
RF+Cluster 0.698 0.693 0.629 0.693 0.718 0.732 0.645 0.696 0.623 0.602 0.555 0.561 0.703 0.622 0.626 0.674 0.694 0.707
CNN 0.743 0.723 0.719 0.732 0.713 0.732 0.657 0.644 0.633 0.628 0.656 0.669 0.698 0.701 0.700 0.690 0.656 0.713
CNN+Cluster 0.731 0.715 0.719 0.736 0.713 0.726 0.691 0.674 0.649 0.670 0.641 0.682 0.715 0.677 0.712 0.667 0.699 0.739
RNN 0.731 0.715 0.709 0.728 0.732 0.726 0.693 0.660 0.639 0.636 0.589 0.643 0.727 0.723 0.728 0.720 0.718 0.752
RNN+Cluster 0.731 0.723 0.712 0.736 0.732 0.758 0.722 0.704 0.674 0.651 0.646 0.624 0.700 0.699 0.719 0.720 0.727 0.752
LSTM 0.724 0.726 0.728 0.724 0.727 0.720 0.679 0.655 0.665 0.644 0.675 0.688 0.724 0.732 0.709 0.705 0.679 0.713
LSTM+Cluster 0.719 0.712 0.712 0.724 0.708 0.707 0.712 0.679 0.655 0.651 0.636 0.662 0.688 0.718 0.690 0.724 0.675 0.726
MBCNN 0.741 0.732 0.722 0.693 0.694 0.732 0.676 0.666 0.661 0.667 0.646 0.682 0.722 0.726 0.722 0.716 0.722 0.726
GA-MBCNN 0.784 0.767 0.767 0.743 0.751 0.739 0.683 0.718 0.722 0.674 0.737 0.701 0.741 0.751 0.732 0.728 0.737 0.758
The average accuracy and F -measure of each model are shown in
able 6, where the inputs 𝑇 and I denote the target index data (T) and
he international index data (I), respectively.

Table 6 shows that models with target index data and international
ndex data outperform those with only target index data. The results
llustrate that combining international SMIs is helpful to improve the
odel performance rather than adding noise to the model. Therefore,
e set T+I as the input of the model in the following experiments.

.3.2. Predictive results using different forecasting techniques
We further compare the performance of different methods combin-

ng international SMIs. The inputs of the competing methods (except
or random prediction and label t -1) and the proposed model are all
+I. The accuracy of each model on multiple target SMIs over different
esting periods is shown in Table 7.

Table 7 shows that machine learning-based techniques outperform
11

he random prediction and label t -1 methods. Moreover, we find that
the MBCNN-GA is superior to most of the competing models over
different proportions of testing periods.

To test the statistical significance of the proposed model and the
competing methods in terms of accuracy, a group of paired t tests is
conducted. The results are shown in Table 8.

In Table 8, the accuracy in boldface of each column represents the
highest result of each column, and the symbol ∗ represents the statis-
tical significance of difference between our model and the competing
model with the highest accuracy. Table 8 shows that the average accu-
racy of the proposed model is higher than that of other models on all
target indices. In addition, we find that there is a statistically significant
difference between the proposed model and the competing methods,
which implies that our model can effectively integrate international
SMIs to improve the predictive performance.

For some SMIs, the data sets are imbalanced (cf. Table 2). Therefore,
we use the F-measure to evaluate the performance of the proposed

model and the competing models. The results are shown in Table 9.
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Table 8
Average accuracy of each model on multiple SMIs.

SPX GDAXI N225 FCHI KS11 FTMIB HSI SSEC AEX

Random Prediction 0.5161 0.5013 0.4895 0.5055 0.4988 0.5062 0.5051 0.5093 0.5121
Label t-1 0.5248 0.4891 0.5106 0.5031 0.5438 0.4862 0.5486 0.5082 0.5252
ANN 0.6368 0.7112 0.6845 0.7077 0.7388 0.6983 0.6588 0.6150 0.7085
ANN+Cluster 0.6241 0.6425 0.7003 0.6579 0.7151 0.6911 0.6694 0.6137 0.6755
SVM 0.6068 0.6645 0.7122 0.7141 0.6854 0.6712 0.6670 0.5667 0.6565
SVM+Cluster 0.6216 0.6678 0.7126 0.7009 0.6960 0.6734 0.6734 0.5949 0.6397
RF 0.6289 0.6722 0.6813 0.6490 0.7216 0.6468 0.6906 0.6262 0.6555
RF+Cluster 0.6290 0.6333 0.6686 0.6274 0.7094 0.6509 0.6940 0.6135 0.6710
CNN 0.6582 0.7129 0.7227 0.7227 0.7445 0.7431 0.7271 0.6477 0.6929
CNN+Cluster 0.6615 0.7044 0.7070 0.7151 0.7411 0.7192 0.7233 0.6677 0.7013
RNN 0.6910 0.7409 0.7409 0.7473 0.7699 0.7604 0.7236 0.6434 0.7280
RNN+Cluster 0.6858 0.7383 0.7139 0.7139 0.7573 0.7386 0.7321 0.6703 0.7195
LSTM 0.6923 0.7406 0.7259 0.7515 0.7510 0.7592 0.7250 0.6674 0.7105
LSTM+Cluster 0.6758 0.7364 0.7257 0.7351 0.7578 0.7372 0.7139 0.6661 0.7035
MBCNN 0.6784 0.7419 0.7242 0.7344 0.7466 0.7323 0.7191 0.6662 0.7225
MBCNN-GA 0.7254*** 0.7662** 0.7595*** 0.7652** 0.7924** 0.7832* 0.7586** 0.7059* 0.7410***

*: 0.1; **:0.05; ***:0.01.
Table 9 shows that, similarly, machine learning-based techniques
outperform the random prediction and label t -1 methods. In addition,
we can see that the MBCNN-GA is superior to most of the competing
models over different proportions of training periods in terms of the
F -measure.

To test the statistical significance of the proposed model and the
competing methods in terms of the F-measure, a group of paired t tests
is conducted. The results are shown in Table 10.

In Table 10, the F -measure in boldface represents the highest result
of each column, and the symbol ∗ represents the statistical signifi-
cance of difference between our model and the competing model with
the highest accuracy. Table 10 shows that the proposed MBCNN-GA
achieves the highest mean F -measure compared to the other models on
ll nine target SMIs. Also, there is a statistically significant difference
etween MBCNN-GA and the competing methods over eight target
MIs, i.e., the SPX, GDAXI, FCHI, KS11, FTMIB, HSI, SSEC, and AEX.
ased on the results in Tables 7 and 10, we find that our model has
better performance than other competing models in terms of the

ccuracy and F -measure.

.3.3. Economic evaluation
Since different predicted labels have different importance, we evalu-

te the model performance in terms of the percent profit (i.e., predicted
aily return) and Sharpe ratio, which accounts for the profits over
isk. First, we calculate the daily return as follows. If the predictive
abel is positive, 𝑅𝐶−𝑂 on trading day t is used as the daily return.
f the predictive label is negative, the daily return of trading day t is

0. Second, we calculate the average daily return. Last, we employ the
ratio of the average daily return to the standard deviation (Johnman
et al., 2018; Kelly & Ahmad, 2018) to calculate the Sharpe ratio of each
model over multiple target SMIs. In the performance evaluation, we
use the data split method shown in Fig. 7, and calculate the average
daily return and Sharpe ratio in each testing data set. And then, we
calculate the means and standard deviations of the average daily return
and Sharpe ratio over all testing data sets. In this experiment, we do
not consider the transaction costs and taxes.

The results of the percent profits (average daily return (%)) of each
model on multiple SMIs are shown in Table 11.

Table 11 shows that the average daily return of the MBCNN-GA is
superior to those of the competing methods. Furthermore, the MBCNN-
GA outperforms the CNN and CNN+Cluster in most SMIs. In addition,
we observe that the average daily returns of deep learning meth-
ods (CNN, RNN and LSTM) are higher than those of traditional ma-
chine learning methods (ANN, SVM and RF) and the simple prediction
methods (random prediction and label t -1 method).

The results of the Sharpe ratio of each model on multiple SMIs are
12

shown in Table 12.
Table 12 shows that the MBCNN-GA outperforms other methods in
terms of the Sharpe ratio. Moreover, we observe that the deep learning
methods (CNN, RNN, and LSTM) are superior to the traditional machine
learning methods (ANN, SVM and RF). We can also find that the Sharpe
ratios obtained by machine learning techniques are higher than those
obtained by simple prediction methods (random prediction and label
t -1 method).

4.3.4. Evolutionary trajectories
Because the optimal solution of the GA is obtained by iterative pro-

cesses, it is necessary to investigate the robustness and convergence of
the MBCNN-GA to discover the optimal architectures and parameters.
Therefore, we summarize the fitness function values of the individuals
in each generation using box plots and connect the best and median
fitness values using a dashed line and a solid line, respectively. Taking
the SPX index as an example, we plot the evolutionary trajectories over
different training rates, as shown in Fig. 8, where the horizon axis
denotes the number of generations, and the vertical axis denotes the
fitness function value.

Fig. 8 indicates that the best and median fitness values decrease as
the evolution progresses. According to the height of each box, we can
observe that the variation of the fitness value decreases as the number
of generations increases, which implies that the results tend to reach a
steady state when discovering the optimal neural network architectures
and parameters. We can also find that the algorithms terminate around
generation 10 when the train rate is less than 0.65, which indicates
that our model converges quickly, and the setting of 30 generations is
reasonable.

To further determine which branches are helpful for improving the
model performance, we plot the evolutionary heat-maps over different
training periods, which are shown in Fig. 9. In Fig. 9, the symbols
on the y-axis represent different branches: A: 𝑇 𝑎𝑟𝑔𝑒𝑡 𝑀𝑎𝑟𝑘𝑒𝑡(𝑡-1), B:
𝑃𝑟𝑒-𝑂𝑝𝑒𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑠 𝑀𝑎𝑟𝑘𝑒𝑡𝑡, C: 𝑃𝑟𝑒-𝑂𝑝𝑒𝑛 𝐸𝑢𝑟𝑜𝑝𝑒 𝑀𝑎𝑟𝑘𝑒𝑡𝑡, D: 𝐴𝑠𝑖𝑎
𝑀𝑎𝑟𝑘𝑒𝑡𝑡, E: 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑠 𝑀𝑎𝑟𝑘𝑒𝑡(𝑡-1), F: 𝐸𝑢𝑟𝑜𝑝𝑒 𝑀𝑎𝑟𝑘𝑒𝑡(𝑡-1), and G: 𝐴𝑠𝑖𝑎
𝑀𝑎𝑟𝑘𝑒𝑡(𝑡-1) (cf. Fig. 4 and Fig. 5). The dark blue represents that the
branch is selected while the light color means that the branch is not
selected.

Fig. 9 shows that GA gradually achieves a better branch structure
over iterative processes for improving the model performance. In ad-
dition, we observe that branches C (𝑃𝑟𝑒-𝑂𝑝𝑒𝑛 𝐸𝑢𝑟𝑜𝑝𝑒 𝑀𝑎𝑟𝑘𝑒𝑡𝑡) and D
(𝐴𝑠𝑖𝑎 𝑀𝑎𝑟𝑘𝑒𝑡𝑡) appear five times (5/6) in the optimal branch structure,
which means that the performance of the Europe and Asia markets on
trading day 𝑡 is more helpful for improving the predictive performance

of the SPX.
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Fig. 8. The evolutionary trajectory of MBCNN-GA in discovering the best neural network architecture and parameters on the SPX index.

Fig. 9. The evolutionary trajectory of selected branch structure.
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Table 9
F -measure of each model on multiple target SMIs over different training periods.

Train rate Train rate Train rate

Method 40% 45% 50% 55% 60% 65% 40% 45% 50% 55% 60% 65% 40% 45% 50% 55% 60% 65%

SPX GDAXI N225

Random Prediction 0.589 0.550 0.541 0.509 0.540 0.543 0.559 0.488 0.548 0.506 0.518 0.490 0.531 0.491 0.498 0.474 0.523 0.538
Label t-1 0.591 0.564 0.580 0.594 0.563 0.568 0.511 0.518 0.523 0.535 0.546 0.503 0.547 0.557 0.549 0.540 0.563 0.521
ANN 0.655 0.675 0.690 0.697 0.646 0.639 0.746 0.718 0.740 0.726 0.700 0.744 0.716 0.756 0.698 0.620 0.734 0.675
ANN+Cluster 0.696 0.637 0.686 0.686 0.698 0.622 0.723 0.686 0.685 0.615 0.673 0.573 0.755 0.741 0.714 0.684 0.703 0.696
SVM 0.728 0.713 0.730 0.751 0.744 0.743 0.747 0.740 0.758 0.716 0.713 0.706 0.751 0.756 0.773 0.767 0.787 0.762
SVM+Cluster 0.726 0.719 0.736 0.759 0.745 0.755 0.734 0.740 0.729 0.732 0.727 0.697 0.761 0.763 0.764 0.769 0.791 0.769
RF 0.674 0.623 0.634 0.705 0.661 0.695 0.708 0.699 0.708 0.695 0.707 0.654 0.725 0.693 0.689 0.737 0.709 0.646
RF+Cluster 0.649 0.622 0.653 0.674 0.658 0.663 0.668 0.720 0.653 0.643 0.616 0.670 0.643 0.677 0.685 0.719 0.699 0.704
CNN 0.678 0.651 0.681 0.702 0.691 0.705 0.760 0.737 0.732 0.730 0.700 0.723 0.706 0.722 0.713 0.704 0.706 0.748
CNN+Cluster 0.698 0.612 0.682 0.715 0.679 0.725 0.729 0.714 0.705 0.714 0.721 0.704 0.736 0.726 0.717 0.737 0.716 0.720
RNN 0.697 0.674 0.697 0.729 0.725 0.747 0.769 0.744 0.740 0.751 0.766 0.756 0.746 0.737 0.744 0.736 0.740 0.736
RNN+Cluster 0.690 0.687 0.704 0.738 0.696 0.741 0.756 0.741 0.728 0.744 0.751 0.762 0.705 0.708 0.696 0.686 0.698 0.725
LSTM 0.699 0.693 0.693 0.724 0.728 0.746 0.777 0.758 0.745 0.742 0.750 0.756 0.748 0.736 0.745 0.763 0.745 0.779
LSTM+Cluster 0.696 0.672 0.699 0.709 0.691 0.699 0.757 0.762 0.729 0.753 0.743 0.764 0.710 0.712 0.722 0.705 0.713 0.752
MBCNN 0.714 0.679 0.687 0.709 0.699 0.742 0.736 0.776 0.771 0.765 0.773 0.726 0.758 0.742 0.759 0.743 0.721 0.731
GA-MBCNN 0.738 0.712 0.757 0.780 0.755 0.796 0.778 0.776 0.777 0.772 0.800 0.780 0.789 0.779 0.760 0.789 0.788 0.761

FCHI KS11 FTMIB

Random Prediction 0.547 0.488 0.539 0.471 0.488 0.480 0.570 0.550 0.547 0.505 0.542 0.580 0.579 0.517 0.566 0.524 0.527 0.484
Label t-1 0.512 0.492 0.495 0.484 0.498 0.497 0.610 0.608 0.615 0.617 0.652 0.654 0.546 0.534 0.548 0.549 0.538 0.506
ANN 0.673 0.695 0.699 0.692 0.746 0.712 0.798 0.761 0.761 0.783 0.768 0.824 0.734 0.735 0.700 0.725 0.734 0.726
ANN+Cluster 0.645 0.646 0.622 0.637 0.653 0.632 0.795 0.763 0.755 0.769 0.781 0.710 0.747 0.729 0.735 0.727 0.722 0.691
SVM 0.731 0.727 0.637 0.695 0.613 0.752 0.780 0.778 0.781 0.777 0.811 0.814 0.770 0.75 0.769 0.762 0.755 0.751
SVM+Cluster 0.734 0.710 0.652 0.682 0.688 0.722 0.787 0.780 0.776 0.772 0.808 0.841 0.776 0.763 0.767 0.758 0.750 0.727
RF 0.668 0.670 0.669 0.635 0.664 0.651 0.768 0.739 0.772 0.804 0.797 0.771 0.693 0.678 0.693 0.667 0.686 0.702
RF+Cluster 0.624 0.660 0.639 0.677 0.624 0.613 0.782 0.760 0.751 0.732 0.758 0.808 0.639 0.676 0.693 0.687 0.730 0.702
CNN 0.706 0.722 0.713 0.704 0.706 0.748 0.791 0.769 0.790 0.781 0.783 0.846 0.741 0.774 0.787 0.758 0.745 0.812
CNN+Cluster 0.699 0.680 0.704 0.706 0.711 0.737 0.788 0.774 0.774 0.771 0.812 0.824 0.710 0.712 0.769 0.717 0.738 0.789
RNN 0.746 0.737 0.744 0.736 0.740 0.758 0.812 0.819 0.805 0.788 0.840 0.835 0.771 0.772 0.783 0.763 0.791 0.800
RNN+Cluster 0.705 0.708 0.696 0.686 0.698 0.725 0.808 0.796 0.782 0.789 0.814 0.824 0.732 0.741 0.751 0.750 0.770 0.795
LSTM 0.748 0.736 0.745 0.750 0.745 0.780 0.782 0.799 0.791 0.769 0.816 0.831 0.795 0.772 0.775 0.772 0.780 0.821
LSTM+Cluster 0.718 0.728 0.735 0.729 0.738 0.748 0.799 0.804 0.786 0.772 0.816 0.842 0.741 0.749 0.753 0.760 0.790 0.772
MBCNN 0.742 0.711 0.734 0.736 0.734 0.724 0.800 0.789 0.777 0.788 0.806 0.821 0.741 0.760 0.770 0.764 0.748 0.770
GA-MBCNN 0.772 0.757 0.755 0.767 0.781 0.786 0.807 0.830 0.813 0.838 0.864 0.852 0.802 0.818 0.821 0.792 0.818 0.809

HSI SSEC AEX

Random Prediction 0.583 0.542 0.526 0.505 0.541 0.576 0.470 0.478 0.523 0.496 0.583 0.532 0.581 0.515 0.569 0.528 0.518 0.481
Label t-1 0.588 0.591 0.594 0.602 0.635 0.677 0.485 0.500 0.514 0.511 0.549 0.544 0.562 0.562 0.565 0.572 0.558 0.548
ANN 0.714 0.713 0.676 0.707 0.746 0.756 0.607 0.617 0.622 0.565 0.573 0.638 0.726 0.717 0.739 0.704 0.737 0.746
ANN+Cluster 0.695 0.699 0.706 0.707 0.769 0.714 0.644 0.626 0.593 0.522 0.552 0.627 0.668 0.734 0.715 0.699 0.682 0.679
SVM 0.757 0.758 0.761 0.765 0.792 0.805 0.246 0.228 0.242 0.252 0.304 0.374 0.753 0.748 0.745 0.752 0.741 0.733
SVM+Cluster 0.767 0.766 0.760 0.763 0.795 0.807 0.339 0.332 0.345 0.371 0.387 0.466 0.746 0.735 0.722 0.722 0.724 0.708
RF 0.733 0.737 0.765 0.760 0.761 0.710 0.623 0.608 0.599 0.569 0.516 0.654 0.729 0.719 0.686 0.703 0.648 0.663
RF+Cluster 0.739 0.740 0.691 0.745 0.776 0.786 0.606 0.667 0.569 0.548 0.528 0.531 0.729 0.658 0.661 0.706 0.706 0.726
CNN 0.778 0.769 0.765 0.778 0.773 0.792 0.623 0.633 0.582 0.573 0.625 0.662 0.716 0.726 0.719 0.708 0.687 0.738
CNN+Cluster 0.774 0.759 0.767 0.781 0.774 0.786 0.670 0.645 0.604 0.639 0.603 0.667 0.733 0.699 0.727 0.697 0.727 0.773
RNN 0.773 0.758 0.756 0.773 0.788 0.786 0.661 0.629 0.586 0.554 0.552 0.606 0.750 0.743 0.746 0.742 0.738 0.761
RNN+Cluster 0.773 0.770 0.762 0.784 0.788 0.816 0.693 0.675 0.614 0.588 0.615 0.587 0.719 0.721 0.732 0.735 0.740 0.769
LSTM 0.767 0.770 0.768 0.774 0.783 0.780 0.647 0.629 0.621 0.594 0.657 0.667 0.746 0.754 0.728 0.732 0.702 0.740
LSTM+Cluster 0.760 0.759 0.754 0.772 0.770 0.768 0.697 0.659 0.621 0.603 0.604 0.654 0.714 0.738 0.703 0.745 0.702 0.743
MBCNN 0.777 0.777 0.773 0.744 0.758 0.796 0.652 0.628 0.629 0.642 0.631 0.688 0.738 0.747 0.731 0.736 0.724 0.746
GA-MBCNN 0.821 0.805 0.807 0.786 0.805 0.798 0.690 0.742 0.755 0.698 0.779 0.756 0.773 0.779 0.753 0.751 0.772 0.789
4.4. Discussion

First, we can conclude from the above experimental results that a
forecasting model with the target SMI and international SMIs is better
than the one with only target index, which is in line with previous
research (Malagrino et al., 2018). This observation demonstrates that
adding international SMIs is helpful for improving the performance.
The possible reason is that cross-market dependencies have become an
important factor affecting the target stock market.

Second, the MBCNN-GA statistically outperforms the competing
methods on multiple target SMIs over different testing periods in terms
of the accuracy and F -measure. We attribute this to its advantages
ver other models as follows: (1) The multiple-branch structure of the
roposed model extracts features of different intraregional SMIs, which
ecreases the correlations existing in these indices. (2) Extracted con-
olutional features from multiple intraregional SMIs prevent the model
14
from learning all the SMIs for forecasting the target SMI, which de-
creases the risk of over-fitting. (3) The GA is conducive to determining
the optimal architecture and parameters of deep neural network.

Third, the MBCNN-GA has the following advantages. Compared
with the network-based model (Kia et al., 2018; Malagrino et al.,
2018), the major advantage of the MBCNN-GA is that it does not
need to consider the rigid topological structure of the network before
building the models, which is beneficial for applying the proposed
model to other predictive tasks. Compared with the model (mRMR +
machine learning method) in (Karaca et al., 2020), the proposed model
directly learns patterns from input to output without extra handcrafted
feature selection, which is helpful to simplifying the data analysis work.
Compared with the CNN model in (Hoseinzade & Haratizadeh, 2019),
the multiple-input design in the MBCNN-GA considers the correlations
among intraregional SMIs, and the experimental results show that the

performance of the MBCNN-GA is superior to that of the CNN.
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Table 10
Average F -measure of each model on multiple SMIs.

SPX GDAXI N225 FCHI KS11 FTMIB HSI SSEC AEX

Random Prediction 0.5454 0.5183 0.5093 0.5021 0.5489 0.5326 0.5457 0.5137 0.5320
Label t-1 0.5768 0.5227 0.5461 0.4962 0.6259 0.5369 0.6146 0.5173 0.5612
ANN 0.6670 0.7288 0.6997 0.7030 0.7825 0.7257 0.7187 0.6038 0.7282
ANN+Cluster 0.6710 0.6592 0.7157 0.6393 0.7622 0.7249 0.7151 0.5939 0.6961
SVM 0.7351 0.7301 0.7662 0.6925 0.7903 0.7596 0.7733 0.2742 0.7454
SVM+Cluster 0.7401 0.7265 0.7693 0.6978 0.7937 0.7569 0.7762 0.3732 0.7261
RF 0.6652 0.6954 0.6997 0.6595 0.7750 0.6865 0.7445 0.5949 0.6912
RF+Cluster 0.6530 0.6617 0.6875 0.6396 0.7654 0.6880 0.7460 0.5748 0.6978
CNN 0.6845 0.7303 0.7167 0.7167 0.7933 0.7694 0.7759 0.6162 0.7156
CNN+Cluster 0.6853 0.7144 0.7251 0.7063 0.7905 0.7391 0.7737 0.6379 0.7261
RNN 0.7113 0.7543 0.7400 0.7437 0.8165 0.7798 0.7724 0.5980 0.7466
RNN+Cluster 0.7096 0.7471 0.7030 0.7030 0.802 0.7566 0.7820 0.6286 0.7359
LSTM 0.7136 0.7547 0.7527 0.7506 0.7981 0.7856 0.7736 0.6358 0.7337
LSTM+Cluster 0.6944 0.7513 0.7189 0.7326 0.8034 0.7608 0.7637 0.6396 0.7240
MBCNN 0.7050 0.7577 0.7424 0.7302 0.7968 0.7586 0.7707 0.6450 0.7368
MBCNN-GA 0.7564*** 0.7805** 0.7776 0.7696*** 0.8340** 0.8099** 0.8037** 0.7367*** 0.7694***

*: 0.1; **:0.05; ***:0.01.
Table 11
The percent profits (average daily return (%)) of each model on multiple SMIs (mean (± std. Deviation))

SPX GDAXI N225 FCHI KS11 FTMIB HSI SSEC AEX

Random
Prediction

−0.0201
(±0.0435)

−0.0087
(±0.0405)

0.0160
(±0.0200)

−0.0180
(±0.0391)

0.0631
(±0.0336)

0.0222
(±0.0297)

0.0281
(±0.0419)

−0.0047
(±0.0161)

−0.0185
(±0.0357)

Label t-1 −0.0048
(±0.0143)

0.0003
(±0.0113)

0.0471
(±0.0090)

−0.0227
(±0.0124)

0.1197
(±0.0296)

0.0050
(±0.0086)

0.1020
(±0.0319)

0.0111
(±0.0128)

−0.0049
(±0.0145)

ANN 0.1067
(±0.0089)

0.1824
(±0.0188)

0.1874
(±0.0237)

0.1474
(±0.0142)

0.2157
(±0.0357)

0.1273
(±0.0127)

0.1906
(±0.0348)

0.0676
(±0.0074)

0.1397
(±0.0150)

ANN+Cluster 0.0985
(±0.0312)

0.1536
(±0.0377)

0.1927
(±0.0135)

0.1216
(±0.0116)

0.2045
(±0.039)

0.1506
(±0.0157)

0.2087
(±0.0370)

0.0711
(±0.0089)

0.1394
(±0.0165)

SVM 0.0935
(±0.0204)

0.1678
(±0.0430)

0.1601
(±0.0262)

0.1329
(±0.0462)

0.2190
(±0.0628)

0.1137
(±0.0205)

0.1701
(±0.0478)

0.0344
(±0.0127)

0.1056
(±0.0339)

SVM+Cluster 0.1219
(±0.0289)

0.1635
(±0.0270)

0.1657
(±0.0289)

0.1467
(±0.0402)

0.2265
(±0.0675)

0.1182
(±0.0232)

0.1815
(±0.0463)

0.0369
(±0.0111)

0.0963
(±0.0259)

RF 0.0763
(±0.0427)

0.1224
(±0.0396)

0.1746
(±0.0192)

0.0965
(±0.0204)

0.2197
(±0.0389)

0.1236
(±0.0145)

0.2263
(±0.0162)

0.0541
(±0.0101)

0.0899
(±0.0178)

RF+Cluster 0.0775
(±0.0161)

0.1159
(±0.0254)

0.1717
(±0.0209)

0.0778
(±0.0296)

0.2128
(±0.0450)

0.1240
(±0.0292)

0.2089
(±0.0400)

0.0599
(±0.0111)

0.1341
(±0.0251)

CNN 0.1205
(±0.0183)

0.2131
(±0.0198)

0.1875
(±0.0063)

0.1883
(±0.0187)

0.2371
(±0.0486)

0.1756
(±0.0133)

0.2423
(±0.0210)

0.0829
(±0.0032)

0.1677
(±0.0187)

CNN+Cluster 0.1292
(±0.0245)

0.2004
(±0.0164)

0.1908
(±0.0075)

0.1800
(±0.0198)

0.2427
(±0.0542)

0.1782
(±0.0326)

0.2424
(±0.0244)

0.0773
(±0.0086)

0.1728
(±0.0246)

RNN 0.1414
(±0.0257)

0.2462
(±0.0216)

0.2145
(±0.0071)

0.2121
(±0.0217)

0.2693
(±0.0520)

0.2048
(±0.0167)

0.2277
(±0.0218)

0.0795
(±0.0036)

0.1977
(±0.0171)

RNN+Cluster 0.1481
(±0.0250)

0.2329
(±0.0333)

0.2124
(±0.0098)

0.1873
(±0.0314)

0.2708
(±0.0549)

0.1877
(±0.0211)

0.2286
(±0.0203)

0.0813
(±0.0058)

0.1953
(±0.0264)

LSTM 0.1383
(±0.0273)

0.2235
(±0.0254)

0.2102
(±0.0043)

0.2072
(±0.0219)

0.2676
(±0.0507)

0.1899
(±0.0116)

0.2343
(±0.0180)

0.0796
(±0.0070)

0.1698
(±0.0129)

LSTM+Cluster 0.1405
(±0.0214)

0.2122
(±0.0285)

0.2093
(±0.0035)

0.1940
(±0.0244)

0.2695
(±0.0505)

0.1849
(±0.0142)

0.2268
(±0.0165)

0.0878
(±0.0050)

0.1768
(±0.0270)

MBCNN 0.1328
(±0.0178)

0.2415
(±0.0273)

0.2149
(±0.0078)

0.2009
(±0.0373)

0.2700
(±0.0485)

0.1860
(±0.0096)

0.2344
(±0.0306)

0.0895
(±0.0042)

0.1871
(±0.0205)

MBCNN-
GA

0.1608
(±0.0271)

0.2585
(±0.0397)

0.2248
(±0.0082)

0.2175
(±0.0347)

0.2772
(±0.0496)

0.2138
(±0.0225)

0.2635
(±0.0123)

0.0960
(±0.0157)

0.2087
(±0.0281)
Our model is readily applicable for investors and regulators. For
nvestors, forecasting the direction of overnight returns can help them
ake decisions during call auctions. For example, if the output of

he model is positive, they could buy or hold the investment product
elated to the target SMI (e.g., an exchange traded fund (ETF)). If the
redicted label is negative, they could sell the investment products to
ecrease their investment risk. For regulators, forecasting the direction
f 𝑅𝐶−𝑂 helps them monitor the volatility of the stock market. For
nstance, if the target SMI continuously decreases and the output of the
odel is still negative, regulators could make suitable policies to restore

nvestors’ confidence and maintain the stability of a stock market.

. Conclusion and future work

Under the tendency of economic globalization, one stock market
ould be inevitably affected by others. The effects of other stock
15
markets on the target stock market could be reflected in the overnight
returns. Therefore, we propose a novel deep learning model to forecast
the direction of the overnight returns of a target SMI by integrating
international SMIs. The first contribution of the study is that we employ
the deep learning techniques to forecast the direction of 𝑅𝐶−𝑂 of
the target SMI, which is helpful for investors to make decisions and
increase their profits during call auction and trading periods. Second,
we propose the MBCNN-GA model in which the overall features of
intraregional SMIs are extracted by multiple branches for forecasting
the target SMI. We use nine target SMIs to compare our model and
the competing methods, and the experimental results show that the
proposed model is superior to the competing methods in terms of the
predictive accuracy and F -measure.

There are some limitations of our study, which provide opportu-
nities for future investigation. First, in addition to international SMIs,
many other factors may affect the target SMI movements. These factors
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Table 12
Sharp ratio of each model on multiple SMIs (mean (± std. Deviation)).

Method SPX GDAXI N225 FCHI KS11 FTMIB HSI SSEC AEX

Random
Prediction

−0.0167
(± 0.0692)

−0.0020
(± 0.0492)

0.0310
(± 0.0385)

−0.0139
(± 0.0516)

0.1044
(± 0.0491)

0.0454
(± 0.0578)

0.0449
(± 0.0603)

−0.0091
(± 0.0434)

−0.0187
(± 0.0516)

Label t-1 −0.0053
(± 0.0211)

0.0016
(± 0.0143)

0.0886
(± 0.0138)

−0.0340
(± 0.0140)

0.1909
(± 0.0314)

0.0097
(± 0.0141)

0.1773
(± 0.0575)

0.0326
(± 0.0364)

−0.0054
(± 0.0208)

ANN 0.2224
(± 0.0341)

0.3236
(± 0.0253)

0.3838
(± 0.0568)

0.2966
(± 0.0250)

0.3076
(± 0.0216)

0.3014
(± 0.0219)

0.3147
(± 0.0387)

0.2413
(± 0.0313)

0.2710
(± 0.0618)

ANN+Cluster 0.1869
(± 0.0711)

0.2010
(± 0.0716)

0.3984
(± 0.0318)

0.1800
(± 0.0562)

0.2944
(± 0.0392)

0.2871
(± 0.0423)

0.3891
(± 0.0726)

0.2193
(± 0.0378)

0.2490
(± 0.0754)

SVM 0.1605
(± 0.0219)

0.2112
(± 0.0366)

0.2667
(± 0.0490)

0.1977
(± 0.0490)

0.3373
(± 0.0749)

0.1766
(± 0.0217)

0.2415
(± 0.0743)

0.1866
(± 0.0373)

0.1477
(± 0.0339)

SVM+Cluster 0.2314
(± 0.0398)

0.2144
(± 0.0279)

0.2810
(± 0.0606)

0.2245
(± 0.0437)

0.3551
(± 0.0860)

0.1870
(± 0.0264)

0.2643
(± 0.0685)

0.1793
(± 0.0245)

0.1507
(± 0.0308)

RF 0.1318
(± 0.0773)

0.1584
(± 0.0857)

0.3392
(± 0.0529)

0.1196
(± 0.0316)

0.3246
(± 0.0344)

0.2124
(± 0.0248)

0.4125
(± 0.0291)

0.1559
(± 0.0467)

0.1194
(± 0.0361)

RF+Cluster 0.1389
(± 0.0462)

0.1319
(± 0.0427)

0.3414
(± 0.0463)

0.0944
(± 0.0437)

0.3417
(± 0.0854)

0.2158
(± 0.0446)

0.3656
(± 0.0568)

0.1850
(± 0.0456)

0.2115
(± 0.0327)

CNN 0.2202
(± 0.0285)

0.2777
(± 0.0155)

0.4272
(± 0.0164)

0.2711
(± 0.0244)

0.4068
(± 0.0405)

0.3294
(± 0.0207)

0.3906
(± 0.0203)

0.2292
(± 0.0214)

0.2396
(± 0.0145)

CNN+Cluster 0.2828
(± 0.0337)

0.2495
(± 0.0075)

0.4372
(± 0.0243)

0.1652
(± 0.0278)

0.4147
(± 0.0445)

0.2845
(± 0.0240)

0.3814
(± 0.0239)

0.2947
(± 0.0336)

0.2038
(± 0.0106)

RNN 0.3106
(± 0.0327)

0.3411
(± 0.0274)

0.4423
(± 0.0189)

0.3164
(± 0.0279)

0.4794
(± 0.0443)

0.4096
(± 0.0194)

0.4073
(± 0.0212)

0.2960
(± 0.0150)

0.3576
(± 0.0264)

RNN+Cluster 0.3099
(± 0.0256)

0.3362
(± 0.0237)

0.4387
(± 0.0167)

0.2819
(± 0.0181)

0.4770
(± 0.0509)

0.3458
(± 0.0081)

0.4113
(± 0.0287)

0.3089
(± 0.0096)

0.3289
(± 0.0185)

LSTM 0.2820
(± 0.0182)

0.2945
(± 0.0230)

0.4598
(± 0.0134)

0.3102
(± 0.0223)

0.4329
(± 0.0400)

0.3445
(± 0.0343)

0.3912
(± 0.0160)

0.2793
(± 0.0059)

0.2569
(± 0.0555)

LSTM+Cluster 0.2842
(± 0.0173)

0.2666
(± 0.0153)

0.4546
(± 0.0105)

0.2413
(± 0.0322)

0.4322
(± 0.0454)

0.3347
(± 0.0265)

0.3920
(± 0.0217)

0.3090
(± 0.0167)

0.2739
(± 0.0422)

MBCNN 0.2855
(± 0.0356)

0.3087
(± 0.0407)

0.4186
(± 0.0296)

0.2758
(± 0.0345)

0.4409
(± 0.0326)

0.3671
(± 0.0571)

0.4051
(± 0.0552)

0.2729
(± 0.0607)

0.3269
(± 0.0581)

MBCNN-
GA

0.3474
(± 0.0215)

0.3592
(± 0.0412)

0.4744
(± 0.0219)

0.3264
(± 0.0144)

0.5013
(± 0.0481)

0.4217
(± 0.0242)

0.4655
(± 0.0149)

0.3196
(± 0.0254)

0.3669
(± 0.0219)
include economic variables, industry specific variables, psychological
variables of investors, political variables, and others. Therefore, how
to integrate these factors into the forecasting model to improve its
performance is left for future research. Second, we plan to improve the
computational efficiency of the proposed methods. While the perfor-
mance and robustness of the proposed model are superior to those of
the competing methods, it does take more time to train the model. In
terms of the future work, one possible attempt will be to employ the
parallel computing and multiple processors for searching the optimal
solution.
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