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Abstract

Artificial intelligence (AI) based drug design has demonstrated great potential to fundamentally change the pharmaceutical
industries. Currently, a key issue in AI-based drug design is efficient transferable molecular descriptors or fingerprints. Here,
we present hypergraph-based molecular topological representation, hypergraph-based (weighted) persistent cohomology
(HPC/HWPC) and HPC/HWPC-based molecular fingerprints for machine learning models in drug design. Molecular
structures and their atomic interactions are highly complicated and pose great challenges for efficient mathematical
representations. We develop the first hypergraph-based topological framework to characterize detailed molecular structures
and interactions at atomic level. Inspired by the elegant path complex model, hypergraph-based embedded homology and
persistent homology have been proposed recently. Based on them, we construct HPC/HWPC, and use them to generate
molecular descriptors for learning models in protein–ligand binding affinity prediction, one of the key step in drug design.
Our models are tested on three most commonly-used databases, including PDBbind-v2007, PDBbind-v2013 and
PDBbind-v2016, and outperform all existing machine learning models with traditional molecular descriptors. Our
HPC/HWPC models have demonstrated great potential in AI-based drug design.
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Introduction

Artificial intelligence (AI) based drug design has great potential
to significantly change the landscape of pharmaceutical
industries [1–6]. In fact, traditional drug design approaches are
not only laborious and time-consuming, but also inefficient
and high-cost. Currently, only 10%-14% of drug candidates,
which manage to enter clinical trials, can reach the market
as medicines [1]. It takes more than 10 years and costs about
$2.6 billion to develop a new market-approval prescription
medicine [2]. With the ever-increasing accumulation of chemical
and biomolecular data, data-driven AI models will usher in an
era of faster, cheaper and more-efficient drug design and drug
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discovery [2]. In fact, medical imaging analysis for radiology,
pathology and other medical specialties, have already under-
gone revolutionary changes with deep learning [7, 8]. Moreover,
AI techniques have gradually been applied to the whole drug
design process, from target discovery, lead discovery, lead
optimization, preclinical development, to the final three phases
of clinical trials. Researchers and biopharmaceutical companies
are leading the revolution of AI in drug design [1]. For instance,
Obama’s Cancer Moonshot initiative uses AI for personalization
of treatment and early diagnosis. Currently, machine learning
and deep learning models have delivered significant better
results in molecular docking [9, 10], binding affinity prediction
[11, 12], toxicity prediction [13], as well as various quantitative
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structure-activity relationship (QSAR) models [14, 15]. Further
progresses from chemical data accumulation, access to more
computational power, and development of highly efficient
learning algorithms, will pave the way for AI-based drug design
to fundamentally change the landscape of drug design and drug
discovery [5, 6].

With the excitement and opportunities come challenges.
Currently, one of the central challenges for machine learning
models in drug design is molecular featurization, which is
to identify or design appropriate molecular descriptors or
fingerprints [16–19]. In fact, featurization is a long-standing
issue for chemical informatics and bioinformatics [14, 15].
Traditional molecular/chemical descriptors are structural and
physical properties obtained from structural geometry, chemical
conformation, chemical graph, structure topology, as well
as molecular formula, hydrophobicity, steric properties and
electronic properties [14, 15]. These descriptors are widely
used in QSAR and learning models. Recently, a series of
mathematical models from algebraic topology, combinatorial
topology and differential geometry, have been proposed for
molecular representations [20–32]. Unlike traditional molecular
descriptors [14, 15], these models use highly abstract funda-
mental mathematical invariants, thus they can capture deeper
and more intrinsic molecular properties [24]. Featurization
with higher level of abstraction and generalization has great
advantages in machine learning and deep learning models [24].
Significant better results have been achieved using learning
models with these advanced mathematical representations, for
various aspects of drug design, including protein–ligand binding
affinity prediction [20], protein stability changes upon mutation
[24] and toxicity prediction [25].

Here, we present the first hypergraph-based molecular
representation, hypergraph-based (weighted) persistent coho-
mology (HPC/HWPC), and HPC/HWPC-based machine learning
models for drug design. Our HPC/HWPC models are developed
from the recently-proposed hypergraph-based homology and
persistent homology models [33–35], which are motivated by
the elegant path complex models [36–39]. Mathematically,
hypergraph provides a more generalized topological repre-
sentation, compared with traditional graph and simplicial
complex representations, which are widely-used in material,
chemical and biological models. Further, molecular descriptors
are obtained from HPC/HWPC models, and combined with
gradient boosting tree (GBT) model. Our models are tested
on three well-established databases, including PDBbind-v2007,
PDBbind-v2013 and PDBbind-v2016. Our HPC/HWPC-based GBT
model can outperform all learning models with traditional
molecular descriptors, for protein–ligand binding affinity
prediction.

Results
Biomolecular hypergraph representation

A proper characterization of biomolecular interactions between
protein–protein, protein–ligand, protein-DNA/RNA and others, is
of essential importance for drug design. Motivated by the suc-
cess of the element-specific persistent homology models [24],
we propose the first element-specific biomolecular hypergraph
representation for biomolecular interactions at atomic level. The
key idea is to describe element-specific atom-pair interactions
as different kinds of hyperedges.

Here we consider the protein–ligand interactions. Since pro-
tein is usually much larger than ligand, only the binding core
region is consider, which is made of all the atoms within a certain
cutoff distance of ligand. The binding core region is decomposed
into 36 types of atom-pair combinations, made from four pro-
tein atom-sets and nine ligand atom-sets (see Materials and
methods). The atom-set from protein and ligand is denoted as
VP = {vi; i = 1, 2, ..., NP} and VL = {vj; j = 1, 2, ..., NL} respectively,
with vi and vj the respective i-th and j-th atom coordinate vector,
and NP and NL the respective total numbers. An element-specific
hypergraph (VH,H) is composed of vertex set VH = VP ∪ VL

and hyperedge set H. Since a vertex can be viewed as a 0-
hyperedge, we use H to denote hypergraph for simplicity. In
our protein–ligand based hypergraph, we define an n-hyperedge
in H as

σn =
{

{v0,v1,...,vn};vk∈VH (0�k�n),∃i,j∈[0,n],vi∈VP ,vj∈VL, n>0

{v0};v0∈VH, n=0.
(1)

In our model, an n-hyperedge σn is composed of n + 1 vertices
(or atoms) from either protein atom-set or ligand atom-set, with
one condition that, when n > 0, at least two vertices of the
n-hyperedge σn are not from the same molecule, i.e., one from
protein and the other from ligand. Note that any vertex in VH

is a 0-hyperedge σ0. All these hyperedges form the hypergraph
H. Figure 1 A shows a hypergraph-based representation for a
protein-ligand complex (PDBID 3P2E). Only a small region of
binding core part (ligand and protein region within 5.0 Å of
ligand) is considered. A total 36 element-specific hypergraphs
are constructed from the 36 atom combinations. The hyper-
edges are denoted as ellipses, with 1-hyperedges in red and
2-hyperedges in blue. The 36 types of hypergraphs provide a
detailed representation of protein-ligand interactivity at atomic
level.

Hypergraph-based persistent cohomology

The key component of persistent models, including persistent
homology/cohomology [40–42], persistent spectral [43] and per-
sistent function [44], is the filtration process. For any system, a
multiscale representation can be generated through a filtration
process. In our hypergraph-based persistent cohomology, a fil-
tration value (or “birth time”) is assigned to each hyperedge, so
that with the increase (or decrease) of filtration value, a series
of nested hypergraphs can be generated. Note that “birth time”
and “death time” are used in persistent barcodes, as illustrated
in Figure 2, to represent the starting and ending value of a
barcode.

In our protein–ligand complex based hypergraph model, an
interactive distance between two atoms vi and vj is defined
as

d(vi, vj) =
{

‖vi−vj‖, if vi∈VP ,vj∈VL or vi∈VL ,vj∈VP

g(vi ,vj ), otherwise.
(2)

Here ‖vi − vj‖ is the Euclidean distance between the two atoms.
Note that vi and vj are coordinate vectors. Function g(vi, vj) is
the interactive distance between atoms vi and vj from the same
molecule, i.e., both from protein or both from ligand. Its detailed
setting can be found in Eq.(5) (see Materials and methods). With
the interactive distance, the filtration value for a hyperdege
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Figure 1. A. Illustration of the element-specific hypergraph representation for protein–ligand interactions, using a protein–ligand complex (PDBID 3P2E). The core region

is decomposed into four protein atom-sets (C, N, O, S) and nine ligand atom-sets (C, N, O, S, P, F, Cl, Br, I), which are combined to form 36 element-specific combinations,

such as C-C, N-S, O-Br, etc. A hypergraph is generated from each element-specific combination and a total 36 hypergraphs are used for the representation of protein–

ligand interactions at molecular level. We only show hyperedges with dimensions 0, 1 and 2. A 0-hyperedge is a black vertex (for protein atom) or green vertex (for

ligand atom), a 1-hyperedge is represented as a red ellipse and a 2-hyperedge is denoted as a blue ellipse. Note that each ellipse has at least one black vertex and one

blue vertex, which means each n-hyperedge (n > 0) has at least one vertex from protein and one vertex from ligand. B. Illustration of the hypergraph-based filtration

process. We consider the hypergraphs from the C-C combination of protein–ligand complex (PDBID 3P2E) as in (A). Each hyperedge is associated with a filtration value

or ’birth time’. A series of nested hypergraphs are generated during the filtration process.

σn = {v0, v1, ..., vn} is defined as,

f (σn) =
{

max0≤i<j≤n d(vi, vj), n > 0
0, n = 0.

(3)

The hypergraph with the above filtration values naturally gener-
ates a well-defined filtration process. Figure 1 B demonstrates
a hypergraph based filtration process for protein–ligand C-C
combination (PDBID 3P2E). It can be seen that as the increase of
filtration value, a series of nested hypergraphs can be generated.

Mathematically, the definition of hypergraph homology is
nontrivial. Different hypergraph homology definitions have
been considered [45–48]. Motivated by the elegant definition of
path complex [36–39], embedded homology has been proposed
for hypergraphs recently [33]. Different from previous models,
embedded homology is found to be consistent for both infimum
chain complex and supremum chain complex derived from
hypergraph (see Materials and methods). Here we consider
embedded homology for our protein–ligand complex based
hypergraph models. With the filtration parameter defined in
Eq. (3), hypergraph persistent homology can be derived and
persistent barcodes [49] can be generated. For simplicity, we
omit the word ’embeded’, and call hypergraph based embedded
homology, persistent embedded homology and persistent
embedded cohomology (will be discussed later), as hypergraph
homology, persistent homology and persistent cohomology,
respectively. Figure 2 A, B and C demonstrate the persistent
barcodes of bipartite-graph-based persistent homology (A,
see Materials and methods) and hypergraph-based persistent
homology (B, C). For bipartite-graph-based persistent homology,
the lack of simplices with dimension larger than 1, results in the
forever-persisting β1 barcodes and absence of β2 barcodes. The
introduction of high dimensional hyperedges up to dimension
2 (B) and 3 (C) has recovered the missing higher dimensional
topological information.

Further, we propose hypergraph-based persistent cohomol-
ogy (HPC) and hypergraph-based weighted persistent cohomol-
ogy (HWPC) (see Materials and methods). Our HPC model is a
generalization of persistent embedded homology to its coho-
mology counterpart. More importantly, our HWPC can incorpo-
rate geometrical, physical, chemical and biological information
into HPC model through the use of weights. Mathematically,
weights can be defined on hyperedges, hypergraph boundary
operators and hypergraph cohomology generators. They can be
chosen as atomic types, atomic partial charge, hydrophobic and
hydrophilic properties, and other physical, chemical or biological
properties. Persistent cohomology enriched barcodes [32, 50]
with the incorporated information are generated from HWPC
models.

In our protein–ligand complex based HWPC, we consider a
new type of weight on hyperedges, that is graph centrality (see
Eqs. (6) and (7) in Materials and methods). A scale parameter η

controls the “influence range” for the graph centrality. A smaller
η value means that each vertex only interacts with vertices
within its local region, thus it results in a smaller centrality
value. Although a larger η value means global interactions for
each nodes and results in a larger centrality value. Further,
weights can be defined on cohomology generators and enriched
barcodes are obtained (see Eqs. (8) and (9) in Materials and
methods). Figure 2 D shows two persistent cohomology enriched
barcodes for the C-C combination (from complex 3IP5) with two
different η values, i.e., 2.5 Å (left-side subgraph) and 10.0 Å (right-
side subgraph). We linearly normalize the weight values on the
enriched barcode into [0, 1]. The colors represent the values on
each enriched barcode. Note that larger graph centrality values
result in larger values on enriched barcodes.

HPC-based machine learning

Persistent barcodes from HPC and HWPC can be discretized into
feature vectors. Many methods have been proposed [24], includ-
ing barcode statics, algebraic functions and tropical functions,
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Figure 2. The comparison of persistent barcodes from bipartite graph (A), HPC with hyperedges up to dimension 2 (B), HPC with hyperedges up to dimension 3 (C). The

bipartite graph is derived from interactive distance matrix in Eq. (4) with protein atoms represented as black stars and ligand atoms represented as green dots. Its higher

dimensional topological information (β2) is missing and the β1 barcodes are forever-persistent because of the lack of simplices with dimension higher than 1. In our

HPC, by adding 2-hyperedges (represented as blue ellipses, each blue ellipse contains only three atoms), we can ’kill’ all the forever-persistent β1 barcodes, i.e., assign

them with ’death’ times, and capture β2 information. However, if we only add hyperedges with dimension lower than three, we will get forever-persistent β2 barcodes

as in (B). By adding 3-hyperedges (represented as green ellipses, each green ellipse contains only four atoms), we can ’kill’ these forever-persistent β2 barcodes as in

(C). D Illustration of the HWPC-based enriched barcodes for C-C pair of PDBID 3IP5. E Illustration of the molecular descriptors from the discretization of the persistent

barcodes.

binning approaches, persistent codebook, persistent paths and
siganture features, and 2D/3D representations. Here we consider
the binning approach [24]. As illustrated in Figure 2 E, the filtra-
tion region is discretized into equal-sized bins. The total number
of the barcodes (i.e., Betti numbers for HPC) or the sum of the
weight values of enriched barcodes (for HWPC) within each bin,
is used as molecular descriptors. A large-sized molecular fin-
gerprint is usually obtained in our HPC-based machine learning
models.

The use of a systematically-generated large-sized molecular
descriptors/fingerprints is found to be more efficient for
learning models in chemical and biological data analysis
[59]. Essentially, large-sized feature vector can have a better
characterization of molecular structures and interactions and
facilitate a better transferability for machine learning models.

Decision-tree-based models, such as random forest and GBT are
usually considered in large-sized fingerprint cases, as they are
more robust against overfitting problem.

HPC-ML for protein ligand binding affinity prediction

A drug design process covers various steps from target discovery,
lead discovery, lead optimization, preclinical development and
three phases of clinical trials. Among these steps, one of the key
issues is to identify ligands (drugs) that have higher binding
affinity with the target biomolecules. During the past few
decades, a variety of empirical, physics-based, knowledge-based
and machine-learning-based models are proposed [10, 11, 24].
The databank PDBbind (www.pdbbind.org.cn) is established to
systematically evaluate and compare their performance for
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Table 1. The PCCs and RMSEs (pKd/pKi) for our HPC/HWPC-GBT model in three test cases, i.e., PDBbind-v2007, PDBbind-v2013 and PDBbind-
v2016

Dataset HPC HPC-HWPC(η1) HPC-HWPC(η2) HPC-HWPCs(η1 & η2 )

PDB-2007 0.813(1.423) 0.823(1.418) 0.827(1.395) 0.829(1.403)
PDB-2013 0.770(1.508) 0.780(1.498) 0.779(1.486) 0.784(1.483)
PDB-2016 0.810(1.359) 0.825(1.322) 0.825(1.324) 0.831(1.307)

Table 2. Detailed information of the three PDBbind databases, i.e.,
PDB-v2007, PDB-v2013 and PDB-v2016.

Dataset Refined set Training set Test set (Core set)

PDB-v2007 1300 1105 195
PDB-v2013 2959 2764 195
PDB-v2016 4057 3772 285

Table 3. The parameters for our GBT model

No. of estimators Learning rate Max depth Subsample
40 000 0.001 9 0.7

Min_samples_split Loss function Max features Repetitions
2 Least square SQRT 10

protein–ligand binding affinity prediction [55]. Three of the most
commonly-used datasets are PDBbind-v2007, PDBbind-v2013
and PDBbind-v2016. For each dataset, the core set is regarded as
the test set, all entries in refined set except the ones in the core
set form the training set. The detailed data information can be
found in Table (2).

In HPC/HWPC based molecular descriptor model, we use 10.5
Å as the cut-off distance to extract the binding core region. The
filtration range is chosen as [2.0 Å, 7.5Å] and bin size as 0.1 Å.
We consider both β0 and β1 for HPC and two HWPC models,
i.e., one for local interactions with scale parameter η1 = 2.5
Å and the other for global interactions with η2 = 10.0 Å. In
this way, a feature vector of size 3960=36(combinational types)×
55(bin size)× 2(β0 and β1) is generated for each protein–ligand
complex. In our HPC/HPWC models, we consider four types of
featurizations with molecular descriptors from only HPC (vector
size 3960), HPC and local HWPC with η1 = 2.5 Å (vector size
7920), HPC and global HWPC with η2 = 10.0 Å (vector size 7920),
HPC and multiscale HWPCs with both η1 and η2 (vector size 11
880), respectively. With large-sized molecular fingerprints, we
make use of GBT model to alleviate overfitting problem. The
detailed setting of GBT parameters are presented at Table 3. The
Pearson correlation coefficients (PCCs) and root mean square
error (RMSEs), between predicted binding affinities and exper-
imental ones for the three test sets, are calculated and listed
in Table 1. Note that the unit for RMSE is pKd/pKi, instead of
Kcal/mol. To have a better understanding of the performance of
our models, we compare our models with traditional molecular
descriptor based learning models[12, 51–58]. The PCCs result
are illustrated in Figure 3. Note that 10 independent repetitions
are conducted and the medians of the 10 PCCs and RMSEs are
used as the performance measurements of our HPC/HWPC-GBT
model. It can be seen that our model can achieve state-of-the-art
results, and has a better performance than traditional molecular
descriptor based machine learning models, for protein–ligand
binding affinity prediction.

Discussion
The representability of molecular descriptors or fingerprints is of
essential importance for machine learning models in material,
chemical and biological data analysis. Mathematical invariants
from algebraic topology and differential geometry provide a
highly effective way of structure representation, as they can
characterize the intrinsic information. Moreover, their persistent
formulations, including persistent homology/cohomology, per-
sistent spectral and persistent functions, can preserve intrin-
sic information at various different scales, i.e., a multiscale
intrinsic representation. Molecular descriptors from these per-
sistent models can have a much better performance in machine
learning models.

The generalization of simplicial complex into hypergraph
has provided more flexibility in the topological representation
of molecular structures and interactions. Other than embedded
homology and persistent homology/cohomology formula for
hypergraph, discrete Morse theory [34] and Hodge decompo-
sition model [35] have also been developed on hypergraph.
Similarly, molecular descriptors can be derived from these
hypergraph-based models and persistent-hypergraph-based
models. The incorporation of these intrinsic molecular descrip-
tors into machine learning models will significantly boost the
learning performance in the analysis of molecular data from
materials, chemistry and biology.

Materials and methods
Biomolecular topological representations

Traditionally, biomolecular structures and interactions are
usually modeled as graphs or networks. Graphs are widely
used in atom-covalent-bond representation, Gaussian network
model, anisotropic network model, protein–protein interaction
networks, among others. Recently, simplicial complex based
biomolecular representation is proposed and used in the study
of biomolecular structure, flexibility, dynamics, function and
drug design [20–32]. Mathematically, simplicial complex is
a generalization of graph, which contains only 0-simplexes
(nodes) and 1-simplexes (edges). Simplicial complex is made
of higher dimensional simplexes, such as 2-simplex (triangle),
3-simplex (tetrahedron), etc. In this way, simplicial complex can
model more complicated relations between not only two atoms,
but also groups of atoms represented as simplexes.

Hypergraph is a further generalization of simplicial complex.
Simply speaking, hypergraph is composed of hyperedges and
each hyperedge is a set of atoms. Figure 4 illustrates the different
topological representations, including graph, simplicial complex
and hypergraph for a ligand Uracil. It can be seen that graph
only considers interactions between two atoms, i.e., they either
interact with each other and an edge is form between them or
they do not interact with each other and no edge is form. Sim-
plicial complex can characterize more complicated relationships
between simplexes, including upper adjacent, lower adjacent,
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Figure 3. The comparison of PCCs between our combined HPC/HWPC-GBT model and traditional molecular descriptor based models[12, 51–58], for the prediction of

protein-ligand binding affinity. The PCCs are calculated based on the core set (test set) of PDBbind-v2007, PDBbind-v2013 and PDBbind-v2016.

parallel neighbour, among others. Since each simplex can be
regarded as a hyperedge, any simplicial complex is just a special
type of hypergraph and same relationships characterized by sim-
plicial complex can be described using hypergraph representa-
tion. Moreover, hypergraph does not require the completeness of
simplexes under boundary operator [33], thus it can characterize
the most general relations.

Element-specific molecular interaction representation

The characterization and representation of molecular interac-
tions at molecular level is of great importance for molecular
structure, flexibility, dynamics and function analysis. Recently,
element-specific interaction model has been developed for pro-
tein–ligand interaction analysis [10, 20, 24]. In it, a protein is
decomposed into four individual atom-sets of C, N, O and S,
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Figure 4. Three topological representations, i.e., graph (B), simplcial complex (C) and hypergraph (D) for ligand Uracil (A). Note that hypergraph is composed of hyperedge

and each hyperedge is just a set of vertices. Hypergraph provides the most general topological representation.

respectively. A ligand is decomposed into nine atom-sets of C,
N, O, S, P, F, Cl, Br and I, respectively. Molecular interactions are
characterized by 36 different atom-pair combinations, between
protein atom-sets and ligand atom-sets. For instance, we can
take C atom-set from both protein and ligand to form the C-C
combination set. Further, the connection topology within each
combination set can be described by an interaction matrix [20,
24] as follows,

M(mi, mj) =
{

‖vi−vj‖, if vi∈VP ,vj∈VL or vi∈VL ,vj∈VP

∞, otherwise.
(4)

Here vi and vj are coordinates for the i- and j-th atoms, and
‖vi − vj‖ is their Euclidean distance. Notations mi and mj are the
indexes of i- and j-th atoms in matrix M, respectively. Two sets VP

and VL are composed of the respective protein and ligand atom
coordinates. Only connections (or interactions) between protein
atoms and ligand atoms are considered. Connections between
atoms within either protein or ligand are ignored by setting the
distance as ∞. Based on the interaction matrix in Eq. (4), Vietoris–
Rips complexes can be generated by using Euclidean distance
as filtration parameter. These Vietoris–Rips complexes do not
contain n-simplexes with (n > 1). This is due to the reason that,
for any n+1(n > 1) atoms taken from the combination set, at least
two atoms of them will come from the same molecule, either
protein or ligand. The distance (or filtration value) of the two
atoms is ∞, thus they can never ’connect’ with each other and
no n-complex will be generated.

Mathematically, Vietoris–Rips complexes from the above
interaction matrix are just bipartite graphs as illustrated
in Figure 2 A. Higher dimensional homology information,
such as β2, is not captured in the above model. To recover
these information, we propose hypergraph-based molecular
representation.

Hypergraph-based molecular interaction representation

Mathematically, a hypergraph is a pair (VH,H). Here VH is a
set of vertices and H is a subset of power set �[VH], which is
the collection of all the nonempty subsets of VH. In our model,
hyperedges are defined among protein and ligand atoms as Eq.
(1). Essentially, a hyperedge has to contain at least one atom from
protein and another atom from ligand, except all 0-hyperedges.

The “length” of hyperedge is defined as interactive distance
in Eq. (2), and can be used as the filtration parameter. In our pro-
tein–ligand complex based hypergraph model, function g(vi, vj),

between two atoms vi and vj from the same molecule, is defined
as follows,

g(vi ,vj ) =
{

maxvk∈VP ,{vi ,vj ,vk }∈H{‖vi ,vk‖,‖vj ,vk‖}+d0, if vi ,vj∈VL

maxvk∈VL ,{vi ,vj ,vk }∈H{‖vi ,vk‖,‖vj ,vk‖}+d0, if vi ,vj∈VP

(5)

here d0 ≥ 0 is a constant value. Note that even though we assign
an interactive distance (or ‘length’) between two atoms from the
same molecule, these two atoms can never form a hyperedge in
our protein–ligand complex based hypergraph model.

However, filtration values (or “birth time”) of n-hyperedges
(n > 1) in Eq. (3) rely on these interactive distances. More specif-
ically, the filtration value of an n-hyperedge (n > 1) is the largest
interactive distances between any two atoms (vertices) within
the n-hyperedge. If the two atoms are from different molecules,
their interactive distance is just their Euclidean distance. If the
two atoms are from the same molecule, their interactive distance
is the largest “length” of all the possible 1-hyperedges that
contains one of the two atoms, plus constant d0. In this way,
interactive function g(vi, vj) directly determines filtration values
of n-hyperedges (n > 1) that contain atoms vi and vj (from the
same molecule). For instance, a set of 2-hyperedges

{{v0, v1, vi}|i 	∈
{0, 1}, v0 ∈ VP, v1 ∈ VP, vi ∈ VH

}
contains two common atoms

from protein, all these 2-hyperedges share the same filtration
value g(v0, v1).

Further, the constant d0 can be used to adjust the filtration
value of a hyperedge. To guarantee a well-defined filtration
process, i.e., hypergraphs generated at later-stage of filtration
have to include the ones produced at early-stage of filtration,
constant d0 has to be nonnegative. As illustrated in Figure 5,
different d0 values result in different persistent barcodes. In
general, a larger d0 value means a larger filtration value for
all 2-hyperedges, thus β1 generators will be ’killed’ at a much
later stage of filtration, compared with smaller d0 situations.
With the increase of d0 value, it can be seen that β1 barcodes
are systematically elongated, and some new β1 barcodes are
generated.

Hypergraph-based persistent cohomology

For a hypergraph H, its associated simplicial complex KH is
defined as the smallest simplicial complex such that the hyper-
edges of H is a subset of the simplices of KH [33, 45]. The
orientation of a hypergraph can be induced from its associated
simplicial complex, i.e., the orientation of a hyperedge is the
same as its associated simplex [33, 45]. Let G be an Abelian group
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Figure 5. HPC-based persistent barcodes for C-C combination set of PDBID 3IP5 with different d0 values. From (A) to (D), d0 values are 0Å, 0.1Å, 0.4Å and 0.7Å, respectively.

It can be seen that with the increase of d0 value, more β1 bars are generated and the lengthes of β1 bars get longer.

and S a nonempty finite set, we use G(S) to denote the collection
of linear combinations of the elements in S with coefficients in
G. The n-hyperedge group is denoted as G(Hn) with Hn the set of
all n-hyperedges in H.

Let the vertex set of a hypergraph H be totally ordered.
Following the ideas of simplicial homology, one may want to
define the boundary operator ∂n for n-hypergraph group G(Hn) as
∂n(σn) = ∑n

i=0(−1)iσ i
n−1 Here σn = {v0, v1, ..., vn} is an n-hyperedge,

and (n−1)-hyperedge σ i
n−1 = {v0, v1, ..., vi−1, vi+1, ..., vn} is generated

by removing the vertex vi from hyperedge σn. However, there is
a serious problem in such a setting that the (n − 1)-hyperedge
σ i

n−1 may not always exist in Hn−1. With these considerations,
various different homology definitions have been proposed for
hypergraphs [45–48].

Recently, inspired by the elegant path complex [36–39],
embedded homology and persistent embedded homology have
been proposed [33]. In these models, an n-th infimum chain
group

Infn(H) = Infn(G(H�), G((KH)�)) = G(Hn) ∩ ∂−1
n (G(Hn−1)),

and an n-th supremum chain group

Supn(H) = Supn(G(H�), G((KH)�)) = G(Hn) + ∂n+1(G(Hn+1)),

are considered. Note that G(H�) = {
G(H0), G(H1), G(H2)...

}
is a

sequence of hyperedge groups, and G((KH)�) = {
G((KH)0), G((KH)1),

G((KH)2), ...
}

is a sequence of chain groups from the associated
simplicial complex. Since G(H�) ⊆ G((KH)�), the above boundary
operators are well-defined in G((KH)�). More importantly, it
has been proved that the homology of Inf�(H) and Sup�(H)
are isomorphic [33]. In this way, the embedded homology of
hypergraph H can be defined as,

Hn(H) = Hn(Inf�(H)) = Hn(Sup�(H)).

Similarly, persistent (embedded) homology can be generated for
a hypergraph-based filtration process.

Here we propose (embedded) cohomology for hypergraph H.
Similar to the above process, we can define infimum cochain
complexes Inf�(H) and supremum cochain complexes Sup�(H),
and prove that the cohomology of Inf�(H) and Sup�(H) are iso-
morphic (see SI). The embedded cohomology of hypergraph H
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can be defined as,

Hn(H) = Hn(Inf�(H)) = Hn(Sup�(H)).

More detailed provement process can be found in the SI.
Computationally, the embedded cohomology is calculated

based on the supremum cochain complexes Sup�(H). This is
because in our models, the supremum cochain complexes are
equal to the corresponding cochain complexes of its associated
simplicial complex. The hypergraph-based embedded cohomol-
ogy is isomorphic to the simplicial cohomology of its associated
simplicial complex. In this way, we only need to generate the
associated simplicial complex and calculate its persistent coho-
mology information. We consider only β0 and β1 information for
our protein–ligand complex based hypergraphs. This process is
computationally much easier, as associated simplicial complex
is just the clique complex of the hypergraph (See SI).

Hypergraph-based weighted persistent cohomology

Weighted persistent cohomology has been proposed to incorpo-
rate more structure, physical, chemical and biological informa-
tion into a unified representation, i.e., persistent cohomology
enriched barcode [32, 50]. Different from all previous models,
here we consider a new weight scheme, derived from graph cen-
trality and flexibility-rigidity indexes, for persistent cohomology.
More specifically, we define the weights for a 0-hyperedge σ0 =
{vi} as,

w(σ0) =

⎧⎪⎨
⎪⎩

∑
vk∈VL

e
− ‖vk−vi‖2

η2 , vi ∈ VP∑
vk∈VP

e
− ‖vk−vi‖2

η2 , vi ∈ VL

(6)

and an 1-hyperedge σ1 = {vi, vj} as,

w(σ1) = e
− ‖vi−vj‖2

η2 . (7)

The scale parameter η controls the influence range of the nodes.
Smaller η values mean local interactions and larger η values
mean global interactions.

Further, we define the weight for a 0-cohomology generator
δ0 as,

w(δ0) =
∑

σ i
0∈H0

δ0(σ i
0) ∗ w(σ i

0)∑
σ i

0∈H0
δ0(σ i

0)
, (8)

and an 1-cohomology generator δ1 as,

w(δ1) =
∑

σ i
1∈H1

δ1(σ i
1) ∗ w(σ i

1)∑
σ i

1∈H1
δ1(σ i

1)
. (9)

Note that Z2 is used in computation, and the term δ1(σ i
1) is

either 0 or 1. For persistent cohomology enriched barcodes, each
barcode represents a generator and is colored by the weight
values defined above.

Computationally, our persistent cohomology enriched bar-
codes are calculated based on the associated simplicial complex.
For simplicity, the weights defined in Eqs. (6) and (7) are gener-
alized to any 0-simplex and 1-simplex, respectively. Note that

distance between two atoms from the same molecule is defined
as Eq. (2). Similarly, weights for cohomology generators in
Eqs. (8) and (9) are also extended to associated simplicial
complex counterpartners.

Key Points
Our main contributions in this paper are as follows:

• To better represent molecular structures and inter-
actions, we propose the first hypergraph model for
molecular representation at atomic level.

• To characterize the multiscale information within
molecules, we introduce a filtration process and
propose hypergraph-based (weighted) persistent
cohomology.

• Persistent properties from HPC/HWPC are used as
molecular descriptors and combined with machine
learning models, in particular, gradient boosting tree
(GBT) model.

• Our HPC/HWPC-GBT models are tested on three
well-established databases, including PDBbind-v2007,
PDBbind-v2013 and PDBbind-v2016. Our models can
outperform all machine learning models with tradi-
tional molecular descriptors, for protein-ligand bind-
ing affinity prediction.

Code and data availability

The PDBbind databases were obtained from http://pdbbind.
org.cn. The codes implemented for the hypergraph persis-
tent cohomology and HPC-GBT models can be found in
http://github.com/LiuXiangMath/Hypergraph-based-Persi
stent-Cohomology.
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Let R is a principal ideal domain, GR is a R-module, C is
a chain complex of free R-module with boundary maps R-
module homomorphisms. If we denote the n-th homology
of the chain complex as Hn(C, R), cohomology Hn(C, GR) of
cochain complex HomR(C, GR) can be determined by the split
short exact sequence,

0→ExtR(Hn−1(C,R),GR)→Hn(C,GR)→HomR(Hn(C,R),GR)→0,

which means that,

Hn(C, GR) ∼= ExtR(Hn−1(C, R), GR) ⊕ HomR(Hn(C, R), GR).

Definition 1.1. Infimum cochain complex Given a hyper-
graph H, the infimum chain complex of H with coefficient
R is Inf�(H, R)=Inf�(R(H�), R((KH)�)), we define the infimum
cochain complex Inf�(H, GR) with coefficient GR as

Infn(H, GR) = (Infn(H, R))∗ = (Infn(R(H�), R((KH)�)))∗,

which the dual of Infn(R(H�), R((KH)�)).

Definition 1.2. Supremum cochain complex Given a hyper-
graph H, the supremum chain complex of H with coefficient
R is Sup�(H, R)=Sup�(R(H�), R((KH)�)), we define the Supre-
mum cochain complex Sup�(H, GR) with coefficient GR as

Supn(H, GR) = (Supn(H, R))∗ = (Supn(R(H�), R((KH)�)))∗,

which the dual of Supn(R(H�), R((KH)�)).

For a hypergraph H, its infimum chain complex Inf�(H, R)
is the largest subchain complex of the chain complex of KH
that is contained in the graded modules R(H�). Supremum
chain complex Sup�(H, R) is the smallest subchain complex
of the chain complex of KH that contains R(H�) as a graded
modules.

Theorem 1.3. Let R be a principal ideal domain. Given a
hypergraph H, the cohomology of Sup�(H, R) and the coho-
mology of Inf�(H, R) are isomorphic.

Proof. From the universal coefficient theorem, we have

Hn(Sup�(H,GR))∼=ExtR(Hn−1(Sup�(H,R)),GR)⊕HomR(Hn(Sup�(H,R)),GR),

Hn(Inf�(H,GR))∼=ExtR(Hn−1(Inf�(H,R)),GR)⊕HomR(Hn(Inf�(H,R)),GR).

From [33], we have Hn(Sup�(H,R))∼=Hn(Inf�(H,R)), so that

ExtR(Hn−1(Sup�(H, R)), GR) ∼= ExtR(Hn−1(Inf�(H, R)), GR),

HomR(Hn(Sup�(H, R)), GR) ∼= HomR(Hn(Inf�(H, R)), GR).

In this way, we have,

Hn(Sup�(H, GR)) ∼= Hn(Inf�(H, GR))

�

Definition 1.4. Embedded cohomology of hypergraph Let R
be a principal ideal domain. Given a hypergraph H, we define
the n-th embedded cohomology with coefficients in an R-
module GR of H as

Hn(H, GR) = Hn(Sup�(H, GR)) = Hn(Inf�(H, GR)).

In our computation, the coefficient R and GR are both
Z2. For simplicity, we denote Inf�(H, R), Sup�(H, R), Inf�(H, GR),
Sup�(H, R), and Hn(H, GR), as Inf�(H), Sup�(H), Inf�(H), Sup�(H),
and Hn(H), respectively.

Note that in our definition of hypergraph-based embed-
ded cohomology, we make use of universal coefficient the-
orem and require the coefficient domains to be principal
ideal domain R and R-module GR. These conditions can be
extended into more general situations and the definition of
hypergraph-based embedded cohomology can be attained
without using universal coefficient theorem.

Supremum cochain complexes generated from
protein–ligand complex model

Our protein–ligand complex-based hypergraph H is a very
special kind of hypergraph. If we consider Z2 coefficient, its
supremum cochain complex Supn(H) coincides with cochain
complex of the associated simplicial complex KH. Therefore,
its embedded cohomology is the simplicial cohomology of
KH. Note that in the following sections, we only consider Z2
situation.

Theorem 1.5. For an m-dimension hypergraph H, its embed-
ded cohomology is the simplicial cohomology of KH, if it
satisfies the following two conditions.

1. For each vertex of H, it is a 0-hyperedge.
2. For each n-hyperedge σn = {v0, v1, ..., vn}(1 � n � m) of

H, it has an associated (“face”) set {σ 0
n−1, σ 1

n−1, ..., σ n
n−1} with

σ i
n−1(0 � i � n) = {v0, ..., vi−1, vi+1, ..., vn} generated from σn by

removing the vertex vi. It only allows at most one (“face”)
element (among the n + 1 elements) from the set is not an
(n − 1)-hyperedge of H.

Note that for any hypergraph that satisfies the above two
conditions, its embedded cohomology will be the same as
the cohomology of the associated simplicial complex.

Since the coefficient is Z2, we have {vi, vj} = −{vi, vj} =
{vj, vi}, which means that for any two n-hyperedges σn, σn′
(0 � n � m), if the vertices of σn and σn′ are same. Then,
σn = σn′ .

Lemma 1. If a hypergraph H satisfies the two conditions
in the above theorem and σt = {v0, v1, ..., vt} is a t-simplex
of KH but not a t-hyperedge of H, then there exists a (t +
1)-hyperedge σt+1 = {v0, v1, ..., vt, vt+1} ∈ Ht+1 and t + 1
t-hyperedges {σ0

t , σ1
t , ..., σ t

t } ⊂ Ht where σ i
t (0 � i � t) =
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{v0, ..., vi−1, vi+1, ..., vt+1} which is generated by removing vi
from σt+1.

Proof. From the second condition of the theorem, we can
see that for each n-hyperedge σn of H, either all its (n − 1)-
“faces” exist, or there is only one (n−1)-“face” does not exist,
assume it is σk

n−1. So H will be a simplicial complex(denote

as K+
H) if we add these missed σk

n−1 into H. It also can be
seen that any simplicial complex that H can embed is bigger
than K+

H. So K+
H is the smallest simplicial complex that H

can embed, i.e., the associated simplicial complex of H. As
a result, the difference between H and KH are just these
missing “faces” σk

n−1. Here σt ∈ (KH)t, σt /∈ Ht, so σt is just

such a σk
n−1. So from condition 2 we can see that there exists

a (t + 1)-hyperedge σt+1 = {v0, v1, ..., vt, vt+1} ∈ Ht+1 and
t + 1 t-hyperedges {σt, σ1

t , ..., σ t
t } ⊂ Ht where σ i

t (0 � i � t) =
{v0, ..., vi−1, vi+1, ..., vt+1}. �

Proof of Theorem 1.3. We have Hn(H) = Hn(Sup�(H)).
From supremum chain group definition, we get that
Supn(H) = Z2(Hn) + ∂n+1(Z2(Hn+1)), therefore, we have that
Supn(H) = (Z2(Hn) + ∂n+1(Z2(Hn+1)))∗, we claim that

(Z2(Hn) + ∂n+1(Z2(Hn+1)))∗ = (Z2((KH)n))∗

If the claim is true, it directly follows that the embed-
ded cohomology of H is just the simplicial cohomology
of KH. �

Proof of the Claim. It suffices to prove that

Z2(Hn) + ∂n+1(Z2(Hn+1)) = Z2((KH)n)

Here, we have three cases.

1. n = 0, Z2(H0) + ∂1(Z2(H1)) = Z2(H0) = Z2((KH)0) since the 0-
hyperedge set of H is same with the 0-simplex set of KH.

2. 0 < n < m, firstly we have Z2(Hn) + ∂n+1(Z2(Hn+1)) ⊂
Z2((KH)n), for {Sup�(Z2(H�), Z2((KH)�)), ∂�} is a subchain com-
plex of {Z2((KH)�), ∂�}. Hence we only need to prove that each
element of (KH)n which is not in Hn can be represented by
Z2(Hn) + ∂n+1(Z2(Hn+1)). For an element σn = {v0, v1, ..., vn} of
(KH)n which is not in Hn, from lemma 1, we get that there
exists an (n + 1)-hyperedge σn+1 = {v0, v1, ..., vn, vn+1} ∈ Hn+1

and n + 1 n-hyperedges {σ 0
n , σ 1

n , ..., σ n
n } ⊂ Hn where σ i

n(0 � i �
n) = {v0, ..., vi−1, vi+1, ..., vn+1} which is generated by removing
vi from σn+1. We can see that {σ 0

n , σ 1
n , ..., σ n

n } and ∂n+1(σn+1) are
all in Z2(Hn)+ ∂n+1(Z2(Hn+1)) and it is obvious that we can get
σn by the linear combination of {σ 0

n , σ 1
n , ..., σ n

n } and ∂n+1(σn+1)
with proper coefficients.

3. n = m, Z2(Hm) + ∂m+1(Z2(Hm+1)) = Z2(Hm) = Z2((KH)m) since
the dimension of H is m and the m-hyperedge set of H is
same with the m-simplex set of KH. �

Our protein–ligand complex based hypergraph defined in
Eq. (1) satisfies the two conditions of Theorem 1.3. Therefore,
its supremum chain complex is just the chain complex of
KH.
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