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Abstract
We study the family of integral equations, called the Robin mean value equations (RMV),
that are local averaged approximations to the Robin-Laplace boundary value problem (RL).
When posed on C1,1-regular domains, we prove existence, uniqueness, equiboundedness
and the comparison principle for solutions to (RMV). For the continuous right hand side of
(RL), we show that solutions to (RMV) converge uniformly, in the limit of the vanishing
radius of averaging, to the unique W 2,p solution, which coincides with the unique viscosity
solution of (RL). We further prove the lower bound on solutions to (RMV), which is con-
sistent with the optimal lower bound for solutions to (RL). Our proofs employ martingale
techniques, where (RMV) is interpreted as the dynamic programming principle along a suit-
able discrete stochastic process, interpolating between the reflecting and the stopped-at-exit
Brownian walks.

Keywords Robin problem · Third boundary value problem ·
Oblique boundary conditions · Dynamic programming principle · Random walk ·
Finite difference approximations · Viscosity solutions
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1 Introduction

The purpose of this paper is to study the family of integral equations, parametrised by →
0+:

u (x) = 1 − γ s (x)

 
B (x)∩D

u (y)dy +
2

2(N + 2)
f (x) for all x ∈ D̄, (RMV)
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posed on a bounded domainD ⊂ R
N , with a bounded, Borel function f , a positive constant

γ , and s appropriately given in Eq. 2.1.We call (RMV) the Robin mean value equation and
view it as the approximation to the Robin-Laplace problem (known as the third boundary
value problem):

− u = f in D,
∂u

∂n
+ γ u = 0 on ∂D. (RL)

Our analysis of (RMV) relies on its probabilistic interpretation as the dynamic program-
ming principle along a discrete stochastic process {X ,x

n }∞n=0, which starts at a given x ∈ D,
samples uniformly on the truncated ballsB (X

,x
n )∩D, and stops with probability γ s (X

,x
n )

at each consecutive position X
,x

n . The process accumulates values of f until τ ,x , whereas
we define:

u (x) =
2

2(N + 2)
E

⎡

⎣
τ ,x−1

n=0

f ◦ X ,x
n

⎤

⎦ =
2

2(N + 2)
E

∞

n=0

f ◦ X ,x
n

,x
n ,

with ,x
n =

n

i=1

1 − γ (s ◦ X
,x

i−1) .

(DPP)
The second representation above reflects the value of an infinite horison process, where

the accumulation procedure rather than terminating at the stopping time tau ,x , never
stops. The consecutive evaluations of f are instead weighted by the probabilities ,x

n of
not having stopped so far. The precise definitions of {X ,x

n }∞n=0 and τ ,x will be given in
Section 5.

In this paper we relate the three individual problems (RMV) , (RL) and (DPP) , com-
bining the analytical and probabilistic techniques in their study. Our approach suggests how
to view more general, nonlinear operators (like p , ∞) subject to oblique-type boundary
conditions, through their local averaged approximations of the type (RMV) . This approach
has been previously successfully used in the Dirichlet and Neumann cases [1, 8, 14, 19, 23,
24].

We now summarize our main results. We work under the following basic hypotheses:
⎡

⎣
The nonempty set D⊂R

N is open, bounded, connected and of regularity
C1,1.The function f : D̄→R is bounded and Borel. The coefficient γ>0 is
a positive constant.

(BH)

Recall that D being C1,1 regular signifies that ∂D is locally a graph of a C1,1 function,
which is equivalent to the uniform (two-sided) supporting sphere condition; see Lemma 2.2
for details.

Theorem 1.1 Assume (BH) and let 1.

(i) Each problem (RMV) has a unique solution u = u , coinciding with the value of
(DPP) , that is Borel, bounded with a bound independent of , and obeys the com-
parison principle. For f is continuous / Hölder continuous / Lipschitz, u inherits the
same regularity.

(ii) When f ∈ C(D̄), then {u } →0 converges uniformly on D̄ to u ∈ C(D̄) that is the
unique viscosity solution to (RL). In fact, u coincides with the unique W 2,p((D))

solution to (RL). Since the range of p covers (1,∞), it follows that u ∈ C1,α(D̄) for
any α ∈ (0, 1).
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In a companion paper [16] we show that {u } →0 converges uniformly on D̄ to the unique
W 2,p(D) solution to (RL), for any bounded, Borel right hand side function f . To this end,
in [16] we use probability techniques involving various couplings of random walks and
yielding approximate Hölder regularity of u in (DPP) (Lipschitz in the interior and C0,α

up to the boundary of D, for any α ∈ (0, 1)). In the present paper, it suffices to combine
the simpler martingale arguments close to the boundary of D, with estimates on the Taylor
remainder term for the Newtonian potential, via another probabilistic interpretation of u ,
parallel to that in (DPP) .

By further martingale techniques we deduce the lower bound on u in the general case of
nonnegative bounded f , in function of γ and the radius of the inner supporting balls at ∂D:

Theorem 1.2 Assume (BH) with f ≥ 0 and let r > 0 satisfy:

for every x ∈ ∂D exists Br(a) ⊂ D such that |x − a| = r .

Then the solution to (RMV) obeys the following bound, for any radius r̄ < r provided that
1:

u (x0) ≥ r̄

γN
· inf
D̄

f for all x0 ∈ D̄.

Clearly, uniform convergence of {u } →0 to u implies that u ≥ r
γN

infD̄ f . This bound
is optimal and equivalent to Theorem 1.2. For solutions to (RL), it may be obtained directly
via the maximum principle.

1.1 Prior Results in Related Contexts

To put (RMV) in a more familiar setting, rewrite:

u (x) = p (x)

 
B (x)

1D(y)u (y)dy +
2

2(N + 2)
f (x)

+ 1 − p (x)

 
B (x)∩D

u (y)dy +
2

2(N + 2)
f (x) , p (x) = γ s (x) · |B (x)|

|B (x) \ D| .

Note that the interpolation weight p is of order , for any γ > 0. This rests in agree-
ment with the fact that the Neumann averaging, corresponding to a higher order operator,
must prevail. Indeed, we observe that the above formula interpolates between the dynamic
programming principles for:

(i) the Dirichlet problem: − u = f in D, u = 0 on ∂D, when p = 1. This heuristi-
cally corresponds to the limiting case γ = ∞. The probabilistic interpretation for the
Dirichlet problem is classical and has been extensively studied in the literature both
in the present linear case of and the random walk [10], as well as in the nonlinear
cases of p, p ∈ (1,∞] and the tug-of-war games with noise [14, 19, 23, 24]. In the
continuous setting, the Perron solution to the homogeneous problem: − u = 0 inD,
u = F on ∂D has the well known representation [10]:

u(x) = Ex F ◦ Bτ
.= E F ◦ (x + Bτx ) ,

where {Bt }t≥0 denotes the standard N -dimensional Brownian motion, and where for
each x ∈ D the stopping time τx is defined by: τx = min{t ≥ 0; x + Bt ∈ ∂D}.

(ii) the Neumann problem: − u = f in D, ∂u
∂n

= 0 on ∂D, when p = 0. This corre-
sponds to the case γ = 0 which is not covered in our paper. Indeed, the Neumann
problem is not well posed unless

´
D f = 0 and most of our proofs do not work in this
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limiting case. A related probabilistic approach [1] involves the reflected Brownian
motion and the local boundary time, first introduced in [7] for C3 domains. More pre-
cisely, in the continuous setting one defines the following family (nondecreasing in
t ≥ 0) of random variables, with the help of the reflected Brownian motion {B̄t }t≥0 :

Lt = lim
δ→0

1

2δ

ˆ t

0
1{dist(B̄s ,∂D)<δ} ds.

Then, the solution to the homogeneous problem: − u = 0 in D, ∂u
∂n

= F on ∂D
satisfying

´
∂D F = 0, is given by the limiting expectation of the Lebesgue-Stieltjes

integral in:

u(x) = lim
t→∞Ex

ˆ t

0
F ◦ B̄sdLs .

This approach was extended to C2,α domains [4] and to Lipschitz domains [3],
together with a probabilistic proof of Hölder continuity in [3, Corollary 3.8].

We finally remark that the homogeneous Robin problem for the Laplace equation:
− u = 0 in D, ∂u

∂n
+ γ u = F on ∂D, was first studied probabilistically in [22] for

C3 domains. The corresponding representation via the boundary local time of reflected
Brownian motion was shown to be:

u(x) = lim
t→∞Ex

ˆ t

0
e−γLs (F ◦ B̄s)dLs = Ex

ˆ ∞

0
e−γLs (F ◦ B̄s) dLs .

Observe that the coefficient e−γLs above plays the same role as the factor ,x
s/n in our

discrete representation (DPP) . The same problem was studied in certain fractal domains in
[2]. The mixed Dirichlet-Neumann problem for ∞ in the context of the game from [23],
under the assumption of C1 regular Neumann boundary and Lipschitz Dirichlet data, was
addressed in [8].

1.2 Relation Between (RMV) and (RL)

To motivate the role of the coefficient s (x) that will be precisely defined in (2.1), we
average on the truncated ball B (x) ∩ D the Taylor expansion:

u(y) = u(x) + ∇u(x), y − x + 1

2
∇2u(x) : (y − x)⊗2 + o(|y − x|2)

When d = dist(x, ∂D) ≥ , this procedure leads to the familiar formula:

u(x) =
 

B (x)

u(y)dy −
2

2(N + 2)
u(x) + o( 2),

whose leading order terms readily coincide with (RMV) after replacing − u with f and
after setting s (x) = 0. In case of d < when x ≈ x̄ ∈ ∂D, the same reasoning requires
calculating the possibly nonzero average

ffl
B (x)∩D y−xdy. For sufficiently regular domains

D, one can approximate this term by the average on the ballB (x) truncated with the tangent
plane to ∂D at x̄, rather than by the surface ∂D. This simpler average may be then directly

computed as: −s (x)n(x̄) ∼ − 1 − d 2 N+1
2 n(x̄). Assuming the boundary condition

u(x̄) + γ ∂u
∂n

(x̄) = 0, the first two terms of the discussed averaged Taylor expansion thus
become:

u(x) − ∇u(x), s (x)n(x̄) = u(x) − s (x)
∂u

∂n
(x̄) + O( s (x))

= u(x) + γ s (x)u(x) + O( s (x)).
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Since (1 + γ s )−1 = (1 − γ s ) + O(s2), we conclude that:

u(x) = (1 − γ s (x))

 
B (x)

u(y)dy −
2

2(N + 2)
u(x) + O( s (x)) + o( 2), (1.1)

which coincides with (RMV) at its leading order terms.
We remark that the Robin problem (RL), called also the third boundary value problem

/ impedance boundary problem / convective boundary problem, has received attention due
to its applications in many contexts in science and engineering. Using classical Schauder
estimates, it follows [11, Chapter 6.7] that on a bounded domain D of regularity C2,α , the
general strictly elliptic problem Lu = f with Cα(D̄)-regular coefficients and f ∈ Cα(D̄),
subject to the oblique boundary conditions: β(x),∇u(x) + γ (x)u(x) = φ(x) posed with
γ, β, φ ∈ C1,α(∂D) where γ β, n > 0, has a unique solution u ∈ C2,α(D̄), that satisfies
the usual a-priori bounds.

Much of the modern theory for nonlinear boundary value problems modeled on (RL),
is contained in the recent extensive monograph [17]. It is shown in Theorem 1.26 there,
that solutions to linear oblique problems in Lipschitz domains are Hölder continuous. Fur-
ther, in Theorem 4.40 and Corollary 4.41 it is shown that regularity C1,α of D suffices for
the solution regularity u ∈ C2,α(D̄), provided that f ∈ Cα(D̄) and β ∈ C1,α(∂D). We
observe that for (RL), the obliqueness vector β = n is only Lipschitz and thus one cannot,
in general, expect that u ∈ C2,α(D̄). For example, when N = 2 then in local coordinates
∂D may be parametrised as the graph {(x1, φ(x1))} of some function φ ∈ C1,1. Writing
n = (φ (x1),−1)/ 1 + |φ (x1)|2, it is not hard to check that if u ∈ C2,α(D̄), then the
boundary condition in (RL) implies that φ is a solution to a quadratic equation with C1,α

coefficients, and thus it must automatically be C1,α .
In [17, Theorem 6.30] it is proved that if D has regularity C1,α and f ∈ Lp(D) with

p ∈ (1, 1
1−α

) then u ∈ W 2,p(D) in (RL). Consequently, when f ∈ L∞, we get that u ∈
C1,α(D̄) for any α ∈ (0, 1). Analysis of (RL) in non-smooth domains, including sets with a
rectifiable topological boundary having finite (N −1)-dimensional Hausdorff measure, can
be found in [6, 10, 21].

1.3 The Structure of this Paper

In Section 2 we prove Theorem 1.1 (i) together with some preliminary geometric lemmas
regarding s . In Section 3 we derive the expansion (1.1) for C2(D̄) solutions u to (RL) and
show the uniform convergence of {u } →0 to u in this restricted setting. In Section 4 we
recall the definition of viscosity solutions to (RL) when f ∈ C(D̄) and prove in Theorem
4.2, that any uniform limit of {u } →0 must automatically be a viscosity solution. In fact,
viscosity solutions to (RL) are unique under the uniform supporting spheres assumption. For
completeness, we reproduce the proof of this folklore statement in Lemma 9.2 in Appendix.

In Section 5 we develop the probability setup related to (RMV) , where u = u . We
define the stochastic process {Xn}∞n=0 in (DPP) by (5.2) and sketch two procedures achiev-
ing the uniform distribution of its positions on the truncated balls B (Xn) ∩ D: via the
rejection sampling, and via the Knothe-Rosenblatt rearrangement. The first easy bound on
the expectation of the stopping time τ , of the order C/ 2, is then refined in Section 8 where
we prove Theorem 8.2 that serves to deduce Theorem 1.2. As a byproduct, we obtain the
lower bound on the limit u in Theorem 1.1 (ii), which is independently derived in Lemma
8.4 for u ∈ C1(D̄) satisfying (RL).
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The second probabilistic interpretation of u is proposed in Section 6: instead of stopping
the accumulation of values f along the process {Xn}∞n=0 at τ in (DPP) , the accumula-
tion proceeds indefinitely but each f (Xn) is weighted by the product of Dirichlet factors

n = n−1
i=0 (1 − γ s (Xi)). The main convergence statement in Theorem 1.1 (ii) is then

proved in Section 7. We first estimate the remainder term in the Robin expansion (1.1) for u

that is a W 2,p solution of (RL). The estimate at the boundary ofD follows from an estimate
on ∞

n=0 n in Lemma 6.2. The estimate away from ∂D is given in Theorem 7.1: the said
remainder equals the difference of f from its convolution with a suitable probabilistic ker-
nel. This suffices to pass to the limit when f ∈ C(D̄); for a bounded f that is only Borel,
the same argument is refined in the companion paper [16].

1.4 Notation

For x ∈ R
N , r > 0, by Br(x) we mean the open ball centered at x and with radius r .

The integral sign
ffl
A

f (x) dx
.= 1

|A|
´
A

f (x) dx denotes the average value of the function

f , on the set A ⊂ R
N with positive Lebesgue measure |A| > 0. The scalar product of two

matrices X, Y ∈ R
N×N is X : Y

.= trace XT Y), and the tensor product of two vectors
p, q ∈ R

N is p ⊗ q = pqT ∈ R
N×N . Given a C1 domain D ⊂ R

N , we denote by n(x)

the outward unit normal vector at x ∈ ∂D, and by π∂Dx the projection onto ∂D along the
normal n(π∂Dx), defined for each x ∈ D̄ with sufficiently small distance from ∂D. Unless
specified otherwise, C stands by any universal positive constant that may depend on D, γ
and f , but not on , x or other parameter quantities. The Landau symbolsO and o likewise
have the same uniformity properties. By 1 and C 1 we mean a “sufficiently small”
and a “sufficiently large” positive number.

2 The RobinMean Value Equation and Some Geometrical Lemmas

In this section, we prove Theorem 1.1 (i). Recall that we work under the basic hypotheses
(BH) and that we are concerned with the family of equations, parametrised by > 0, given
by:

u (x) = 1 − γ s (x)

 
B (x)∩D

u (y)dy +
2

2(N + 2)
f (x) for all x ∈ D̄. (RMV)

To define the coefficient s (x) above, we introduce the following notation (see Fig. 1):

d (x) = min 1,
1
dist(x, ∂D) ∈ [0, 1] for all x ∈ D, > 0,

Bk
1 = B1(0) ⊂ R

k, Bk
1,d = Bk

1 ∩ {yk < d} for all d ∈ [0, 1].

Then we set:

s (x) = |BN−1
1 |

(N + 1)|BN
1,d (x)|

· 1 − d (x)2
N+1
2 for all x ∈ D̄, > 0. (2.1)

In order to prove existence and uniqueness of solutions to (RMV) , we need some
geometrical lemmas regarding the quantity s .
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Fig. 1 The referential truncated ball and the scaled distances from ∂D

Lemma 2.1 Assume that B (x) ∩ D = x + BN
1,d (x). Then: 

B (x)∩D
y − xdy = −s (x)eN .

Proof The result follows by an explicit calculation:
 

B (x)∩D
y − xdy =

 
BN
1,d (x)

yNdy eN = |BN−1
1 |

|BN
1,d (x)|

ˆ d (x)

−1
s(1 − s2)

N−1
2 ds eN

= − |BN−1
1 |

(N + 1)|BN
1,d (x)|

1 − d (x)2
N+1
2 eN = −s (x)eN ,

where we applied change of variables and the fact that
ffl
BN
1,d

yidy = 0 for all i = N .

We now extend Lemma 2.1 to domains with curved boundaries. Recall that D is said to
be of class C1,1 provided that ∂D is locally a graph of a C1,1 function. Equivalently, suchD
satisfies the uniform (two-sided) supporting sphere condition, stated below. This result has
been first shown in [18, Section 2]; we refer to [15] for a self-contained discussion and an
elementary proof.

Lemma 2.2 An open, bounded set D ⊂ R
N is of class C1,1 if and only if there exists a

radius r > 0 such that for every x ∈ ∂D there exist a, b ∈ R
N satisfying:

Br(a) ⊂ D, Br(b) ⊂ R
N \ D̄ and |x − a| = |x − b| = r .

Moreover, the global Lipschitz constant of n can be taken as the inverse of the supporting
radius:

|n(x) − n(y)| ≤ 1

r
|x − y| for all x, y ∈ ∂D.

Lemma 2.3 Let D be as in (BH). Then, for all 1 and all x ∈ D̄ we have:

(i)
|B (x) \ D|

|B (0)| ≤ C
s (x)

.

(ii) We bound the volume of the following symmetric difference:

B (x) ∩ D x + RxB
N
1,d (x)

B (0)
≤ Cs (x) for all x ∈ D̄, (2.2)
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where for dist(x, ∂D) < we set Rx ∈ SO(N) to be a rotation satisfying RxeN =
n π∂D(x) , whereas for dist(x, ∂D) ≥ both sides of (2.2) are null for any Rx ∈
SO(N).

(iii) There holds:

 
B (x)∩D

y − xdy = −s (x)n π∂Dx + O s (x) for all x ∈ D̄. (2.3)

Proof 1. Let r > 0 be the radius of the supporting spheres as in Lemma 2.2 (see Fig. 2). It
suffices to treat the case in which dist(x, ∂D) < r and n(π∂Dx) = eN . We first prove
(ii). Since ∂D is contained in the region between the two supporting spheres, the quantity
in (2.2) is bounded by:

B (x) \ Br x + ( d (x) − r)eN ∪ Br x + ( d (x) + r)eN

B (0)

≤
2 · BN

1,d (x) \ Br ( d (x) − r)eN

B (0)
≤ C BN

1,d (x) \ Br/ (d (x) − r
)eN .

Writing d = d (x) and r̄ = r , the measure above is further bounded by the following
quantity:

qd,r̄ =
ˆ d

2r̄d−1−d2
2(r̄−d)

(1 − s2)
N−1
2 ds. (2.4)

Observe that for r̄ ≥ 2 we have: d − 2r̄d−1−d2

2(r̄−d)
= 1−d2

2(r̄−d)
≤ 1

2(r̄−1) ≤ 1
r̄

=
r
, so

automatically:

qd,r̄ ≤ C ≤ Cs (x) for all d ∈ 0,
1

2
.

On the other hand, for d ∈ ( 12 , 1] and r̄ ≥ 2, the lower integration limit in (2.4) is

nonnegative, and thus we may use the fact that the function s → (1 − s2)
N−1
2 is decreasing

Fig. 2 The region estimated in the proof of Lemma 2.3 (ii)
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on [0, 1], to obtain:

qd,r̄ ≤ C d − 2r̄d − 1 − d2

2(r̄ − d)
1 − 2r̄d − 1 − d2

2(r̄ − d)

2
N−1
2

≤ C
1 − d2

r̄
(1 − d2)

N−1
2 = C

r
(1 − d2)

N+1
2 ≤ Cs (x) for all d ∈ (

1

2
, 1],

in virtue of the simple estimate:

1 − 2r̄d − 1 − d2

2(r̄ − d)

2

≤ 1 − d − 1 − d2

r̄

2

≤ (1 − d2) 1 + 2

r̄
.

This concludes the proof of (2.2), for all 1 that guarantee r̄ ≥ 2.
2. The bound (2.3) in (iii) is implied directly by (2.2) and Lemma 2.1. To show (i), we

estimate:

|B (x) \ D|
|B (0)| ≤ |BN

1 \ BN
1,d |

|BN
1 | + qd,r̄ ≤ C

ˆ 1

d

(1 − s2)
N−1
2 ds + qd,r̄

≤ C 1 − d2
N+1
2 + qd,r̄ ≤ C

s (x) + Cs (x),

which ends the proof.

The next result provides the second order counterpart of the first order bound (2.3):

Lemma 2.4 Let D be as in (BH). Then:
 

B (x)∩D
(y − x)⊗2dy =

2

N + 2
IdN + O s (x) for all x ∈ D̄. (2.5)

Proof We first assume that B (x) ∩ D = x + BN
1,d (x). By a change of variables: 

B (x)∩D
(y − x)⊗2dy = 2

 
BN
1,d (x)

y⊗2 dy = 2
 

BN
1

y⊗2 dy + 2O |BN
1 \ BN

1,d (x)

=
2

N + 2
IdN + O s (x) ,

where we have used that:
ffl
BN
1

y⊗2 dy = ffl
BN
1

y2
1 dy IdN = 1

N+2 IdN , and:

|BN
1 \ BN

1,d (x)| = |BN−1
1 |

ˆ 1

d (x)

(1 − s2)
N−1
2 ds ≤ C 1 − d (x)2

N+1
2 = C

s (x)
.

In the general case, we apply the bound (2.2) which introduces an additional error term of
orderO( 2s (x)) ≤ O( s (x)). This ends the proof.

We are now ready for the main statement of this section:

Theorem 2.5 Assume (BH). For every 1, the problem (RMV) has a unique solution
u = u

f that is bounded and Borel. These solutions obey comparison principle, in the
sense that f ≤ g implies u

f ≤ u
g in D̄. The family {uf } →0 is equibounded, with a bound

independent of .
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Proof 1. For every bounded, Borel u : D̄ → R, define T
f
u : D̄ → R by:

T f u(x) = 1 − γ s (x)

 
B (x)∩D̄

u(y) dy +
2

2(N + 2)
f (x) for all x ∈ D̄.

Clearly, the operator T
f is monotone, in the sense that u ≤ v implies T

f
(u) ≤ T

f
(v) in

D̄. Assume first that f ≥ 0 and recursively define the sequence of Borel functions {un}∞n=1:

u0 ≡ 0, un = (T f )nu0.

Since u1 ≥ 0, it follows that {un}∞n=1 is pointwise increasing. Below, we will show that it
is uniformly bounded. This property will automatically result in the pointwise convergence
to some bounded, nonnegative, Borel limit function u : D̄ → R. Applying the monotone
convergence theorem, we get that un+1 = T

f
un converges to T

f
u and therefore u =

T
f
u solves (RMV) . For a sign changing right hand side f , we decompose: f = f +−f −

with f +, f − ≥ 0 and observe that uf = u
f + − u

f −
solves (RMV) in this general case as

well.
2. To achieve the claimed boundedness, we will now prove that there exist constants

C1, C2 1 such that defining a quadratic function v(x) = C1 − C2|x|2, there holds:
u ≤ v implies T f u ≤ v in D̄, (2.6)

for every bounded, Borel u : D̄ → R and every 1. We start by noting that the
monotonicity of T

f yields, when C1 is much larger than C2:

T f u−v (x) ≤ T f v − v (x)

=
 

B (x)∩D
v(y) − v(x) dy − γ s (x)

 
B (x)∩D

v(y) dy +
2

2(N + 2)
f (x)

≤ −C2

 
B (x)∩D

|y|2 − |x|2 dy − C1

2
γ s (x) + O( 2)

≤ −2C2

 
B (x)∩D

y−x dy,x − C1

2
γ s (x)−C2

 
B (x)∩D

|y−x|2 dy+O( 2),

Recalling (2.3) and (2.5) implies that the above quantity is nonpositive, provided that we
choose C1 C2 1. This proves (2.6).

3.We thus conclude existence of solutions to (RMV) and the stated comparison princi-
ple, which follows by construction. It remains to show uniqueness; to this end, consider the
difference u = u ,1 − u ,2 of some two solutions u ,1 and u ,2, to (RMV) . Since:

u(x) = (1 − γ s (x))

 
B (x)∩D

u(y) dy for allx ∈ D̄,

it follows that u ∈ C(D̄). Assume, by contradiction, that u attains a positive maximum at
some x0 ∈ D̄. Then, there must be: u(x0) ≤ (1− γ s (x0))u(x0), implying that: s (x0) = 0.
Consequently:

u(x0) =
 

B (x0)

u(y) dy ≤ u(x0)

so u = u(x0) is constant in B (x0). Repeating this argument, we obtain that u attains its
maximum at some x̄0 ∈ ∂D + B (0). This contradicts s (x̄0) = 0 and ends the proof of
Theorem 2.5.
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Corollary 2.6 In the context of Theorem 2.5, continuity, Hölder continuity or Lipschitz con-
tinuity of f on D̄ implies, respectively: continuity, Hölder continuity, or Lipschitz continuity
of the unique solution u

f to (RMV) .

Proof Observe that the map s is Lipschitz continuous on D̄ as the smooth function of the
scaled distance d , and D̄ x → ´

B (x)∩D u(y) dy is Lipschitz as well in view of the

boundedness of u. Similarly, the map D̄ x → |B (x) ∩ D| is Lipschitz. Thus, the first
term in the right hand side of (RMV) is Lipschitz continuous, which proves the claim.

3 The Taylor Expansion and Convergence to Classical Solutions

In this section, we show the expansion (1.1) and prove convergence statement in Theorem
1.1 (ii) under higher regularity assumptions, pertaining to classical solutions of (RL).

Theorem 3.1 Assume (BH). Let u ∈ C2(D̄), f ∈ C(D̄) satisfy (RL). Then we have, as
→ 0:

u(x) = 1 − γ s (x)

 
B (x)∩D

u(y) dy +
2

2(N + 2)
f (x) + O s (x) + o( 2) for all x ∈ D̄,

where the Landau symbolsO and o are uniform in x, but may depend on u, f , D and γ .

Proof Without loss of generality, we may take u ∈ C2(RN), so that the Taylor expansion of
u results in the following expansion of the average, uniformly in x ∈ D̄: 

B (x)∩D
u(y) dy = u(x) + ∇u(x),

 
B (x)∩D

y − x dy + 1

2
∇2u(x) :

 
B (x)∩D

(y − x)⊗2 dy + o( 2).

Recalling (2.3) and using boundary condition in (RL), the linear term above becomes:

∇u(x),

 
B (x)∩D

y − x dy = −s (x) ∇u(x), n π∂Dx + O s (x)

= −s (x)
∂u

∂n
(π∂Dx) + O s (x)

= γ s (x)u(π∂Dx) + O s (x)

= γ s (x)u(x) + O s (x) .

By (2.5) and (RL), the quadratic term becomes:

∇2u(x) :
 

B (x)∩D
(y − x)⊗2 dy =

2

N + 2
∇2u(x) : IdN + O s (x)

=
2

N + 2
u(x) + O s (x) = −

2

N + 2
f (x) + O s (x) .

In conclusion, it follows that: 
B (x)∩D

u(y) dy = 1 + γ s (x) u(x) −
2

2(N + 2)
f (x) + O s (x) + o( 2). (3.1)

Observing that:

1

1 + γ s (x)
= 1 − γ s (x) + O s (x)2 = 1 − γ s (x) + O s (x)

and dividing (3.1) by 1 + γ s (x), yields the claim.
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The statement below is shown using arguments similar to the proof of Theorem 2.5.

Theorem 3.2 Under the assumptions of Theorem 3.1, the sequence of (unique) solutions
{u } →0 to (RMV) converges to u, uniformly on D̄.

Proof 1. Define the sequence of positive numbers {a } →0, converging to 0 and such that
the second error term in Taylor’s expansion in Theorem 3.1 satisfies: o( 2) ≤ a 2, uni-
formly in x ∈ D̄. For two parameters: a sufficiently small δ > 0 and a large C > N+2

Nδ
,

define the quadratic functions:

v (x) = C a (1 − δ|x|2) + .

Clearly, v > 0 on D̄ if δ 1. Then we also have:

v (x) − 1 − γ s (x)

 
B (x)∩D

v (y) dy

= Ca 1 − δ|x|2 − (1 − γ s (x)) + δ(1 − γ s (x))

 
B (x)∩D

|y|2 dy + C s (x)

= Ca s (x) 1 − δ

 
B (x)∩D

|y|2 dy + δ

 
B (x)∩D

|y|2 − |x|2 dy + C s (x).

Writing
ffl
B (x)∩D |y|2 − |x|2 dy = ffl

B (x)∩D |y − x|2 dy + 2
ffl
B (x)∩D y − x dy, x and

applying (2.3) and (2.5), the above quantity is bounded from below, again when δ 1, by:

Ca
γ

2
s (x) + δ

2N

N + 2
+ O(s (x)) + C s (x) ≥ Ca δ

2N

N + 2
+ C s (x) ≥ a 2 + C s (x),

so that:

v (x) − 1 − γ s (x)

 
B (x)∩D

v (y) dy ≥ a 2 + C s (x). (3.2)

2. Consider the difference:
w = u − u − v .

By (3.2), the expansion in Lemma 3.1, and by the assumed identities (RMV) , we get:

w (x) − 1 − γ s (x)

 
B (x)∩D

w (y) dy ≤ O( s (x)) + a 2 − a 2 + C s (x) ≤ 0,

if only C 1. Similarly, defining: w̄ = u − u + v , it follows that:

w̄ (x) − 1 − γ s (x)

 
B (x)∩D

w̄ (y) dy ≥ O( s (x)) − a 2 + a 2 + C s (x) ≥ 0.

The claimed result follows now by an application of Lemma 3.3 below, since:

u − u C(D̄) ≤ v C(D̄) → 0 as → 0,

in view of w ≤ 0 and w̄ ≥ 0.

Lemma 3.3 If u ∈ C(D̄) satisfies: u(x)− 1−γ s (x)
ffl
B (x)∩D u(y) dy ≤ 0 for all x ∈ D̄,

then there must be: u ≤ 0 in D̄.

Proof Let x0 ∈ D̄ be such that u(x0) = maxD̄ u and that, by contradiction: u(x0) > 0.
Then:

u(x0) ≤ 1 − γ s (x0)

 
B (x0)∩D

u(y) dy ≤ 1 − γ s (x0) u(x0) ≤ u(x0),
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implying that s (x0) = 0 and that u = u(x0) is constant on B (x0). Iterating this argument,
we produce another maximizer x̄0 ∈ D such that u(x̄0) = maxD̄ u and dist(x̄0, ∂D) < ,
contradicting s (x̄0) = 0.

4 Convergence to Viscosity Solutions

The purpose of this section is to show that any uniform limit of a sequence in {u } →0, must
be a viscosity solution to the Robin problem (RL), provided that f ∈ C(D̄). According to
[9, Definition 7.4], we have the following definition:

Definition 4.1 LetD ⊂ R
N be a C1-regular domain and assume that γ > 0 and f ∈ C(D̄).

We say that u ∈ C(D̄) is a viscosity solution to (RL), provided that:

(i) (viscosity sub-solution property)

if x ∈ D and (p,X) ∈ J
2,+
D̄ u(x) then: − traceX ≤ f (x),

if x ∈ ∂D and (p,X) ∈ J
2,+
D̄ u(x) then: − traceX ≤ f (x) or p, n(x) + γ u(x) ≤ 0.

(ii) (viscosity super-solution property)

if x ∈ D and (p,X) ∈ J
2,−
D̄ u(x) then: − traceX ≥ f (x),

if x ∈ ∂D and (p,X) ∈ J
2,−
D̄ u(x) then: − traceX ≥ f (x) or p, n(x) + γ u(x) ≥ 0.

The set of second order super-jets J
2,+
D̄ u(x) consists of couples (p,X) ∈ R

N × R
N×N
sym ,

satisfying:

u(y) ≤ u(x) + p, y − x + 1

2
X : (y − x)⊗2 + o(|y − x|2) as D̄ y → x. (4.1)

Analogously, the set of second order sub-jets is defined by: J 2,−
D̄ u(x) = −J

2,+
D̄ (−u)(x).

Recall that the expression X : (y − x)⊗2 in (4.1) equals: X(y − x), y − x =
i,j=1...NXij (yi − xi)(yj − xj ). The following is the main statement of this section:

Theorem 4.2 Assume (BH) and let f ∈ C(D̄). If some sequence of solutions {u } →0 to
(RMV) converges uniformly on D̄, then the limit u ∈ C(D̄) is a viscosity solution to (RL).

Proof 1. Fix x ∈ D̄ and (p,X) ∈ J
2,+
D̄ u(x). For each c > 0 consider the quadratic test

function:

φc(y) = u(x) + p, y − x + 1

2
X : (y − x)⊗2 + c

2
|y − x|2.

Then: u(x) = φc(x), and u < φc in some neighbourhood of x in D̄ of the form: (B̄ c (x) \
{x}) ∩ D̄. Define the following sequence of positive numbers, decreasing to 0, as j → ∞:

aj = min
B̄ c (x)\B1/j (x) ∩D̄

φc − u), for all j = 1, 2 . . .
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Let { j }j→∞ be another sequence decreasing to 0, such that: u
j
−u C(D̄) < 1

2aj . Further,
let:

xj ∈ B̄ c (x) ∩ D̄ satisfy: (φc − u
j
)(xj ) = min

B̄ c (x)∩D̄
(φc − u

j
).

We immediately obtain that xj ∈ B̄1/j (x) ∩ D̄, so that xj → x as j → ∞, because:

(φc − u
j
)(y) > (φc − u)(y) − 1

2
aj ≥ 1

2
aj

> u(x) − u
j
(x) = (φc − u

j
)(x) for all y ∈ B̄ c (x) \ B1/j (x) ∩ D̄.

We now write (RMV) as:

f (xj ) = 2(N + 2)
2
j

u
j
(xj ) − 1 − γ s

j
(xj )

 
B

j
(xj )∩D

u
j
(y) dy

= 2(N + 2)
2
j

(u
j
(xj ) − φc(xj )) − 1 − γ s

j
(xj )

 
B

j
(xj )∩D

u
j
− φc dy (4.2)

+φc(xj ) − 1 − γ s
j
(xj )

 
B

j
(xj )∩D

φc(y) dy

= 2(N + 2)
2
j

Ij + IIj .

By the definition of xj as a local minimizer of φc − u
j
, it follows that:

Ij ≥ u
j
(xj ) − φc(xj ) γ s

j
(xj ). (4.3)

The bound on IIj will be achieved separately in the interior and the boundary cases.
2. If x ∈ D, then s

j
(xj ) = 0 for all j 1, implying that Ij ≥ 0 by (4.3). Consequently:

IIj = φc(xj ) −
 

B
j
(xj )

φc(y) dy = −
2
j

2(N + 2)
φc(x) = −

2
j

2(N + 2)
traceX + cN .

Thus (4.2) becomes: f (xj ) ≥ −traceX − cN . Passing to the limit with j → ∞ and c → 0,
we obtain the condition requested in Definition 4.1 (i):

−traceX ≤ f (x).

The same reasoning shows that −traceX ≥ f (x) for all (p,X) ∈ J
2,−
D̄ u(x).

3. Assume that x ∈ ∂D. If for some subsequence we have: j ≤ dist(xj , ∂D), then:
−traceX ≤ f (x) by the same reasoning as in step 2 above. Therefore, it suffices to assume:

dist(xj , ∂D) = j dj where dj = d
j
(xj ) ∈ [0, 1) for all j = 1, 2 . . .

Call sj = s
j
(xj ) and rewrite (4.2) as follows:

f (xj ) = 2(N + 2)
2
j

u
j
(xj ) − φc(xj ) γ sj + φc(xj )γ sj (4.4)

−(1 − γ sj )

 
B

j
(xj )∩D

φc(y) − φc(xj ) dy .

We will assume the following condition:

p, n(x) + γ u(x) > 0, (4.5)
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which, in particular, implies that the same quantity remains bounded away from 0, if n(x)

is replaced by n(π∂Dxj ) and u(x) by φc(xj ). Consequently, for some a > 0 there holds:

φc(xj ) ≥ 2a − 1

γ
p, n(π∂Dxj ) for all j = 1, 2 . . .

and (4.4) becomes, in view of ∇φc(xj ) = p + (X + cIdN)(xj − x) and ∇2φc(xj ) =
X + cIdN :

f (xj ) ≥ 2(N + 2)
2
j

aγ sj − sj p, n(π∂Dxj ) − p,

 
B

j
(xj )∩D

y − xj dy

− (X + cIdN)(xj − x),

 
B

j
(xj )∩D

y − xj dy

−1

2
X + cIdN :

 
B

j
(xj )∩D

(y − xj )
⊗2 dy .

We now use (2.3) and (2.5) to get, for all j 1:

f (xj ) ≥ 2(N + 2)
2
j

aγ sj −
2
j

2(N + 2)
X + cIdN : IdN + O(|xj − x|sj ) + O( j sj )

≥ −traceX − cN .

Passing to the limit with j → ∞ and with c → 0, we obtain: −traceX ≤ f (x), which is
precisely the condition requested in Definition 4.1 (i), now pertaining to the case x ∈ ∂D,
in presence of (4.5). A similar reasoning yields that u is also a viscosity super-solution.

In fact, viscosity solutions to (RL) are unique under the uniform outer supporting sphere
assumption. This statement follows from analysis in [9, Theorem 7.5] but since the linear
operator − does not satisfy the u-coercivity assumption (7.14) in there, we will sketch
the related proof of comparison principle in Lemma 9.2 in the Appendix A. In Section 7
we will show that the entire sequence {u } →0 converges to the unique W 2,p solution to
(RL). Thus, we independently obtain that viscosity solutions exist, are unique and coincide
with the weak solutions. We remark that another proof of existence of viscosity solutions
can be obtained by Perron’s method in view of the comparison principle [9, 12]. Finally, we
anticipate that in [16] we show the asymptotic Hölder equicontinuity of {u } →0 generated
by any Borel f ∈ L∞(D̄). Combined with a refinement of the present arguments, this
yields the assertion of Theorem 1.1 (ii) and thus another independent proof of existence and
uniqueness of solutions to (RL), in the more general case.

5 The First Probabilistic Interpretation of u

We now develop the basic probability setting related to the eq. (RMV) . As anticipated in the
introduction, we will show that the unique bounded, Borel solution to (RMV) is given by
the first probabilistic formula in (DPP) . The second formula will be discussed in Section 6.

1. Consider the probability space (BN
1 ,B, 1

|BN
1 |LN) equipped with the standard Borel σ -

algebra and the normalised Lebesgue measure, and define ( 1,F1,P1) as the countable
product of BN

1 augmented by the unit interval (likewise equipped with Borel σ -algebra
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and Lebesgue measure):

1 = (BN
1 )N × (0, 1) = {(w, b);w = {wj }∞j=1, w

j ∈ BN
1 for allj ∈ N and b ∈ (0, 1)}.

Further, the countable product of ( 1,F1,P1) is denoted by ( ,F ,P), where:

=( 1)
N={ω={(wi, bi)}∞i=1; wi = {wj

i }∞j=1, w
j
i ∈ BN

1 , bi ∈ (0, 1)for all i, j ∈ N}.
For each n ∈ N, the probability space ( n,Fn,Pn) is the product of n copies of
( 1,F1,P1) and the σ -algebra Fn is identified with the sub-σ -algebra of F , consist-
ing of sets A × ∞

i=n+1 1 for all A ∈ Fn. Then {Fn}∞n=0 where F0 = {∅, }, is a
filtration of F .

2. Given 1, define the sequence of measurable functions ki : × D̄ → N ∪
{+∞} ∞

i=1 by:

ki (ω, x) = min k ≥ 1; x + wk
i ∈ B (x) ∩ D for all ω ∈ , x ∈ D̄.

Since each ki is P-a.s. finite, we further construct the sequence of vector-valued random
variables {w ,x

i : → BN
1 }∞i=1, corresponding to 1 and x ∈ D̄, by:

w
,x

i (ω) = w
ki (ω,x)

i for P-a.e. ω ∈ .

The procedure of generating w
ki

i is well known under the name of rejection sampling
and it has the following measure preservation property: for every , x as above, for
every Borel set F ⊂ B (x) ∩ D:

P x + w
,x

i ∈ F =
∞

k=1

P1 {x + wk
i ∈ F } ∩ {k = ki } (5.1)

= |F |
|B (x)| ·

∞

k=1

1 − |B (x) ∩ D|
|B (x)|

k−1

= |F |
|B (x) ∩ D| .

For 1, x0 ∈ D̄, we recursively define the sequence of random variables X
,x0

n :
→ D̄ ∞

n=0 (see Fig. 3):

X
,x0

0 ≡ x0, X ,x0
n w1, . . . , wn = X

,x0
n−1 w1, . . . , wn−1 + w

,X
,x0

n−1 (w1,...,wn−1)
n .

(5.2)

Clearly, the function X
,x0

n is Fn-measurable and takes values in D, for n ≥ 1. Given
γ > 0, define further the F -measurable τ ,x0 : → N ∪ {+∞} by:

τ ,x0(ω) = min n ≥ 1; bn < γ s (X
,x0

n−1) .

We observe that each X
,x0

n (ω) and τ ,x0 are jointly measurable in ω and x0, by the same
property of ki . When no ambiguity arises, we will simply write X

x0
n and τx0 , to simplify the

notation.

3. The following elementary argument proves that τx0 is finite P-a.e., making it a stopping
time. It is easy to notice that there exists n̄ 1 and δ > 0 such that for every x0 ∈ D̄
there is some n ≤ n̄, satisfying:

Pn−1 (w1, . . . , wn−1); X
x0
n−1(w1, . . . , wn−1) ∈ ∂D + B /2(0) ≥ δ.

Indeed, given x0 ∈ D̄, one may choose x̄ ∈ ∂D such that dist(x0, ∂D) = |x0 − x̄|
and keep advancing the position X

x0
i in the direction of x̄, by random increments w1
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within a small sector of positive measure, located in 1
2B

N
1 close to its boundary, until

X
x0
i ∈ ∂D + B /2(0). Further, since 1 ≥ γ s (x) ≥ C for all x ∈ (∂D + B /2(0)) ∩D

and 1, we get: P(τ x0 ≤ n̄) ≥ (C )n̄δ = δ̄ > 0. By induction, if follows that:
P τx0 > kn̄ ≤ (1 − δ̄)k for all k ≥ 0, and so P τx0 = ∞ = 0, completing the
argument. It also follows that:

E τx0 =
∞

i=0

P τx0 > i ≤ n̄ ·
∞

k=0

P τx0 > kn̄ ≤ n̄

δ̄
= C . (5.3)

In fact, the above constant C is of the order C
2 , as noted in Corollary 5.2.

4. For each 1, x0 ∈ D̄ we define the random variable F ,x0(ω) =
τx0−1

i=0

f ◦X
x0
i (ω)

that is P-integrable in view of Eq. 5.3, and set:

u (x0) =
2

2(N + 2)
E F ,x0 =

ˆ τx0−1

i=0

2

2(N + 2)
f ◦ X

x0
i (ω) dP(ω). (5.4)

Since the function ×D̄ (ω, x0) → Fx0(ω) is measurable, in view of the same joint
measurability of X

x0
n and τx0 , it follows that u is a Borel function of x0. The following

is the main observation:

Lemma 5.1 Assume (BH). For each 1, the function u in Eq. 5.4 coincides with the
unique bounded, Borel solution to (RMV) :

u = u .

Proof Boundedness of u results from Eq. 5.3, because: |u (x0)| ≤ f L∞(D)
2C for

every x0 ∈ D̄. To check that u satisfies (RMV) , observe that:

Fx0 ((w1, b1), (w2, b2), . . . = f (x0) + 1b1≥γ s (x0) ·
τ

X
x0
1 (w1)−1

i=0

f X
X

x0
1 (w1)

i ((w2, b2), (w3, b3), . . . .

Fig. 3 Positions of the process defined in Eq. 5.2
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Consequently:

u (x0) =
2

2(N + 2)
E Fx0

=
2

2(N+2)

ˆ
1

ˆ
∞
i=2 1

Fx0 (w1, b1), (w2, b2), . . . d
∞

i=2

P1(wi, bi) dP1(w1,b1)

=
2

2(N + 2)
f (x0) +

ˆ
1

1 − γ s (x0)

ˆ
∞
i=2 1

τX1−1

i=0

2

2(N + 2)
f (X

X1
i )

d
∞

i=2

P1 dP1(w1, b1)

=
2

2(N + 2)
f (x0) + 1 − γ s (x0)

ˆ
1

u X
x0
1 (w1) dP1(w1).

Changing the variable in the last integral and recalling the measure-preserving property
(5.1) in:

u (x0) =
2

2(N + 2)
f (x0) + 1 − γ s (x0)

ˆ
1

u x0 + w
k1(w1,x0)

1 dP1(w1)

=
2

2(N + 2)
f (x0) + 1 − γ s (x0)

 
B (x0)∩D

u (y) dy,

yields u = u by the uniqueness of solutions to (RMV) .

We finally deduce the following refinement of Eq. 5.3. In Section 8 we then prove a
precise lower bound on E τ ,x0 in terms of 1

2 and the parameters γ and r in (BH).

Corollary 5.2 There exists a constant C, depending on D and γ but not on , such that:

E τ ,x0 ≤ C

2
for all x0 ∈ D̄ and all 1.

Proof We have:

E τ ,x0 − 1 = 2(N + 2)
2

uf (x0) ≤ C

2
,

where we used Lemma 5.1 and Theorem 2.5 applied to the constant function f = 1.

Remark 5.3 Another way of defining the process in Eq. 5.2 is based on the quantile regres-
sion procedure, as we now describe. We first redefine the probability spaces, by setting

1 = BN
1 × (0, 1) and takingF1 to be the Borel σ -algebra and P1 the normalised Lebesgue

measure on 1. The probability space ( ,F ,P) is given as the countable product of
( 1,F1,P1), where:

= ( 1)
N = ω = {(wi, bi)}∞i=1; wi ∈ BN

1 , bi ∈ (0, 1) for all i ∈ N .

For each n ∈ N, we have the corresponding ( n,Fn,Pn) as before. For x0 ∈ D̄, 1, we
now inductively define the sequence of random variables: X

,x0
n : → D̄ ∞

n=0:

X
,x0

0 ≡ x0, X ,x0
n w1, . . . , wn = X

,x0
n−1 w1, . . . , wn−1 + T X

,x0
n−1, wn , (5.5)
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where the transformation T is given by the classical Knothe-Rosenblatt rearrangement [13,
25], whose construction we sketch below. Each X

,x0
n in Eq. 5.5 is Fn-measurable and it

takes values in D̄. Given γ > 0, let:

τ ,x0(ω) = min n ≥ 1; bn < γ s (X
,x0

n−1) for all ω ∈ ,

and observe, as in Eq. 5.3 that it is a stopping time. With the same definition of u as in Eq.
5.4, the statement in Lemma 5.1 is valid as before.

Lemma 5.4 Let D ⊂ R
N be an open, bounded, C1-regular domain. For all 1 there

exists a continuous transformation T : D̄ × B (0) → R
N such that for every x ∈ D̄,

the map T (x, ·) : B (0) → B (x) ∩ D is a homeomorphism that is normalised-volume
preserving, i.e.:

|T (x, F )|
|B (x) ∩ D| = |F |

|B (0)| for every Borel set F ⊂ B (0).

Proof Fix x0 ∈ D̄. For dist(x0, ∂D) ≥ , we set T (x0, ·) = idN . When dist(x0, ∂D) <

1 then ∂D ∩ B (x0) is a C1 graph over the hyperplane perpendicular to n, and by
rescaling and rotating, we reduce to the case:

x0 = 0, = 1, n = eN , B (0) ∩ D = B1(0) ∩ {xN < α(x1, . . . , xN−1)}.
The Knothe-Rosenblatt rearrangement map is best described by denoting:

ᾱ =
1BN

1 ∩{xN<α(x1,...,xN−1)}
|BN

1 ∩ {xN < α(x1, . . . , xN−1)}|
, β̄ =

1BN
1

|BN
1 |

and seeking the measure-preserving diffeomorphism R = T1(x0, ·):
R : BN

1 , β̄ dx → BN
1 ∩ {xN < α}, ᾱ dx ,

of the form: R(x1, . . . , xN) = R1(x1), R
2(x1, x2), . . . , R

N(x1, . . . , xN) (see Fig. 4). The
continuous and strictly increasing components Ri(x1, . . . , xi−1, ·) are recursively defined
by implicit formulas:
ˆ R1(x1)

−∞

ˆ
RN−1

ᾱ y1, y2, . . . , yN d(y2, . . . , yN ) dy1 =
ˆ x1

−∞

ˆ
RN−1

β̄ y1, y2, . . . , yN d(y2, . . . , yN )dy1

and, for all x1 ∈ R:
ˆ R2(x1,x2)

−∞

ˆ
RN−2

ᾱ R1(x1), y2, . . . , yN d(y3, . . . , yN ) dy2

=
´
RN−1 ᾱ(R1(x1), y2, . . . , yN ) d(y2, . . . , yN )´

RN−1 β̄ x1, y2, . . . , yN d(y2, . . . , yN )
·
ˆ x2

−∞

ˆ
RN−2

β̄ x1, y2, . . . , yN d(y3, . . . , yN ) dy2,

eventually followed by the identity:
ˆ RN (x1,...,xN )

−∞

ˆ
RN−2

ᾱ R1(x1), R
2(x1, x2), . . . , R

N−1(x1, . . . , xN−1, yN dyN

=
´
R

ᾱ R1(x1), R
2(x1, x2), . . . , R

N−1(x1, . . . , xN−1), yN dyN´
R

β̄ x1, . . . , xN−1, yN dyN

·
ˆ xN

−∞
β̄ x1, . . . , xN−1, yN dyN ,

whose validity is requested for all (x1, . . . , xN−1) ∈ R
N−1. The fact that R is measure

preserving is then classical and may be checked directly. Continuity of R and of its inverse
R−1 is implied by the property that sections of both BN

1 and BN
1 ∩ {xN < α}, obtained by
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fixing (x1, . . . , xi), are connected sets, for any i ≤ N − 1. Finally, R ≡ idN when α = 1
and the construction is continuous with respect to n, justifying continuity of T in x0.

6 The Second Probabilistic Interpretation of u

The second probabilistic interpretation of solutions to of (RMV) as anticipated in (DPP) ,
will be given below. For each 1, x0 ∈ D̄, we define the random variables ,x0

n :
→ R

∞
n=0 along the process {X ,x0

n }∞n=0 in Eq. 5.2, by taking the following products:

,x0
n (ω) =

n

j=1

1 − γ (s ◦ X
,x0

j−1)(ω) . (6.1)

For n = 0 we adopt the convention that 0 = 1. When no ambiguity arises we write x0
n

or n, and note that each
x0
n (ω) is jointly measurable in ω and x0. We now set:

ū (x0) =
2

2(N + 2)
E

∞

i=0

(f ◦ X
x0
i )

x0
i (6.2)

=
ˆ ∞

i=0

2

2(N + 2)
f ◦ X

x0
i (ω) ·

i

j=1

1 − γ (s ◦ X
,x0

j−1)(ω) dP(ω).

Lemma 6.1 Assume (BH). For each 1, the function ū is well defined a.e. in D̄. After
a possible adjustment on a negligible set, it coincides with unique bounded Borel solution
to (RMV) :

ū = u .

Proof 1.Denote by v the solution to (RMV) with f ≡ 1. We first argue that the following
sequence of random variables {Mn}∞n=0 is a martingale with respect to the filtration {Fn}∞n=0:

Mn = (v ◦ Xn) n +
2

2(N + 2)

n−1

i=0

i ,

Fig. 4 The Knothe-Rosenblatt rearrangement in Lemma 5.4
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where we adopt the convention that M0 = v (x0). Indeed, (RMV) yields:

E Mn+1 − Mn | Fn =
 

B (Xn)∩D
v (y) dy · n+1 − v (Xn) · n +

2

2(N + 2)
n

= 1 − γ s (Xn)

 
B (Xn)∩D

v (y) dy − v (Xn) +
2

2(N + 2)
n

= 0 P − a.s. in .

Using equiboundedness of {v } →0 in Theorem 2.5 we get:

2

2(N + 2)
E

n

i=0

i ≤ E Mn+1 = E M0 = v (x0) ≤ C. (6.3)

The above uniform (independent of x0, and n) bound suffices to conclude that the function

× D̄ (ω, x0) → 2

2(N+2)
∞
i=0(f ◦ X

x0
i )(ω)

x0
i (ω) is jointly integrable. Consequently,

ū is well defined for a.e. x0 ∈ D̄, Borel regular and bounded, and moreover:

E

∞

i=0

(f ◦ X
x0
i )

x0
i =

∞

i=0

E (f ◦ X
x0
i )

x0
i (6.4)

2. Similarly as in Lemma 5.1, Fubini’s theorem and change of variable in view of Eq. 5.1
yield:

ū (x0) =
2

2(N+2)

⎛

⎝f(x0)+ 1−γs (x0)

ˆ
1

E

⎡

⎣
∞

i=0

(f ◦X
X1
i )·

i

j=1

1−γs (X
X1
j−1)

⎤

⎦ dP1

⎞

⎠

=
2

2(N + 2)
f (x0) + 1 − γ s (x0)

ˆ
1

ū X
x0
1 (w1) dP1(w1)

=
2

2(N + 2)
f (x0) + 1 − γ s (x0)

 
B (x0)∩D

ū (y) dy,

for a.e. x0 ∈ D̄. By possibly redefining ū on a Borel set of measure zero in D̄, we obtain
the validity of (RMV) for all x0 ∈ D̄, as claimed.

We conclude this section by estimating the expectation of the accumulated Dirichlet
factors n, in the boundary layer where d < 1. This property will be used in Section 7,
towards bounding the error of ū from the first order Taylor expansion of the weak solution
u to (RL).

Lemma 6.2 Assume (BH). Then for each 1 and x0 ∈ D̄, the function
∞
i=01{d (Xk)<1} x0

k is an integrable random variable and we have:

E

∞

i=0

1{d (X
x0
i )<1}

x0
i ≤ C

,

where C is a constant that is independent of and x0, but may depend on f , D and γ .



M. Lewicka, Y. Peres

Proof Fix 1, x0 ∈ D̄. Given a constant λ > 0, we consider the sequence of random
variables:

Mn =
n−1

i=0

λ 1{d (X
x0
i )<1} − s ◦ X

x0
i+1 i ,

where we adopt the convention that M0 = 0. We claim that {Mn}∞n=0 is a supermartingale
with respect to the filtration {Fn}∞n=0, provided that λ = λ(D) is chosen appropriately.
Indeed:

E Mn+1 − Mn | Fn = E λ 1{d (Xn)<1} − s (Xn+1) n | Fn

= λ1{d (Xn)<1} − 1
E s (Xn+1) | Fn n ≤ 0 P − a.s. in ,

where the last inequality follows by observing that on the event {dist(Xn, ∂D) ≥ } the
quantity in parentheses is clearly nonpositive, whereas on the event {dist(Xn, ∂D) < } it
is nonpositive, upon choosing λ small so that:

1
E s (Xn+1) | Fn = 1

 
B (Xn)∩D

s (y) dy

≥ c

 
B (Xn)∩D

1 − d (y)2
N+1
2 dy ≥ λ P − a.s. in .

The supermartingale property implies: E Mn+1 ≤ E M0 = 0 and thus we get:

E

n

i=0

1{d (Xi)<1} x0
i ≤ 1

λ
E

n

i=0

s (Xi+1) i ≤ 2

λ
E

n

i=0

s (Xi+1) i+1

= 2

λγ
E

n

i=0

1 − (1 − γ s (Xi+1)) i+1

= 2

λγ
E

n

i=0

i+1 −
n

i=0

i+2 = 2

λγ
E 1 − n+2 ≤ 2

λγ
.

The Lemma follows by passing to the limit with n → ∞.

7 Convergence toW2,p Solutions: Case f ∈ C(D̄)

In this section we complete the proof of Theorem 1.1 (ii). The key point is an estimate of
the remainder in the Taylor expansion (1.1), for u that is a W 2,p solution of (RL). In the
boundary layer where dist(x0, ∂D) < , this quantity is treated by means of Lemma 6.2,
whereas in the interior ofD we find a representation of the Newtonian potential component
of u via a convolution with suitable probabilistic kernels.

Theorem 7.1 Assume (BH) and let u ∈ C1(D̄) be the unique W 2,p solution to (RL). Define
the following uniformly bounded sequence of Borel “remainder” functions {R } →0:

R (x) = u(x) − 1 − γ s (x)

 
B (x)∩D

u(y) dy −
2

2(N + 2)
f (x).

Then, for every 1 and x0 ∈ D̄ we have:

(i) |R (x0)| ≤ a , where lim →0 a = 0, uniformly in x0 ∈ D̄.
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(ii) u(x0) − ū (x0) = lim
n→∞E

n

i=0

(R ◦ X
,x0

i )1{d (X
x0
i )≥1}

,x0
i .

(iii) There exists a family of positive Borel functions {h : B (0) → R} →0 that are
probability densities:

´
B (0) h (y) dy = 1, and such that whenever dist(x0, ∂D) ≥ ,

there holds:

R (x0) =
2

2(N + 2)

ˆ
B (x0)

h (x0 − y)f (y) dy − f (x0) .

Proof 1. Clearly, the Taylor expansion: u(y) = u(x0) + ∇u(x0), y − x + o( ) holds
uniformly in y ∈ B (x0)∩ D̄ and x0 ∈ D̄. Arguing as in the proof of Theorem 3.1 it follows
that:  

B (x0)∩D
u(y) dy = u(x0) + ∇u(x0),

 
B (x)∩D

y − x0 dy + o( )

= u(x0) + γ s (x)u(x0) + O( s (x0)) + o( ).

Consequently, we obtain the bound in (i):

R (x0) = u(x0) − 1 − γ 2s (x0)
2 u(x0) + O( s (x0)) + o( ) = o( ).

2. To show (ii), observe that the following sequence of random variables {Mn}∞n=0 is a
martingale with respect to the filtration {Fn}∞n=0:

Mn = (u ◦ Xn) n +
2

2(N + 2)

n−1

i=0

(f ◦ Xi) i +
n−1

i=0

(R ◦ Xi) i,

where we adopt the convention that M0 = 0. Indeed:

E Mn+1 − Mn | Fn = E u ◦ Xn+1 | Fn n+1 − (u ◦ Xn) n +
2

2(N + 2)
(f ◦ Xn) n + (R ◦ Xn) n

= 1 − γ s (Xn)

 
B (Xn)∩D

u(y) dy − u ◦ Xn +
2

2(N + 2)
(f ◦ Xn) + R n

= 0 P − a.s. in .

The above yields u(x0) = E M0 = E Mn+1 , resulting in:

u(x0)−
2

2(N + 2)
E

n

i=0

(f ◦ X
,x0

i )
,x0

i = E (u◦X
,x0

n+1)
,x0

n+1 +E

n

i=0

(R ◦ Xi) i .

Passing to the limit with n → ∞ and using (6.3) and (6.4) implies:

u(x0) − ū (x0) = lim
n→0

E

n

i=0

R ◦ X
,x0

i i

= lim
n→0

E

n

i=0

O a 1{d (Xi )<1} i + lim
n→∞E

n

i=0

R ◦ Xi 1{d (Xi )≥1} i

and we conclude (ii) by Lemma 6.2.
3. Recall that the Newtonian potential ∗ f ∈ C1(RN), namely ( ∗ f )(x) = ´

D (x −
y)f (y) dy, is given in terms of the fundamental solution:

(x) =
1

N(N−2)|BN
1 | |x|2−N when N > 2

− 1
2π log |x| when N = 2,
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and it satisfies: − ( ∗f ) = f inD, in the sense of distributions [11, section 4.1]. Writing:

u = ( ∗ f )|D̄ + w,

where w ∈ C1(D̄) is harmonic in D, we derive the below formula, valid for x0 ∈ D with
dist(x0, ∂D) ≥ , in virtue of the mean value property of w and by changing the integration
order in convolution:

u(x0) −
 

B (x0)∩D
u(y) dy = ( ∗ f )(x0) −

 
B (x0)

( ∗ f )(y) dy

=
ˆ
D

(x0 − y) −
 

B (x0−y)

(z) dz f (y) dy

=
2

2(N + 2)

ˆ
D

h (x0 − y)f (y) dy.

For the final convolution kernel, we have denoted:

h (x) = 2(N + 2)
2

(x) −
 

B (x)

(y) dy .

The assertion (iii) follows provided we show the claimed properties of the sequence
{h } →0. When |x| ≥ , then is harmonic on B (x), so that h (x) = 0 by the mean value
property. On the other hand, for |x| < , we get:ˆ

B (x)

(y) dy =
ˆ

B|x|(0)
(x − z) dz +

ˆ
|x|

ˆ
∂Br (0)

(x − z) dσ(z) dr (7.1)

= |BN
1 | · |x|N (x) +

ˆ
|x|

|∂BN
1 | · rN−1

 
∂Br (0)

(y) dσ(y) dr .

The first term in Eq. 7.1 results by the mean value property of the harmonic function on
B|x|(x). The second term follows by noting that g(x) = ffl

∂Br (0)
(x − y) dσ(y) is constant

on Br(0). This fact is the Newton shell theorem, that can be proved as follows. The function
g is clearly harmonic on Br(0) and it is also radially symmetric: g(x) = g(|x|) by the radial
symmetry of . Hence, the spherical mean value property yields: g(0) = ffl

Bs(0)
g(y) dy =

g(y0) for all |y0| = s < r .

In conclusion, we obtain:
ˆ

B (x)

(y) dy =
⎧
⎨

⎩

1
N(N−2) |x|2 + ´

|x| Nr dr = 2

2(N−2) − |x|2
2N when N > 2

− 1
2 |x|2 log |x| + ´

|x| 2r log |r| dr = 1
2

2

2 − 2 log | | − |x|2
2 when N = 2,

and further:

h (x) =
⎧
⎨

⎩

2(N+2)
N(N−2)|BN

1 |
|x|2−N

2 − N
2 N + (N−2)|x|2

2 N−2 when N > 2

4
π

log | |
2 + |x|2

2 4 − 1
2 2 − log |x|

2 when N = 2.

It follows by a calculation that h (x) > 0 for all x ∈ B (0) and
´
B

h = 1.

We are now ready to prove the remaining part of Theorem 1.1.

Corollary 7.2 Assume (BH) and let f ∈ C(D̄). Then {ū } →0 converge uniformly on D̄ to
u that is the unique W 2,p solution of (RL).

Proof By Theorem 7.1 (iii) we get, for all x0 ∈ D with dist(x0, ∂D) ≥ :

|R (x0)| = o( 2),
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where the Landau symbol o is uniform in x0 but may depend on f and N . Further:

|u(x0) − ū (x0)| ≤ lim
n→∞E

n

i=0

|R ◦ X
,x0

i |1{d (X
x0
i )≥1}

,x0
i = o(1),

in view of Theorem 7.1 (ii) and of Eq. 6.3. The proof is done.

8 The Lower Bound

In this section, we prove Theorem 1.2 and the optimality of the inverse quadratic estimate in
Corollary 5.2, through a precise lower bound on the stopping time τ ,x0 . As a consequence,
we obtain a uniform bound for solutions u to (RMV) with f ≥ 0, yielding the lower
bound for solutions u of the Robin problem (RL). The same optimal bound will be deduced
directly for u via analytical arguments in Lemma 8.4.

Definition 8.1 LetD be as in (BH) and fix a radius ρ > 0 that is strictly smaller than some
uniform inner supporting sphere radius r of D, given by the property:

for every x ∈ ∂D exists Br(a) ⊂ D such that |x − a| = r . (8.1)

We define a continuous function Zρ : D̄ → D satisfying:

x ∈ B̄ρ Zρ(x) ⊂ D̄ for all x ∈ D̄,

as follows. For every x ∈ D̄ such that dist(x, ∂D) ≤ ρ, there exists exactly one Zρ(x) ∈ D
that is the center of the inner ρ-supporting sphere at π∂Dx. For x ∈ D with dist(x, ∂D) > ρ,
we set Zρ(x) = x. It is straightforward that for every 1, x0 ∈ D̄ and n ≥ 0 there holds:

Zρ(X
,x0

n+1) − X
,x0

n+1 ≤ Zρ(X ,x0
n ) − X

,x0
n+1 . (8.2)

Theorem 8.2 Assume (BH) and let r̄ < r with r as in Eq. 8.1. Then for every 1 there
holds:

E τ ,x0 ≥ 2(N + 2)

γN
· r̄

2
for all x0 ∈ D̄. (8.3)

Proof 1. Fix an intermediate radius r∗ ∈ (r̄, r) and consider the auxiliary sequence of
random variables {Z ,r∗,x0

n = Zr∗ ◦ X
,x0

n }∞n=0 given in Definition 8.1 (see also Fig. 5). As

Fig. 5 The auxiliary balls Br∗ (Zn) and the process {Xn}∞n=0 in Theorem 8.2
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usual, we will drop the superscripts , r∗ and x0 to alleviate the notation. We now define the
following sequence:

Mn = Zn − Xn
2 − n

N 2

N + 2
+ 2r̄

γ
·

n

j=1

1bj <γ s (Xj−1).

and aim to prove that {Mn}∞n=0 is a supermartingale with respect to the filtration {Fn}∞n=0.
Firstly, because of Eq. 8.2 it follows that:

E Mn+1 − Mn | Fn = E Zn+1 − Xn+1
2 | Fn − Zn − Xn

2

− N 2

N + 2
+ 2r̄

γ
· E 1bn+1<γ s (Xn) | Fn (8.4)

≤ E Zn − Xn+1
2 | Fn − Zn − Xn

2 − N 2

N + 2
+ 2r̄ · s (Xn).

Then, with the help of Eqs. 2.3, 2.5 and 5.1 we get:

E Zn − Xn+1
2 | Fn − Zn − Xn

2

=
 

B (0)
Zn − Xn + w

Xn−1
n

2
dwn+1 − Zn − Xx0

n
2

=
 

B (X
x0
n )∩D

|y − Zn|2 dy − Zn − Xn
2

=
 

B (Xn)∩D
|y − Xn|2 dy + 2

 
B (Xn)∩D

y − Xn dy,Xn − Zn

= N 2

N + 2
− 2s (Xn) n(π∂DXn),Xn − Zn + O( s (Xn)).

Indeed, from Eq. 2.5 we directly obtain: 
B (Xn)∩D

|y − Xn|2 dy = trace
 

B (Xn)∩D
(y − Xn)

⊗2 dy = N 2

N + 2
+ O( s (Xn)),

while (2.3) yields: 
B (Xn)∩D

y−Xn dy,Xn−Zn = −s (Xn) n(π∂DXn),Xn−Zn +O( s (Xn))|Xn−Zn|.

Since Xn−Zn = Xn−Zn ·n(π∂DXn), and since |Xn−Zn| ≥ r∗− when s (Xn) = 0,
it follows that for all r∗ − r̄ we get:

E Zn − Xn+1
2 | Fn − Zn − Xn

2 N 2

N + 2
− 2s (Xn) · Xn − Zn

+O( s (Xn)) ≤ N 2

N + 2
− 2r∗s (Xn) + O( s (Xn)) ≤ N 2

N + 2
− 2r̄s (Xn).

Recalling (8.4), we get the desired supermartingale property: E Mn+1 − Mn | Fn ≤ 0.
2. For each fixed k ≥ 1, apply now Doob’s Optional Stopping to {Zn}∞n=0 and the finite

stopping time τ ,x0 ∧ k, to the effect that:

r2∗ ≥ |Z0 − x0|2 = E M0 ≥ E Mτ ,x0∧k

= E Zτ ,x0∧k − Xτ ,x0∧k
2 − E τ ,x0 ∧ k

N 2

N + 2
+ 2r̄

γ
· P τ ,x0 ≤ k .
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Passing to the limit with k → ∞, we obtain:

r2∗ ≥ E Zτ ,x0 − Xτ ,x0
2 − E τ ,x0

N 2

N + 2
+ 2r̄

γ
≥ |r∗ − |2 − E τ ,x0

N 2

N + 2
+ 2r̄

γ
.

Writing |r∗ − |2 ≥ r2∗ − 2r∗ , it follows that:

E τ ,x0 · N 2

N + 2
≥ 2r̄

γ
− 2r∗ ,

which implies (8.3) for r̄ replaced by any smaller radius, provided that 1. This
completes the proof of the claim, for any r̄ < r .

Corollary 8.3 Assume (BH), let f ≥ 0 and let r > 0 satisfy (8.1). Then:

(i) The solution to (RMV) satisfies:

u (x0) ≥ r̄

γN
· inf
D̄

f for all x0 ∈ D̄,

for any radius r̄ < r , provided that 1.
(ii) If some sequence of solutions {u } →0 to (RMV) converges pointwise on D̄, then the

limit u : D̄ → R satisfies:

u(x0) ≥ r

γN
· inf
D̄

f for all x0 ∈ D̄. (8.5)

Proof From Eq. 8.3 and the definition 5.4 it directly follows that:

u (x0) ≥
2

2(N + 2)
E τ ,x0 − 1 · inf

D̄
f ≥ r̄

γN
−

2

2(N + 2)
· inf
D̄

f,

resulting in (i) for r̄ replaced by any smaller radius, for 1. Recalling Lemma 5.1, this
completes the proof of the claim for any r̄ < r . The limiting statement (ii) is self-evident
from (i).

Automatically, the limiting solution u of {u } →0 obeys the bound in Eq. 8.5. We now
present an analytical proof of the same result, under stronger regularity assumptions. It is
based on the maximum principle (see, for example, [11, Corollary 3.2]).

Lemma 8.4 Let D ⊂ R
N be an open, bounded and connected set, satisfying the uniform

inner supporting sphere condition with radius r > 0 as in Eq. 8.1. Given two constants:
γ > 0 and m ≥ 0, assume that u ∈ C1(D̄) satisfies (in the sense of distributions in D):

− u ≥ m in D,
∂u

∂n
+ γ u = 0 on ∂D.

Then: min
D̄

u ≥ rm

γN
.

Proof By the maximum principle, there holds: minD̄ u = min∂D u = u(x0) for some x0 ∈
∂D. Consider the inner supporting ball B = B(x0 − rn(x0)) and the function vr ∈ C2(B̄)

given by:

vr x0 − rn(x0) + y = v(|y|) where: v(s) = m

2N
(r2 − s2) + rm

γN
.
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Since:

− vr = m in B,
∂vr

∂n
+ γ vr = 0 on ∂B,

it follows that: − (u − vr) ≥ 0. Applying again the maximum principle, we get:

min
B̄

(u − vr) = min
∂B

(u − vr) = min
∂B

u − rm

γN
= u(x0) − rm

γN
.

In particular, the difference u−vr is minimized at x0, so:
∂(u−vr )

∂n
(x0) ≤ 0, and consequently:

(u − vr)(x0) = − 1

γ
· ∂(u − vr)

∂n
(x0) ≥ 0.

In conclusion: u(x0) ≥ v(x0) = rm
γN

, proving the claim.

Remark 8.5 The bound in Lemma 8.4 is optimal. Take D = Br(0) and u(x) = a − |x|2.
Then:

− u = 2N in D,
∂u

∂n
+ γ u = −2r + γ (a − r2) on ∂D,

so (RL) holds with f = 2N and γ = 2r
a−r2

> 0 by taking a > r2. Then, clearly:

min
D̄

u = a − r2 = r

2rN
(a − r2)2N = r

γN
min
D̄

f .

We also remark that using the arguments in [5, Lemma 3.2], [20], one can prove the lower
bound on u involving the integral

´
D f (y) dy, rather than the pointwise quantity minD̄ f .

Appendix : A Proof of Uniqueness of Viscosity Solutions to (RL)

We first make an observation that relies on the assumed regularity of ∂D.

Lemma A.1 When D ⊂ R
N satisfies the uniform outer supporting sphere condition:

for every x ∈ ∂D exists Br(b) ⊂ R
n \ D̄ such that |x − b| = r, (9.1)

with some radius r > 0, then the boundary requirements in Definition 4.1 (i) and (ii) can
be reduced to: p, n(x) + γ u(x) ≤ 0 and p, n(x) + γ u(x) ≥ 0, respectively.

Proof Let x ∈ ∂D and (p,X) ∈ J
2,+
D̄ u(x). For each large j , consider the jet:

(pj ,Xj ) = p − 1

j
n(x), X + rIdN − (r + j)n(x)⊗2 .

We claim that (pj ,Xj ) ∈ J
2,+
D̄ u(x). In this case, we have:

−traceXj = − traceX + (N − 1)r − j > f (x),

so by (i) there must be:0 ≥ pj , n(x) + γ u(x) = p, n(x) + γ u(x) − 1

j
. Passing to the

limit with j → ∞ we get the claimed boundary condition. To show that (pj , Xj ) is indeed
a super-jet, let:

qj (y − x) = − 1

j
n(x), y − x + 1

2
rIdN − (r + j)n(x)⊗2 : (y − x)⊗2

= −1

j
n(x), y − x + r

2
|(y − x)tan|2 − j

2
n(x), y − x 2.
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For y ∈ D̄ satisfying n(x), y − x ≤ 0, we get: qj (y − x) ≥ | n(x), y − x | 1

j
−

j

2
| n(x), y − x | ≥ 0, if |y − x| is small enough. On the other other hand, for y ∈ D̄ such

that n(x), y − x ≥ 0, we get:

qj (y − x) ≥ −2

j
n(x), y − x + r

2
|(y − x)tan|2

≥ −2

j
r − r2 − |(y − x)tan|2 + r

2
|(y − x)tan|2 ≥ 0,

as for small |y − x| and j 1 there holds: r − r2 − |(y − x)tan|2 ≤ 1

r
|(y − x)tan|2 ≤

jr

4
|(y − x)tan|2. Thus, in both cases, the validity of Eq. 4.1 for (p,X), implies the same

asymptotic bound for each (pj ,Xj ) with sufficiently large j .

LemmaA.2 Assume the uniform outer supporting sphere condition (9.1)with radius r > 0.
Then the Robin problem (RL) with f ∈ C(D̄) has at most one viscosity solution.

Proof 1. Let u, v be two viscosity solutions to (RL). We will prove that u ≤ v. In fact, the
same analysis works when u is a viscosity sub-solution and v is a viscosity super-solution, in
the sense of Definition 4.1 (i) and (ii), where u is assumed only to be upper-semicontinuous
and v lower-semicontinuous, and where the jets sets J

2,+
D̄ and J

2,−
D̄ are replaced by their

closures J̄
2,+
D̄ and J̄

2,−
D̄ , respectively (see [9] for the details). Also, we recall that the require-

ments at boundary points in Definition 4.1 can be reduced as in Lemma 9.1, because of Eq.
9.1. The stated comparison principle is proved in three steps: by replacing u and v with strict
sub- and super-solutions uδ and vδ , and by doubling the variables technique with an appro-
priate nonlinear corrector, separately in the cases when uδ and vδ achieves its maximum in
D or on ∂D. We now sketch these arguments.

For a sufficiently large C 1 and each δ 1, define:

uδ(x) = u(x) − δ

2
|x|2 − C , vδ(x) = v(x) + δ

2
|x|2 − C .

Assume that (p,X) ∈ J
2,+
D̄ uδ(x), which is equivalent to: (p − δx, X − δIdN) ∈ J

2,+
D̄ u(x).

Then:
−trace X ≤ f (x) − Nδ when x ∈ D
p, n(x) + γ uδ(x) ≤ −δ when x ∈ ∂D.

(9.2)

Thus, each uδ is a strict sub-solution of (RL). Similarly, each vδ is a strict super-solution,
namely (p,X) ∈ J

2,−
D̄ vδ(x) implies:

−trace X ≥ f (x) + Nδ when x ∈ D
p, n(x) + γ vδ(x) ≥ δ when x ∈ ∂D.

(9.3)

2.We will show that uδ ≤ vδ in D̄, for all δ 1. By contradiction, fix δ > 0 and assume
that:

max
D̄

uδ − vδ > 0.

We first treat the case of maxD̄ uδ −vδ > max∂D̄ uδ −vδ . We apply [9, Proposition 3.7]
to: (x, y) = uδ(x)−vδ(y) and (x, y) = 1

2 |x−y|2 and obtain a sequence {(xα, yα)}α→∞
of maximizers to − α on D̄ × D̄ that converges to some diagonal element (z0, z0)
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such that z0 is a maximizer of uδ − vδ and thus z0 ∈ D. Applying [9, Theorem 3.2] to:
w(x, y) = uδ(x)−vδ(y) and φ(x, y) = α

2 |x −y|2, we further obtain sequences of matrices
Xα, Yα ∈ R

N×N
sym satisfying:

α(xα − yα),Xα ∈ J
2,+
D uδ(xα), α(xα − yα), Yα ∈ J

2,−
D vδ(yα)

Xα 0
0 −Yα

≤ 3α
IdN −IdN

−IdN IdN
.

(9.4)

The first two assertions above, together with (9.2), (9.3) yield:

−trace (Xα − Yα) ≤ f (xα) − f (yα) − 2Nδ → −2δ as α → ∞,

which contradicts the last assertion in Eq. 9.4 that implies: trace (Xα − Yα) ≤ 0.
3. We now treat the remaining case, namely that of:

max
D̄

uδ − vδ = uδ − vδ (z0) > 0 for some z0 ∈ ∂D. (9.5)

Applying [9, Proposition 3.7] to:

(x, y) = uδ(x) − vδ(y) − γ uδ(z0) y − x, n(z0) − |x − z0|2, (x, y) = 1

2
|x − y|2,

we obtain a sequence {(xα, yα)}α→∞ of maximizers to − α that converges to some
(z, z), where z is a maximizer of (z, z) = uδ(z) − vδ(z) − |z − z0|4. Hence there must be
z = z0. Also:

α|xα − yα|2 → 0 asα → ∞. (9.6)

We now apply [9, Theorem 3.2] to:

w(x, y) = uδ(x) − vδ(y), φ(x, y) = α

2
|x − y|2 + γ uδ(z0) y − x, n(z0) ,

which yields existence of sequences of matrices Xα, Yα ∈ R
N×N
sym satisfying:

α(xα − yα) − γ uδ(z0)n(z0) + 4|xα − z0|2(xα − z0),Xα ∈ J
2,+
D̄ uδ(xα),

α(xα − yα) − γ uδ(z0)n(z0), Yα ∈ J
2,−
D̄ vδ(yα),

Xα 0
0 −Yα

≤ ∇2φ(xα, yα) + 1
α
∇2φ(xα, yα)2.

(9.7)

Since ∇2φ(xα, yα) = α
IdN −IdN

−IdN IdN
+O |xα −z0|2 , the last assertion above implies:

trace (Xα − Yα) ≤ O |xα − z0|2 + 1

α
|xα − z0|4 → 0 as α → ∞. (9.8)

Note that for large α 1 there must be xα, yα ∈ D. Indeed, if xα ∈ ∂D then Eq. 9.2 and
the first assertion in Eq. 9.7 yield the contradiction in:

−δ ≥ α xα − yα, n(xα) − γ uδ(z0) n(z0), n(xα)

+4|xα − z0|2 xα − z0, n(xα) + γ uδ(xα) ≥ − α

2r
|xα − yα|2

+γ uδ(z0) n(z0), n(xα) + O |xα − z0|3 + γ uδ(xα)

→ 0 as α → ∞,
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where we used (9.1) for the bound yα − xα, n(xα) ≤ 1
2r |xα − yα|2, followed by Eq.

9.8. Similarly, if yα ∈ ∂D then Eq. 9.3 and the second assertion in Eq. 9.7 brings the
contradiction with Eq. 9.5, as:

δ ≤ α xα − yα, n(yα) − γ uδ(z0) n(z0), n(yα) + γ vδ(yα)

≤ α

2r
|xα − yα|2 − γ uδ(z0) n(z0), n(yα) + γ vδ(yα)

→ γ vδ(z0) − uδ(z0) as α → ∞.

The fact of xα, yα ∈ D established, we use Eq. 9.7 together with Eqs. 9.2, 9.3, to obtain:

−trace Xα − Yα ≤ f (xα) − f (yα) − 2Nδ → −2Nδ as α → ∞,

contradicting (9.8). This ends the proof of the Lemma.
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Ann. Probab. 19(2), 486–508 (1991)
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