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Abstract. In this article, we develop a process to symmetrize the irreducible admissible
representations ofGLn(F)with F being a finite extension ofQp , as a consequencewe obtain
a more geometric understanding of the coefficient m(b, a) appearing in the decomposition
of parabolic inductions, which allows us to prove a conjecture inspired by Zelevinsky.

1. Introduction

In this article we study the multiplicities in parabolic inductions of admissible rep-
resentations of GLn(F) with F being a finite extension of Qp. Zelevinsky [20]
classifies the admissible irreducible representations of GLn(F) in terms of multi-
segments. More precisely, given a multi-segment a, one can attach to it an irre-
ducible representation La, described as the unique irreducible sub-representation
in some standard representation π(a) constructed by parabolic induction. In other
words, in the Grothendieck group of the category of admissible representations, we
have

π(a) = La +
∑

b<a

m(b, a)Lb, m(b, a) ∈ Z≥0,

where "<" is suitable partial order imposed on the set of multi-segments. Zelevin-
sky [18] conjectured these coefficients can be computed through the intersection
cohomology of certain nilpotent orbits constructed from the multi-segments. This
conjecture was later proved by Ginzburg [5, Theorem 8.6.23] for standard mod-
ules defined by geometry and Ariki [1, 3] showed that Ginzburg’s standard module
conincide with Zelevinsky’s.

It was first observed by Zelevinsky [19] that the above nilpotent orbits could
be studied through an open embedding into some Schubert varieties. Therefore the
coefficientm(b, a) can be identified to be the evaluation at q = 1 of someKazhdan-
Lusztig polynomial Pt (a),t (b)(q), where t (a) and t (b) live in some possibly very
big symmetric group compared to the number of segments in a and b.

This was further studied by A.Henderson [7], where he used a cancellation
property of Kazhdan-Lusztig polynomials due to S. C. Billey and G. S. Warrington
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to find new permutations in a symmetric group of smaller size to compute the
coefficient m(b, a). Similar results were also obtained by T. Susuki [17].

Our starting point is different. We consider a pair of segments {�,�′}, there
are four possible relations between them (cf. Definition 2.6). We say two multi-
segments a and a′ have the same relation type if there exists an order preserving
bijection between them which preserves also the relation type of segments and
induces bijections between the set of beginnings and ends (cf. Definition 7.1). Note
that the fact that a and a′ have the same relation type naturally induces a bijection

� : S(a) := {b : b < a} → S(a′)

which is compatiblewith the poset structure. Thenwe have the following conjecture
inspiring by Zelevinsky [20, 8.7].

Conjecture 1.1. For a and a′ having the same relation type, then for b ∈ S(a) with
b′ = �(b), we have

Pa,b(q) = P a′,b′(q).

A simple example of multi-segments of the same relation type is

a = {[1, 2], [2, 3]}, a′ = {[1, 3], [2, 4]}. (1)

Our main result of the paper is

Theorem 1.2. (Theorem 7.5) The Conjecture 1.1 is true.

Specializing to q = 1, we obtain the equality between m(b, a) and m(b′, a′).
We remark that at its first glance, it seems thatConjecture 1.1 can be read directly

from the Kazhdan-Lusztig description of the coefficients. But chasing the descrip-
tion of Zelevinsky (cf. [19]) on the coefficientm(b, a) in terms of Kazhdan-Lusztig
polynomials, we find that in the Example (1), the coefficient m(a,b) corresponds
to a Kazhdan-Lusztig polynomial in the symmetric group S4, while m(a′,b′) cor-
responds to a Kazhdan-Lusztig polynomial in S6. So in fact we show how to relate
pairs of elements in different symmetric groups with the same Kazhdan-Lusztig
polynomial. These provide a nontrivial family of examples to the following old
conjecture of Lusztig.

Conjecture 1.3. (G.Lusztig, M. Dyer) Any poset isomorphism ψ between two
Bruhat intervals [u, v] and [u′, v′] in possibly distinct Coxeter groups W and W ′
preserves Kazhdan-Lusztig polynomials, i.e.,

∀x, y ∈ [u, v], Px,y = Pψ(x),ψ(y).

For recent progress on this conjecture, see [6], [13] and [4].
In the literature, the coefficients m(b, a) are treated as some invariant depend-

ing on the cuspidal support, like the dependence on the Coxeter groups of the
Kazhdan-Lusztig polynomials. However, from the point of view of the combina-
torial invariance conjecture of the Kazhdan-Lusztig polynomials, one should treat
all Coxeter groups as special objects in some larger (conjectured) combinatorial
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category. In the case of m(b, a), we have a natural category, i.e., the category of
multi-segments, and our goal is to treat the coefficient m(b, a) as a combinatorial
invariant of this category. The category of multi-segments, on the one hand admits
many natural operations from representation theory, on the other hand connects
to many natural geometric objects: graded nilpotent classes, Schubert varieties of
different types.

We offer some other conjectures regarding the notion of "same relation type",
which requires understanding deeper the combinatorial nature of the category of
multi-segments and also motivates the paper from its very beginning.

Conjecture 1.4. Let {a, a′} and {b,b′} be pairs of multi-segments of the same rela-
tion type and

c = a
∐

b, c′ = a′ ∐b′.

Assume further that c and c′ are of the same relation type, hence we have

� : S(c) → S(c′).

Then

La × Lb = Lc +
∑

d<c

nc,dLd, nc,d ∈ Z≥0,

implies

La′ × Lb′ = Lc′ +
∑

d<c

nc,dL�(d).

The parabolic induction La × Lb, in its special case where La is cuspidal, is
closely related to the computation of Jacquet functor. Special case of this conjecture
follows from [14] and [2].

Conjecture 1.5. Let a and a′ be multi-segments of the same relation type, then La
is square irreducible if and only if La′ is.

We say that an irreducible representation π of GLn is square irreducible if the
parabolic induction ofπ⊗π is an irreducible representation ofGL2n . Otherwisewe
say that π is non-square. The first example of non-square irreducible representation
was discovered by B. Leclerc [12] as a counter-example to a conjecture of Bernstein
and Zelevinsky(where he also noticed that the counter-example was closely related
to a counter-example produced by Kashiwara and Saito [9] to a conjecture by G.
Lusztig). Later work [11] relates it to various geometric and representation theoretic
properties.

We summarize the technique we use in the paper. In section two we setup the
notations and themain object to study.We introduce the notion of partial Bernstein-
Zelevinsky operator in our context, similar notion were introduced by Kashiwara
[8] in quantum groups. One can show that the two are related by certain exponential
maps. In section three, we review the classical theory of describing the coefficients
m(b, a)’s in terms of geometry of graded nilpotent classes and Kazhdan-Lusztig
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polynomials. In section four, we introduce the notion of symmetric multisegment.
For a symmetric multisegment a consisting of n segments, we show that S(a)
is indexed by Sn (cf. Proposition 4.7). Then we proceed to study the geometry
corresponding to symmetric multisegments. Consider

pϕ : Eϕ → Zϕ(c f.Definition 4.9),

we observe that the projection pϕ restricting to the open part Osym
ϕ (cf. Theorem

4.12) is a fibration with fiber GLn,n−1. Furthermore, the stratification on Osym
ϕ

induces the stratification by Schubert varieties. This should be compared with the
open embedding of Zelevinsky [19] of Eϕ into certain flag varieties, where the
corresponding orbit is in general only known to be open in the corresponding
Schubert cell.

In section five, we deal with the general multisegment. The idea is that we want
to reduce the general case to the symmetric case, as long as one is concerned about
the coefficient m(b, a) (or the corresponding Kazhdan-Lusztig polynomial). The
main result of this section is Proposition 5.39. Roughly speaking, we show that
given the multisegment a′, we can associate to it a symmetric multisegment a (in a
sense, minimal), such that we have an embedding of poset

ψ : S(a′) → S(a)

without changing the Kazhdan-Lusztig polynomials. Note that for convenience
we actually reverse the procedure, we show how to start with a to obtain a′, but
in this section we show that we obtain all multisegment from symmetric ones
(cf. Corollary 6.11). To achieve our result, we develop a geometric version of
the partial Bernstein-Zelevinsky operators introduced in section two. We study a
locally closed subvariety (Xa

k)W in Eϕa (the graded nilpotent class attached to a)
(cf.5.3), we relate it to another graded nilpotent class denoted by Zk,a of a smaller
multisegment a(k) through certain fibration. The most technical part is to show that
the map τW under consideration is an open immersion, which allows us to relate
the Kazhdan-Lusztig polynomials of different symmetric groups (hence also the
coefficient m(b, a)’s for different pairs of {a,b}). We expect further applications
of such a refined study of the graded nilpotent classes. Section 7 is just a direct
application of what we have proved before. The upshot is the proof of Theorem
7.5, which is our Conjecture 1.1.

2. Zelevinsky classification of induced representations

In this section we recall the Zelevinsky classification of induced representations
of GLn(F), with F a finite extension of Qp (Similar classification for non-
Archimedean local field of positive characteristic, but we will not need it).

Notation 2.1. We fix a uniformizer �F of F, and an absolute value |.| on F such
that |�F | = 1/q, where q is the cardinal of its residue field. Note ν the character
of GLn(F) defined by ν(g) = | det g|.
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Definition 2.2. By segment �, we mean a finite consecutive subset of integers

� = {k1, k1 + 1, · · · , k2}, k1 ≤ k2, (k1, k2) ∈ Z2.

We define a multisegment m to be a multiset of segments,

m = {�1, · · · ,�r }.
We denote by 
� the cadinality of �. We call

degm =
r∑

i=1


�i

the degree of m.

Notation 2.3. For convenience, most of the time we will simply write the multiseg-
ment m as a formal sum of segments:

m =
r∑

i=1

�i .

Following Zelevinsky,

Proposition-Definition 2.4. [20, 3.1] To any irreducible cuspidal representation
ρ of GLn(F) and a segment � = [i, i + 1, . . . , i + deg(�)], we can associate an
irreducible representation L(�,ρ) of GLn deg�(F): it is the unique irreducible sub-

representation of the normalized parabolic induction Ind
GLn deg�(F)

P (ρνi ⊗ · · · ⊗
ρνi+deg(�)), where P is the parabolic subgroup of GLn deg�(F) consisting of
upper triangular matrices with Levi GLn × · · · × GLn. When ρ = 1 be the trivial
character of GL1(F), we write directly L�.

Definition 2.5. (1) We say two segments �1 and �2 are linked if �1 ∪�2 is again
a segment and different from �1 and �2.

(2) We define the following total order on the set of segments
{ [ j, k] ≺ [m, n], if k < n,

[ j, k] ≺ [m, n], if j > m, n = k.

Definition 2.6. The relation type between segments �,�′ is one of the following
• � cover �′ if � ⊇ �′;
• linked but not juxtaposed if � does not cover �′ and � ∪ �′ is a segment but

� ∩ �′ = ∅;
• juxtaposed if � ∪ �′ is a segment but � ∩ �′ = ∅;
• unrelated if � ∩ �′ = ∅ and �,�′ are not linked.

Definition 2.7. A multisegment of cuspidal representations

a = {(�1, ρ1), · · · , (�r , ρr )}
is said to be well ordered if �1 � �2 � · · · � �r .
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Definition 2.8. For any pair of representation (π1, π2) ∈ Rep(GLn(F)) ×
Rep(GLm(F)), let π1 × π2 be the normalized induction of π1 ⊗ π2, which is
a representation of GLn+m(F).

Proposition 2.9. ([20, Theorem 4.2]) The following are equivalent:

(1) The induced representation

L(�1,ρ) × L(�2,ρ) × · · · × L(�r ,ρ)

is irreducible.
(2) For any 1 ≤ i, j ≤ r , the segments �i and � j are not linked with each other.

Proposition 2.10. (cf. [18, 4.6]) Let �1 and �2 be two linked segments with �1 �
�2, then

L(�1,ρ) × L(�2,ρ)

contains a unique sub-representation La1 and a unique quotient La2 with

a1 = {(�1, ρ), (�2, ρ)}, a2 = {(�1 ∪ �2, ρ), (�1 ∩ �2, ρ)}.
Definition 2.11. Let a = {�1,�2, . . . ,�r } be a multisegment such that �1 and
�2 are linked. By an elementary operation wemean replacing the segments�1 and
�2 by�1∩�2 and�1∪�2. In this case, we say a′ = {�1∩�2,�1∪�2, . . . , �r }
is obtained from a via an elementary operation.

Definition 2.12. We define b ≤ a if b can be obtained from a via a sequence of
elementary operations. Denote

S(a) = {b : b ≤ a},
then ≤ defines a partial order on S(a)(cf. [20, 7.1]).

We recall the following classifying theorem due to Zelevinsky.

Theorem 2.13. ([20, Theorem 6.1]) Let a = {(�1, ρ1), . . . , (�r , ρr )} be a multi-
segment of cuspidal representations with �1 � �2 � · · · � �r , then

(1) The representation

L(�1,ρ1) × · · · × L(�r ,ρr )

contains a unique subrepresentation, which we denote by La.
(2) The representations La′ and La are isomorphic if and only if a = a′.
(3) Any irreducible representation of GLn(F) is of the form La.

Definition 2.14. For a cuspidal representation ρ, we call the set

�ρ = {ρνs : s ∈ Z}
a Zelevinsky line. We denote by O(ρ) the set of multisegments supported on �ρ .
As for ρ = 1, we simply write � and O instead.
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Notation 2.15. From now on, for a = {(ρ,�1), . . . , (ρ,�r )} being well ordered,
we denote

π(a) = L(ρ,�1) × · · · × L(ρ,�r ).

According to Theorem 2.13, let a = {(ρ,�1), . . . , (ρ,�r )} be a multisegment
with support contained in some Zelevinsky line �ρ , then we can write

π(a) =
∑

b∈O(ρ)

m(b, a)Lb (2)

where m(b, a) ∈ Z≥0. The aim of this paper is to give some new insights on these
m(b, a).

Remark. it is conjectured in [20, 8.7] that the coefficient m(b, a) depends only on
the combinatorial relations ofb anda, andnot on the specific cuspidal representation
ρ. The independence of specific cuspidal representation can be shown by type
theory, see for example [15, Remark 4.18]. In other words, as far as we are
concerned with the coefficient m(b, a), we can restrict ourselves to the special
case ρ = 1, the trivial representation of GL1(F).

Notation 2.16. We denote by Rn the Grothendieck group of the category of finite
length unipotent representations of GLn(F) (i.e., the irreducible constituents are
of the form La for some a ∈ O). Let

R = ⊕n≥1Rn .

As was observed by Zelevinsky, the group R can be endowed with a Hopf
algebra structure via

Proposition 2.17. The set R is a bi-algebra with the multiplication μ and co-
multiplication c given by

μ(π1 ⊗ π2) = π1 × π2, c(π) =
n∑

r=0

JGLn(F)
Pr,n−r

(π),

where JGLn(F)
Pr,n−r

denotes the Jacquet functor from the category of smooth repre-
sentations of GLn(F) to the category of smooth representations of Mr,n−r =
GLr (F) × GLn−r regarded as the Levi subgroups of Pr,n−r , where Pr,n−r is the
unique parabolic subgroup containing the upper triangular matrices with the given
Levi subgroups.

Now Zelevinsky’s classification theorem can be reformulate into the following

Corollary 2.18. The algebra R is a polynomial ring with indeterminates {L� :
� ⊂ �}. Moreover, as a Z-module, the set {La : a ∈ O} form a basis forR.

In the final part of this section we show how to define some analogue of the
Bernstein-Zelevinsky operator, which serve as a tool for us in the sequel and moti-
vates the development of this paper.
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Definition 2.19. Wedefine a left partial Bernstein-Zelevinsky operator with respect
to the index i to be a morphism of algebras

iD : R → R,

iD(L [ j,k]) = L [ j,k] + δi, j L [ j+1,k] if k > j,
iD(L [ j]) = L [ j] + δ[i],[ j].

Here δ[i],[ j] is the Kronecker symbol. Also we define a right partial Bernstein-
Zelevinsky operator with respect to the index i to be a morphism of algebras

D i : R → R
D i (L [ j,k]) = L [ j,k] + δi,k L [ j,k−1] if j < k,

D i (L [ j]) = L [ j] + δ[i],[ j].

Definition 2.20. We define

D [i, j] = D j ◦ · · · ◦ D i

[i, j]D = (iD) ◦ · · · ◦ ( jD)

For c = {�1, . . . ,�s} with
�1 � · · · � �s,

we define

Dc = D�1 ◦ · · · ◦ D�s

and

cD = (�sD) ◦ · · · ◦ (�1D).

Remark. we recall that in [3, 4.5], Bernstein and Zelevinsky define an operator D
to be an algebra homomorphism

D : R → R,

which plays a crucial role in Zelevinsky’s classification theorem.

The relation between Jacquet functor and Bernstein-Zelevinsky operator is
given by

Proposition 2.21. ([20, 3.8]) Let δ be the algebraic morphism such that δ(ρ) = 1
for all ρ ∈ � and δ(L�) = 0 for all non cuspidal representations L�. Then

D = (1 ⊗ δ) ◦ c,

where c is the co-multiplication(cf. Proposition 2.17).

The main advantage to work with partial Bernstein-Zelevinsky operator instead
of the operator defined by Bernstein and Zelevinsky is that they are much more
simpler but share the following positivity properties:
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Theorem 2.22. Let a be any multisegment, then we have

D i (La) =
∑

b∈O
n(b, a)Lb,

such that n(b, a) ≥ 0, for all b.

Remark. the same property of positivity holds for iD .
The theorem is deduced from Lemma 2.24 and Lemma 2.25 below.

Definition 2.23. For i ∈ Z, let φi be the morphism of algebras defined by

φi : R → Z

φi ([ j, k]) = δ[i],[ j,k].
Lemma 2.24. For all multisegment a, we have φi (La) = 1 if and only if a contains
no other segments than [i], otherwise it is zero.
Proof. We prove this result by induction on the cardinality of S(a), denoted by
|S(a)|. If |S(a)| = 1, then a = amin , hence φi (La) = φi (π(a)), which is nonzero
if and only if a contains no other segments than [i], and in latter case it is 1. Let a
be a general multi-segment,

π(a) = La +
∑

b<a

m(b, a)Lb.

Now |S(a)| > 1, we know that a is not minimal in S(a), hence a contains segments
other than [i], which implies φi (π(a)) = 0.

Since |S(b)| < |S(a)| for any b < a, by induction, we know that φi (Lb) = 0
because b must contain segments other than [i]. So we are done. ��
Lemma 2.25. We have D i = (1 ⊗ φi ) ◦ c.

Proof. Since both are algebraic morphisms, we only need to check that they coin-
cide on generators. We recall the equation from [20, Proposition 3.4],

c(L [ j,k]) = 1 ⊗ L [ j,k] +
k−1∑

r= j

L [ j,r ] ⊗ L [r+1,k] + L [ j,k] ⊗ 1.

Now applying φi ,

(1 ⊗ φi )c(L [ j,k]) =L [ j,k] + δi,k L [ j,k−1] if (k > j)

(1 ⊗ φi )c(L [ j]) =L [ j,k] + δi, j .

Comparing this with the definition of D i yields the result. ��
Remark. We have the following relation between the partial Bernstein-Zelevinsky
operator and the Bernstein-Zelevinsky operator. Let e(a) = {[i1], . . . , [iα] : i1 ≤
· · · ≤ iα} be the end of a, then

D(a) = D [i1,iα](a).
Remark. In later sections we will develop a geometric version of the partial
Bernstein-Zelevinsky operator, which allows us to draw more information about
the Kazhdan-Lusztig polynomials Pa,b(q) as well as its value at q = 1, the latter
being our m(b, a).
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3. Graded nilpotent classes and Kazhdan-Lusztig polynomials

A geometric interpretation of Zelevinsky’s classification, which is also due to
Zelevinsky, is to consider the graded nilpotent classes associated to multisegments,
cf. [18], [19].

Definition 3.1. Let a be a multisegment, we define a function

ϕa : Z → N

by letting a = ∑
i≤ j ai j [i, j], and

ϕa(k) =
∑

i≤k≤ j

ai j .

We call ϕa the weight function of a.

Definition 3.2. Let ϕ : Z → N be a function with finite support. Consider the
Z-graded C-vector space

Vϕ = ⊕kVϕ,k, dim(Vϕ,k) = ϕ(k).

Moreover,

(1) let Eϕ be the set of endomorphisms T = (Tϕ,i ) of Vϕ of degree 1:

Tϕ,i : Vϕ,i → Vϕ,i+1;

(2) let Gϕ = ∏
k GL(Vϕ,k) be the automorphism of Vϕ .

We call Eϕ the variety of representations of dimension ϕ.

Remark. The group Gϕ acts naturally on the endomorphism space Eϕ via conju-
gations.

Proposition 3.3. [18, 2.3] The orbits of Eϕ under Gϕ are naturally parametrized
by multisegments of weight function ϕ. Moreover, let Oa be the orbit associated to
the multisegment a, then

a ≤ b ⇔ Ob ⊆ Oa,

where Oa denotes the orbit closure of Oa in the Zarisky topology.

Remark. Leta = ∑
i≤ j ai j [i, j] such thatϕa = ϕ, then the orbit associated consists

of the operators having exactly ai j Jordan cells starting from Vϕ, j and ending in
Vϕ,i .
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Remark. A particular instance of the above Proposition is the most important for
our application. Let us fix an element T = (Tϕa,i ) ∈ Oa and and an integer k
such that ϕa(k) = 0. Consider the set U of endomorphisms T ′ ∈ Eϕa such that
T ′

ϕa,i
= Tϕa,i for i > k or i < k. Then the stratum containing T ′ ∈ U is uniquely

determined by its image in the coset

Pk+1\Hom(Vϕa,k, Vϕa,k+1)/Pk,

where Pk+1 is the parabolic subgroup of GL(Vϕa,k+1) determined by the filtration

{0 ⊆ ker(Tϕa,k+1) ⊆ ker(Tϕa,k+2Tϕa,k+1) ⊆ · · · ⊆ Vϕa,k+1}
and Pk is the parabolic subgroup of GL(Vϕa,k) determined by the filtration

{0 ⊆ · · · ⊆ Im(Tϕa,k−1Tϕa,k−2) ⊆ Im(Tϕa,k−1) ⊆ Vϕa,k}
Example 3.4. We consider the function ϕ : Z → N with

ϕ(0) = ϕ(1) = 2, ϕ(i) = 0, ∀i = 1, 2.

Then Eϕ = {T : Vϕ,0 → Vϕ,1}. In this case Eϕ contains 3 orbits which are
determined by the rank of T :

(1) the orbit {T : rank T = 0} = Oa0 with a0 = {[0], [0], [1], [1]};
(2) the orbit {T : rank T = 1} = Oa1 with a1 = {[0], [1], [0, 1]};
(3) the orbit {T : rank T = 2} = Oa2 with a2 = {[0, 1], [0, 1]}.
Remark. The orbits {Ob : ϕb = ϕ} give rise to a stratification of the affine space
Eϕ .

Definition 3.5. Let a, b be two multisegments such that b ∈ S(a). Then we define
the polynomial

Pa,b(q) =
∑

i

q(i+db)/2 dimHi (Ob)xa ,

where

• Hi (Ob) := Hi (IC(Ob)) is the intersection complex supported on Ob which
is constant with stalk C on Ob;

• xa ∈ Oa is an arbitrary point and db = dim(Ob).

We call it the Kazhdan-Lusztig polynomial associated to {a,b}.
We recall the following fundamental result, which is conjectured by Zelevinsky

and named by whom the p-adic analogue of Kazhdan-Lusztig conjecture.

Theorem 3.6. ([18], [5, Theorem 8.6.23], [1, 3]) Let Hi (Ob)a denote the stalk at
a point x ∈ Oa of the i-th intersection cohomology sheaf of the variety Ob. Then

m(b, a) = Pa,b(1).
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Remark. In [19, Theorem 1], Zelevinsky showed that the varieties Ob are locally
isomorphic to some Schubert varieties of type Am , where m = deg(b). Hence we
know that Pa,b(q) is a polynomial in q. More precisely, for each a, Zelevinsky
associated a permutation w(a) in the symmetric group Sdeg(a) such that we have

Pa,b(q) = Pw(a),w(b)(q).

Remark. In this paper, for symmetric multisegments a and b (cf. Sect. 4), we will
givemore concrete description about the coefficientm(b, a) in terms of the elements
in Sn with n equals to the number of segments contained in a, cf. Corollary 4.15.
For the general case, we will use the reduction method from Sect. 6 to give a more
concrete description of Pa,b(q).

4. Symmetric multisegments and the associated graded nilpotent classes

In this section we introduce the notion of symmetric multisegment, which plays an
essential role in our present paper.

Definition 4.1. Let � = [i, j] be a segment, then we define the beginning and the
end of � to be

b(�) = i, e(�) = j.

Definition 4.2. We say that a multisegment a = {�1, . . . , �r } is regular if
b(�1), . . . , b(�r ) are distinct and e(�1), . . . , e(�r ) are distinct.

Example 4.3. The segment a = {[1, 2], [2, 4], [4, 5]} is regular.
Proposition 4.4. Let a be a regular multisegment, then any b ≤ a is also regular.

Proof. This follows from the fact that if a1 is obtained from a by elementary
operation, then b(a1) ⊆ b(a) and e(a1) ⊆ e(a). ��
Definition 4.5. Let a = {�1, . . . ,�n} be regular. We say that a is symmetric if

max{b(�i ) : i = 1, . . . , n} ≤ min{e(�i ) : i = 1, . . . , n}.
Example 4.6. The multisegment a = {[1, 4], [2, 5], [3, 6]} is symmetric.

We have

Proposition 4.7. Fix a symmetric multisegment aId = {�1, . . . ,�n} satisfying
b(�1) < · · · < b(�n),

e(�1) < · · · < e(�n).

Then for any permutation in the symmetric group Sn, the formula

�(w) =
n∑

i=1

[b(�i ), e(�w(i))]

defines a bijection between Sn and S(aId). Moreover, the order relation on S(aId)
induces the inverse Bruhat order, i.e.,

w ≤ v ⇔ �(w) ≥ �(v).
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Proof. Weobserve that the elementary transformations correspond exactly to trans-
positions. ��

For the rest of the section, we consider a special case of symmetric multiseg-
ments, we assume that

aId =
n∑

i=1

[i, n + i − 1].

We remind that we already constructed a bijection

� : Sn → S(aId)

such that �(Id) = aId.
To ease the notation, from now on until the end of this section we will write ϕ

as the weight function of aId instead of ϕaId .
We consider the variety Eϕ of representations of dimension ϕ.

Definition 4.8. Let

Ow = O�(w), and Osym
ϕ =

∐

w∈Sn
Ow ⊆ Eϕ.

Also, let

O
sym
w = Ow ∩ Osym

ϕ .

Definition 4.9. Let Mi, j be the space of i × j matrices. Let

Eϕ

pϕ

= M2,1 × · · · × Mn−1,n−2 × Mn,n−1 × Mn−1,n × · · · × M1,2

Zϕ := M2,1 × · · · × Mn−1,n−2 × Mn−1,n × · · · × M1,2.

be the natural projection with fiber Mn,n−1.
Now we want to describe the fiber of the restriction pϕ |Osym

ϕ
.

Definition 4.10. We define GLn,n−1 to be the subset of Mn,n−1 consisting of the
matrices of rank n − 1.

We denote by pn : Mn,n � Mn,n−1 the morphism of forgetting the last column
in Mn,n .

Remark. Now by restriction to GLn , we have the morphism

pn : GLn � GLn,n−1,

which satisfies the property that pn(g1g2) = g1 pn(g2) for g1, g2 ∈ GLn .
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Proposition 4.11. The morphism

pn : GLn � GLn,n−1,

is a fibration. Furthermore, it induces a bijection

p̄n : Bn\GLn/Bn → Bn\GLn,n−1/Bn−1,

where Bn denotes the Borel subgroup of GLn consisting of upper triangular matri-
ces.

Proof. Note that pn is GLn equivariant with GLn acting transitively on itself and
on GLn,n−1. By Bruhat decomposition we obtain that pn induces

p̄n : Bn\GLn/Bn → Bn\GLn,n−1/Bn−1,

which is a bijection. ��
Fix a basis {vi j |i = 1, . . . , 2n − 1, j = 1, . . . , ϕ(i)} of Vϕ such that Vϕ,i =

⊕ϕ(i)
j=1Cvi j .

Theorem 4.12. The morphism

pϕ |Osym
ϕ

is smooth with fiber GLn,n−1. Moreover, the morphism pϕ |Ow : Ow → pϕ(Osym
ϕ )

is surjective with fiber Bn pn(w)Bn−1 for any w ∈ Sn.

Proof. Note that smoothness follows from that pϕ : Eϕ → Zϕ is smooth and that
Osym

ϕ is open in Eϕ . Here the openness of O
sym
ϕ follows from that it contains the

open stratum indexed by the minimal element in S(aId) (or the maximal element
in Sn by Proposition 4.7). To see the rest of the properties, for w ∈ Sn , consider an
element ew ∈ Eϕ satisfying

⎧
⎨

⎩

ew(vi j ) = vi+1, j , for i < n − 1
ew(vn−1, j ) = vn,w( j),

ew(vi j ) = vi+1, j−1, for i ≥ n.

,

here we put vi,0 = 0 and v2n, j = 0 for all i and j .

Example 4.13. Let w = (1, 2) and n = 3, then by the strategy in the proof, ew is
given by the Figure 1.

We claim that ew ∈ Ow. In fact, it suffices to observe that

ew : vi i → · · · → vn−1,i → vn,w(i) → vn+1,w(i)−1 → · · · → vn+w(i)−1,1,

which by Proposition 3.3, implies that the multisegment indexing ew contains
[i, w(i) + n − 1] for all i = 1, . . . , n, hence it must be �(w). Note that, by
definition, we have

pϕ(eId) = pϕ(ew), for all w ∈ Sn .
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Fig. 1. Construction of ew in case n = 3

Since pϕ is compatible with the action of Gϕ , we get

pϕ(Osym
ϕ ) = pϕ(Ow), for all w ∈ Sn,

which implies that p|Ow is surjective. Now it remains to characterize its fiber.
Let T ′ ∈ pϕ(Osym

ϕ ), then p−1
ϕ (T ′) � Mn,n−1 in Eϕ . Moreover, for T =

(T1, . . . , T2n−2) ∈ p−1
ϕ (T ′), then T ∈ Osym

ϕ if and only if

Tn−1 ∈ GLn,n−1.

Therefore, the map T �→ Tn−1 induces

p−1
ϕ (T ′) ∩ Osym

ϕ � GLn,n−1.

Consider the variety p−1
ϕ (T ′) ∩ Ow. Note that since Gϕ acts transitively on

pϕ(Osym
ϕ ), we may assume that T ′ = pϕ(eId).

It suffices to show that the set of fw ∈ Ow satisfying
{
fw(vi j ) = vi+1, j , for i < n − 1
fw(vi j )= vi+1, j−1, for i ≥ n.

is in bijection with Bn pn(w)Bn−1 via p−1
ϕ (pϕ(eId)) ∩ Osym

ϕ � GLn,n−1.
Now the element fw ∈ Ow is completely determined by the component

fw,n−1 : Vϕ,n−1 → Vϕ,n .

We know by Proposition 3.3 and the remark following it that fw,n−1 is injective
hence of rank n − 1. Hence we have fw,n−1 ∈ GLn,n−1.

NowbyProposition 4.11we get Bn\GLn,n−1/Bn−1 is indexed by Sn , it remains
to see that fw,n−1 is in the class indexed by pn(w).

Finally, we note that pϕ is a morphism equivariant under the action of

Gϕ = GL1 × GL2 × · · · × GLn−1 × GLn × · · · × GL2 × GL1.

Since Gϕ acts transitively on Ow, the image of Ow is Gϕ.(pϕ(ew)), hence is
pϕ(OId). Now we prove that the stabilizer of pϕ(ew) is Bn × Bn−1. Let eId =
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(e1, . . . , en−1, en, . . . , e2n−2) with ei ∈ Mi,i+1 if i < n and ei ∈ Mi,i−1 if i ≥ n.
We have

pϕ(eId) = (e1, . . . , en−2, en, . . . , e2n−2).

Let g = (g1, . . . , gn, gn+1, . . . , g2n−1) such that g.pϕ(eId) = pϕ(eId). Then
by definition for i < n − 1 we know that gi+1ei g

−1
i = ei . We prove by induction

on i that gi ∈ Bi for i ≤ n − 1. For i = 1, we have nothing to prove. Now assume
that i ≤ n − 2, and gi ∈ Bi , we show that gi+1 ∈ Bi+1. Consider

gi+1ei g
−1
i (gi (vi j )) = gi+1ei (vi j ) = gi+1(vi+1, j ).

On the other hand, by induction, we know that

gi+1ei g
−1
i (gi (vi j )) = ei (gi (vi j )) ∈ ⊕k≤ jCvi+1,k .

Therefore we have gi+1 ∈ Bi+1. Actually, since ei is injective, the equality
ei (gi (vi j )) = gi+1(vi+1, j ) implies that gi is completely determined by gi+1. This
shows that gn−1 ∈ Bn−1 and it determines all gi for i < n − 1. The same method
proves that gn ∈ Bn and it determines all gi for i > n. We conclude that the fiber
of the morphism pϕ |Ow is isomorphic to Bn pn(w)Bn−1. ��
Corollary 4.14. Let v,w ∈ Sn such that v ≤ w, and let Xw denote the closure of
BnwBn in GLn. Then we have

dimHi (O
sym
w )v = dimHi (Xw)v,

for all i ∈ Z, here the index v on the left hand side indicates that we localize at a
generic point in Ov and on the right hand side means that we localize at a generic
point in BnvBn.

Proof. From the above theorem and its proof, we obtain a stratified algebraic mor-
phism

Osym
ϕ → GLn,n−1 × Zϕ

where GLn,n−1 is identified with the fiber p−1
ϕ (pϕ(eId)). Here the stratification on

GLn,n−1 is the one obtained by Proposition 4.11, and the stratification on Zϕ is
taken to be the trivial stratification.

We get

dimHi (O
sym
w )v = dimHi (Bn pn(w)Bn−1)Bn pn(v)Bn−1 .

Now apply Proposition 4.11, we have

dimHi (Bn pn(w)Bn−1)Bn pn(v)Bn−1 = dimHi (Xw)v.

��
Corollary 4.15. We have for v ≤ w in Sn,

m(�(v),�(w)) = Pv,w(1).

Proof. This follows from the fact that

dim
∑

i

Hi (X (w))v = Pv,w(1)

(cf. [10]). ��
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5. Lowering the degree of a multisegment

In this section we describe a procedure to decrease the degree of a multisegment a
without affecting the coefficients m(b, a).

5.1. Notation and Combinatorics

Definition 5.1. For � = [i, j] a segment, we put

�− =[i, j − 1], �+ = [i, j + 1].
Definition 5.2. Let k ∈ Z and � be a segment, we define

�(k) =
{

�−, if e(�) = k;
�, otherwise .

For a multisegment a = {�1, . . . ,�r }, we define
a(k) = {�(k)

1 , . . . , �(k)
r }.

Definition 5.3. We say that the multisegment b ∈ S(a) satisfies the hypothesis
Hk(a) if the following two conditions are verified

(1) deg(b(k)) = deg(a(k));
(2) there exists no pair of linked segments {�,�′} in b such that e(�) = k −

1, e(�′) = k.

Definition 5.4. Let

S̃(a)k = {c ∈ S(a) : deg(c(k)) = deg(a(k))}.
Remark. Let c ∈ S̃(a)k . Then


{� ∈ a : e(�) = k} = 
{� ∈ c : e(�) = k}.
Here we count segments with multiplicities.

Lemma 5.5. Let k ∈ Z.

(1) For any b ∈ S(a), we have deg(b(k)) ≥ deg(a(k)).
(2) Let c ∈ S̃(a)k , then for b ∈ S(a) such that b > c, we have b ∈ S̃(a)k .
(3) Let b ∈ S̃(a)k , then b(k) ∈ S(a(k)). Moreover, if we suppose that a satisfies the

hypothesis Hk(a) and b = a, then

b(k) ∈ S(a(k)) − {a(k)}
.

(4) Suppose that a does not verify the hypothesis Hk(a), then there exists b ∈ S(a)
satisfying the hypothesis Hk(a), such that b(k) = a(k).
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Proof. For (1), note that for any b ∈ S(a), e(b) := {e(�) : � ∈ b} is a sub-
multisegment of e(a). From b to b(k), we replace those segments � such that
e(�) = k by �−. Now (1) follows by counting the segments ending in k.

For (2), by (1), we have

deg(a(k)) ≤ deg(b(k)) ≤ deg(c(k)).

The fact that c ∈ S̃(a)k implies that deg(a(k)) = deg(c(k)), hence deg(a(k)) =
deg(b(k)) and b ∈ S̃(a)k .

As for (3), suppose that deg(b(k)) = deg(a(k)), we prove b(k) < a(k). Let

a = a0 > · · · > ar = b

be a maximal chain of multisegments, then by (2), we know deg(a(k)
j ) = deg(a(k)),

for all j = 1, . . . , r . Our proof breaks into two parts.
(I) We show that

deg(a(k)
j ) = deg(a(k)

j+1) ⇒ a(k)
j ≥ a(k)

j+1.

Let a j+1 be obtained from a j by applying the elementary operation to two
linked segments �,�′.

• If none of them ends in k, then a(k)
j contains both of them. We obtain a(k)

j+1 by
applying the elementary operation to them. If one of them ends in k, we assume
e(�′) = k.

• If � precedes �′, we know that if e(�) < k − 1, � is still linked to �′−, and
one obtains a(k)

j+1 by applying elementary operation to {�, �′−}, otherwise
e(�) = k − 1, which implies a(k)

j+1 = a(k)
j .

• If � is preceded by �′, then the fact that

deg(a(k)
j+1) = deg(a(k)

j )

implies b(�) ≤ k, hence �′− is linked to �, and we obtain a(k)
j+1 from a(k)

j by
applying elementary operation to them.

Here we conclude that b(k) ∈ S(a(k)).
(II) Assuming that a satisfies the hypothesis Hk(a), we show that

a(k)
1 < a(k).

Let a1 be obtained from a by performing the elementary operation to �,�′.
We do it as in (I) but put j = 0. Note that in (I), the only case where we can

have a(k)
1 = a(k) is when � precedes �′ and e(�′) = k, e(�) = k − 1. But such

a case can not exist since a verifies the hypothesis Hk(a). Hence we are done.
Finally, for (4), we construct b in the following way. Suppose that a does not

satisfy the hypothesis Hk(a), then there exists a pair of linked segments {�,�′}
such that

e(�) = k − 1, e(�′) = k,
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let a1 be the multisegment obtained by applying the elementary operation to � and
�′. We have

a(k)
1 = a(k).

If again a1 fails the hypothesis Hk(a), we repeat the same construction to get a2, . . .,
since

a > a1 > · · · .

In finite step, we get b satisfying the conditions and

b(k) = a(k).

��
Remark. Actually, the multisegment constructed in (4) is unique, as we shall see
later (Proposition 5.39).

Definition 5.6. We define a morphism

ψk : S̃(a)k → S(a(k))

by sending c to c(k).

Proposition 5.7. The morphism ψk is surjective.

Proof. Fix d ∈ S(a(k)), and then choose a maximal chain of multisegments,

a(k) = d0 > · · · > dr = d.

By induction, we can assume that there exists ci ∈ S̃(a)k such that c(k)
i = di , for

all i < r . Assume we obtain d from dr−1 by performing the elementary operation
on the pair of linked segments {�,�′}. We assume that � ≺ �′.

• If e(�) = k−1 and e(�′) = k−1, thenwe observe that the pair of segments are
actually contained in cr−1. Let cr be the multisegment obtained by performing
the elementary operation to them . We conclude that c(k)

r = dr , and c ∈ S̃(a)k .
• If e(�) = k − 1, then �+ ∈ cr−1 and �′ ∈ cr−1 or � ∈ cr−1. The fact that
dr−1 = c(k)

r−1 implies that k /∈ e(dr−1), hence e(�′) > k. Hence both � and
�+ are linked to �′. In either case we perform the elementary operation to get
cr such that c(k)

r = d.
• If e(�′) = k − 1, then �′+ ∈ cr−1 and � ∈ cr−1 or �′ ∈ cr−1. The same

argument as in the second case shows that there exists cr such that c(k)
r = d.

��
Furthermore, the proof of Proposition 5.7 yields the following refinement.
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Corollary 5.8. Let c ∈ S̃(a)k,d ∈ S(a(k)) such that

c(k) > d,

then there exists a multisegment e ∈ S̃(a)k such that

c > e, e(k) = d.

Proof. Note that c ∈ S̃(a)k implies S̃(a)k ⊇ S̃(c)k . Combine with the surjectivity
of

ψk : S̃(c)k → S(c(k)),

we get the result. ��

Definition 5.9. For a multisegment a, and k ∈ Z we define

S(a)k = {c ∈ S̃(a)k : c satisfies the hypothesis Hk(a)}.

Proposition 5.10. The restriction

ψk : S(a)k → S(a(k))

c �→ c(k)

is also surjective. For c ∈ S̃(a)k,d ∈ S(a(k)) such that c(k) > d, there exists a
multisegment e ∈ S(c)k such that e(k) = d.

Proof. For d ∈ S(a(k)), by Proposition 5.7, we know that there exists c ∈ S̃(a)k
such that c(k) = d. But by (4) in Lemma 5.5, we know that there exists c′ ∈ S(c)k
such that c′(k) = c(k) = d. We conclude that ψk is surjective by the observation
that if c ∈ S̃(a)k , then

S(c)k ⊆ S(a)k .

Assume that c ∈ S̃(a)k,d ∈ S(a(k)) satisfying c(k) > d. By Corollary 5.8, we
know that there exists an e′ ∈ S̃(c)k such that e′(k) = d. By (4) in Lemma 5.5, we
know that there exists e ∈ S(e′)k such that e(k) = e′(k) = d. Hence we conclude
by the fact that if e′ ∈ S̃(c)k , then

S(e′)k ⊆ S(c)k .

��

Remark. In the following sections, most of the time we will work with a(k) and the
hypothesis Hk(a). But all our results will remain valid if we replace a(k) by their
left hand side versions (k)a and Hk(a) by k H(a) etc., see the end of this section.
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5.2. Injectivity of ψk: First Step

Notation 5.11. For any multisegment a, we denote by amin the minimal element in
S(a).

By Proposition 5.10, we know there exists c ∈ S(a)k such that c(k) = (a(k))min.
In this section, we show that such a c is unique in S(a)k .

Notation 5.12. Let �a,k = 
{� ∈ a : e(�) = k}.
Definition 5.13. Let

a0 = {� ∈ (a(k))min : e(�) = k − 1}.
Proposition 5.14. Let a0 = {�1 � · · · � �r }. Let c be a multisegment such that

(1) If ϕa(k − 1) > ϕa(k), then r = ϕa(k − 1) − ϕa(k) + �a,k . Let

c = ((a(k))min \ a0) ∪ {�+
1 � · · · � �+

�a,k
� ��a,k+1 � · · · � �r }.

(2) If ϕa(k) − �a,k < ϕa(k − 1) ≤ ϕa(k), then r = ϕa(k − 1) − ϕa(k) + �a,k . Let

c = ((a(k))min \ a0) ∪ {�+
1 � · · · � �+

r � [k] = · · · = [k]︸ ︷︷ ︸
�k,a−r

}

(3) If ϕa(k − 1) ≤ ϕa(k) − �a,k , then a0 = ∅ and

c = a(k) + �a,k[k].
Then c satisfies the hypothesis Hk(c) and c(k) = (a(k))min.

Proof. We show only the case ϕa(k − 1) > ϕa(k), the proof for other cases is
similar. Note that we have the following equality

ϕa(k − 1) = ϕ(a(k))min
(k − 1) = r + 
{� ∈ (a(k))min : � ⊇ [k − 1, k]}.

Moreover, ϕa(k − 1) > ϕa(k) implies that no segment in (a(k))min starts at k by
minimality, hence we also have

ϕa(k) = ϕ(a(k))min
(k) + �k,a = 
{� ∈ (a(k))min : � ⊇ [k − 1, k]} + �k,a.

Now comparing the two formulas gives the equality r = ϕa(k − 1)−ϕa(k)+ �a,k .
By definition we have c(k) = (a(k))min. To check that c satisfies the hypothesis
Hk(c), it suffices to note that (a(k))min \ a0 does not contain segment which ends
in k − 1. ��
Lemma 5.15. Let c ∈ S(c)k be a multisegment such that c(k) is minimal (i.e.,
S(c(k)) = {c(k)}). Then for any d ∈ S(c)\{c}, d /∈ S̃(c)k .
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Proof. Suppose that d < c is a multisegment such that d(k) = c(k). Consider the
maximal chain of multisegments

c = c0 > · · · > ct = d.

Our assumption implies that c(k)
i = c(k) for all i = 1, . . . , t by Lemma 5.5. Hence

we can assume t = 1 and consider d ∈ S(c) to be a multisegment obtained by
applying the elementary operation to the pair of linked segments {�,�′} with
� ≺ �′.

• If e(�) = k, e(�′) = k, then the pair {�,�′} also appears in c(k), contradicting
the fact that c(k) is minimal.

• If e(�′) = k, then by the fact that c ∈ S(c)k , we know that e(�) < k−1, which
implies that the pair {�,�′−} is linked and belongs to c(k),contradiction.

• If e(�) = k and b(�′) < k + 1, then the pair {�−,�′} is still linked and
belongs to c(k), contradiction.

Hence we must have e(�) = k and b(�′) = k + 1, this implies that deg(d(k)) >

deg(c(k)) and d /∈ S̃(c)k . Finally, (b) of Lemma 5.5 implies that for all d < c, we
have d /∈ S̃(c)k . ��

Proposition 5.16. Let c ∈ S(c)k be a multisegment such that c(k) is minimal. Then
there is a unique term Lc(k) of minimal degree inDk(Lc) viewed as an element inR
(Dk is the partial Bernstein-Zelevinsky operator), which appears with multiplicity
one.

Proof. Let c = {�1, · · · ,�r } such that e(�t ) = k if and only if t = i, . . . , j with
i ≤ j . Then

Dk(π(c)) = �1 × · · · × �i−1 × (�i + �−
i )

× · · · × (� j + �−
j ) × � j+1 × · · · × �r

with minimal degree term given by

π(c(k)) = �1 × · · · × �i−1 × �−
i × · · · × �−

j × � j+1 × · · · × �r .

The same calculation shows that for any d = c ∈ S(c), the minimal degree term
in Dk(π(d)) is given by π(d(k)), whose degree is strictly greater than that of c(k)

since by Lemma 5.15 we know that d /∈ S̃(c)k . Note thatDk(Ld) is a non-negative
sum of irreducible representations (Theorem 2.22), which does not contain any
representation of degree equal to that of c(k), by comparing the minimal degree
term in Dk(π(d)) and

∑
e∈S(d) m(e,d)Dk(Le). Finally, comparing the minimal

degree term in Dk(π(c)) and
∑

e∈S(c) m(e, c)Dk(Le) gives the proposition. ��

Proposition 5.17. Let a be a multisegment. Then S(a)k contains a unique multi-
segment c such that c(k) = (a(k))min.
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Proof. Let a = {�1, · · · ,�s} such that e(�t ) = k if and only if t = i, . . . , j with
i ≤ j . Then

Dk(π(a)) = �1 × · · · × �i−1 × (�i + �i
−)

× · · · × (� j + �−
j ) × � j+1 × · · · × �s

with minimal degree term given by

π(a(k)) = �1 × · · · × �i−1 × �−
i × · · · × �−

j × � j+1 × · · · × �r .

Note that in π(a(k)), m((a(k))min, a(k)) = 1(cf. [18, Corollary 4.2]). Now com-
pare with the terms of minimal degree in

∑
d∈S(a) m(d, a)Dk(Ld) and apply the

Proposition 5.16 yields the uniqueness of c such that c(k) = (a(k))min.

Proposition 5.18. Let c be the multisegment constructed in Proposition 5.14. Then
c ∈ S(a).

Proof. Let

a1 = a(k) + �a,k[k],
then we observe that a ∈ S(a1). Because of c ∈ S((a(k))min + �a,k[k]), we have
c ∈ S(a1). Note that since deg((a1)(k)) = deg(c(k)), the fact that c ∈ S(c)k
implies that c ∈ S(a1)k . Now let d ∈ S(a)k , then we have d ∈ S(a1)k since
deg(d(k)) = deg(a(k)

1 ) = deg(a(k)). Assume furthermore that d(k) is minimal, then
by Proposition 5.17, we know that such a multisegment in S(a1)k is unique, which
implies d = c. ��
Corollary 5.19. Let c ∈ S(a)k such that c(k) = (a(k))min, then c is minimal in
S̃(a)k .

Proof. By Proposition 5.10, we know that for any d ∈ S̃(a)k , there exists a mul-
tisegment c′ ∈ S(a)k with c′(k) = (a(k))min, such that d > c′. By uniqueness, we
must have c = c′. ��

5.3. Geometry of graded nilpotent classes: General Cases

In this section, we show geometrically that the morphism

ψk : S(a)k → S(a(k))

c �→ c(k)

is bijective, satisfying the properties

(1) For c ∈ S(a)k , we have Pc,a(q) = Pc(k),a(k) (q).
(2) The morphism ψk preserves the order, i.e, for c,d ∈ S(a)k , c > d if and only

if c(k) > d(k).
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To achieve this, firstly we consider the sub-variety Xk
a = ∐

c∈S̃(a)k
Oc, and

construct a fibration α from Xk
a to Gr(�a,k, Vϕa,k), the latter is the space of the

�a,k-dimensional subspaces of Vϕa,k . Secondly, we construct an open immersion

τW : (Xk
a)W → Ya(k) × Hom(Vϕa,k−1,W ),

where (Xk
a)W is the fiber over W with respect to α and Ya(k) = ∐

c∈S(a(k)) Oc.
Here we fix a multisegment a and let ϕ = ϕa.

Definition 5.20. • Let

Xk
a =

∐

c∈S̃(a)k

Oc,

• Let Ya(k) = ∐
c∈S(a(k)) Oc.

• For b > c in S̃(a)k , we define

Xk
b,c =

∐

b≥d≥c

Od.

Let c ∈ S̃(a)k, T ∈ Oc, then

Lemma 5.21. We have dim(ker(T |Vϕ,k )) = 
{� ∈ a : e(�) = k} = �a,k (Notation
5.12), which does not depend on the choice of T .

Proof. The fact T ∈ Oc implies

dim(ker(T |Vϕ,k )) = 
{� ∈ c : e(�) = k}.
Then our lemma follows from the remark after Definition 5.4. ��
Definition 5.22. Let

Gr(�a,k, Vϕ) = {W ≤ Vϕ,k : dim(W ) = �a,k},
and for W ∈ Gr(�a,k, Vϕ), let

Vϕ/W = Vϕ,1 ⊕ · · · ⊕ Vϕ,k−1 ⊕ Vϕ,k/W ⊕ · · · .

Also, we denote by

pW : Vϕ → Vϕ/W

the canonical projection.

Definition 5.23. We define

Z̃ k = {(W, T ) : W ∈ Gr(�a,k, Vϕ), T ∈ End(Vϕ/W ) of degree +1},
and the canonical projection

π :Z̃ k → Gr(�a,k, Vϕ)

(W, T ) �→ W.
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Proposition 5.24. The morphism π is a fibration with fiber

Eϕa(k)
.

Proof. This follows from the definition. ��
Definition 5.25. Assume b, c ∈ S(a(k)).

• Let

Zk,a = {(W, T ) ∈ Z̃ k : T ∈ Ya(k)}.
• Let

Zk,a
b,c = {(W, T ) ∈ Z̃ k : T ∈

∐

b≥d≥c

Od}, Zk,a
b = {(W, T ) ∈ Z̃ k : T ∈

∐

d≥b

Od}.

• Let

Zk,a(c) = {(W, T ) ∈ Zk,a, T ∈ Oc}.
Remark. The restriction of π to Zk,a is a fibration with fiber Ya(k) .

Definition 5.26. Let T ∈ Xk
a . We define T (k) ∈ End(V/ ker(T |Vϕ,k )) such that

T (k)|Vϕ,i =
⎧
⎨

⎩

T |Vϕ,i , for i = k, k − 1,
pT,k ◦ T |Vϕ,i , for i = k − 1
T |Vϕ,i ◦ pT,k, for i = k.

where pT,k : Vϕ → Vϕ/ ker(T |Vϕ,k ) is the canonical projection.

This gives naturally an element (T (k), ker(T |Vϕ,k )) in Zk,a. We construct a
morphism

γk : Xk
a → Zk,a.

by

γk(T ) = (T (k), ker(T |Vϕ,k )).

Definition 5.27. We define

α : Xk
a → Gr(�a,k, Vϕ),

with α(T ) = ker(T |Vϕ,k ).

Remark. We have a commutative diagram

Xk
a

α

γk
Zk,a

π

Gr(�a,k, Vϕ).

where γk maps fibers to fibers.
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Proposition 5.28. The morphism α is a fiber bundle such that α|Oc is surjective for
any c ∈ S̃(a)k .

Proof. We have to show that α is locally trivial. We fix W ∈ Gr(�a,k, Vϕ) Note
that GLϕ(k) acts transitively on Gr(�a,k, Vϕ). Let PW be the stabilizer of W . Then
by Serre [16, Proposition 3], we know that the principle bundle

GLϕ(k) → GLϕ(k)/PW

is étale-locally trivial. Here the base GLϕ(k)/PW is isomorphic to Gr(�a,k, Vϕ). It
is even Zariski-locally trivial because PW is parabolic, which is special in the sense
of Serre [16], 4. Now we can write

Xk
a GLϕ(k) ×PW α−1(W )

δ

Gr(�a,k, Vϕ)

where

δ([g, T ]) = g.T .

We claim that δ is an isomorphism. In fact, for any T ∈ Xk
a , we choose g ∈ GLϕ(k)

such that

g(ker(T |Vϕ,k )) = W.

This implies g.T ∈ α−1(W ), thus

δ([g−1, g.T ]) = T .

This shows the surjectivity. By the definition of PW , we have,

δ([g, T ]) = g.T ∈ α−1(W )

implies g ∈ PW , which implies the injectivity. Since GLϕ(k) is locally trivial over
Gr(�a,k, Vϕ), we obtain that

GLϕ(k) ×PW α−1(W ) → Gr(�a,k, Vϕ)

is locally trivial, which implies that α is locally trivial.
Finally, wewant to show the surjectivity of the orbit α|Oc . This is a consequence

the fact that GLϕ(k) acts transitively on Gr(�a,k, Vϕ). ��
Proposition 5.29. Let c ∈ S̃(a)k . The restriction map

γk : Oc → Zk,a(c(k))

is surjective.
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Proof. Let (T0,W ) ∈ Zk,a(c(k)). Consider

m = 
{� ∈ c : e(�) = k, deg(�) ≥ 2} ≤ min{�a,k, dim(ker(T0|Vϕ,k−1))}.
We choose a splitting Vϕ,k = W ⊕ Vϕ,k/W and let T ′ : Vϕ,k−1 → W be a linear
morphism of rank m. Finally, we define T ∈ γ −1

k ((T0,W )) by letting

T |Vϕ,k−1 = T ′ ⊕ T0|Vϕ,k−1,

T |Vϕ,k = T0|Vϕ,k/W ◦ pW ,

T |Vϕ,i = T |Vϕ,i , for i = k − 1, k.

Let

{� ∈ c : e(�) = k, deg(�) ≥ 2} = {�1, . . . ,�m}, b(�1) ≤ · · · ≤ b(�m).

We denote Wi = T [b(�i ),k−1]
0 (Vϕ,b(�i )) ∩ ker(T0|Vϕ,k−1), where T

[i, j] is the com-
position map:

Vi
T

Vi+1 · · · T
Vj .

then

W1 ⊆ · · · ⊆ Wr ⊆ ker(T0|Vϕ,k−1).

Then we have T ∈ Oc if and only if

dim(T ′(Wi )) − dim(T (Wi−1)) = dim(Wi/Wi−1), i = 1, . . . ,m.

Since such T ′ always exists, we are done. ��
Notation 5.30. We fix W ∈ Gr(�a,k, Vϕ), and denote

(Xk
a)W , (Zk,a)W

the fibers over W.

Proposition 5.31. The fiber (Xk
a)W is normal and irreducible as an algebraic vari-

ety over C.

Proof. Note that since S̃(a)k contains a unique minimal element c, the variety Xk
a

is contained and is open in the irreducible variety Oc. Now by [19, Theorem 1],
we know that Xk

a is actually normal.
By Proposition 5.28, we know that α is a fibration between two varieties Xk

a
and Gr(�a,k, Vϕ). The fact that both are normal and irreducible implies that the
fiber (Xk

a)W is normal and irreducible. ��
Remark. Note that by definition, we are allowed to identify (Zk,a)W with Ya(k) .
This is what we do from now on.
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Definition 5.32. We choose a splitting Vϕ,k = W ⊕ Vϕ,k/W and denote by qW :
Vϕ,k → W the projection. We define a morphism τW

τW (T ) = ((γk)W (T ), qW ◦ T |Vϕ,k−1).

Remark. Then we have the following commutative diagram

(Xk
a)W

τW

(γk )W

(Zk,a)W × Hom(Vϕ,k−1,W )

s

(Zk,a)W

where s is the canonical projection.

Lemma 5.33. The morphism τW is injective.

Proof. Note that any T ∈ (Xk
a)W is determined by (γk)W (T ) and T |Vϕ,k−1 . Further-

more, T |Vϕ,k−1 is determined by pW ◦T |Vϕ,k−1 and qW ◦T |Vϕ,k−1 . Since pW ◦T |Vϕ,k−1

is a component of (γk)W (T ), it is determined by (γk)W (T ) and qW ◦ T |Vϕ,k−1 . This
gives us the injectivity. ��
Lemma 5.34. Let c ∈ S(a)k such that c(k) = (a(k))min. Then the image of Oc ∩
(Xk

a)W is open in Oc(k) × Hom(Vϕ,k−1,W ).

Proof. Let c ∈ S(a)k such that c(k) = (a(k))min. Let T ∈ (Oc)W . We use a case by
case consideration as in Proposition 5.14:

(1) If ϕ(k − 1) ≤ ϕ(k) − �a,k , the fact c(k) = (a(k))min implies that T (k)|Vϕ,k−1

is injective. As a consequence we have Im(T |Vϕ,k−1) ∩ W = 0. Hence for any
element T0 ∈ Hom(Vϕ,k−1,W ) , we define T0 ∈ Oc, such that

T0|Vϕ,k−1 = T0 ⊕ T (k)|Vϕ,k−1 ,

which lies in the fiber over (γk)
−1
W ((T (k),W )). Since by Proposition 5.29, every

element in Oc(k) comes from some element in Oc, hence

τW (Oc ∩ (Xk
a)W ) = Oc(k) × Hom(Vϕ,k−1,W ),

which is open.
(2) If ϕ(k) − �a,k < ϕ(k − 1) < ϕ(k), the fact c(k) = (a(k))min implies that the

morphism

T (k)|Vϕ,k−1

has a kernel of dimension

ϕ(k − 1) − ϕ(k) + �a,k .

Our description of c in Proposition 5.14 (2) shows that in this case

dim(Im(T |Vϕ,k−1) ∩ W ) = ϕ(k − 1) − ϕ(k) + �a,k .
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In this situation, given an element T0 ∈ Hom(Vϕ,k−1,W ) we define T ′ ∈ Eϕ ,
such that

T ′|Vϕ,k−1 = T0 ⊕ T (k)|Vϕ,k−1 ,

T ′|Vϕ,k = T (k)|Vϕ,k/W ◦ pW ,

T ′|Vϕ,i = T (k), for i = k − 1, k.

By construction and Proposition 3.3, we know that T ′ ∈ Oc if and only if
T ′|Vϕ,k−1 is injective, since no segment in c ends in k − 1, as described in
Proposition 5.14. This is equivalent to say

T0|ker(T (k)|Vϕ,k−1 )

is injective. This is an open condition, hence Oc ∩ (Xk
a)W is open in Oc(k) ×

Hom(Vϕ,k−1,W ).
(3) If ϕ(k − 1) ≥ ϕ(k), then by Proposition 5.14

c(k) = (a(k))min

implies

Im(T |Vϕ,k−1) ⊇ W.

Recall the notation from Proposition 5.14

a0 = {�1 � · · · � �r }.
with r = ϕ(k − 1) − ϕ(k) + �a,k . Then

c = ((a(k))min \ a0) ∪ {�+
1 � · · · � �+

�a,k
� ��a,k+1 � · · · � �r }.

Let T0 ∈ Hom(Vϕ,k−1,W ), we define T ′ ∈ Eϕ as in the case (2) Consider the
following flag over Vϕ,k−1,

ker(T (k)|ϕ,k−1) = Vr ⊇ · · · ⊇ V1 ⊇ V0 = 0,

where Vi = Im((T (k))�i )∩ker(T (k)|ϕ,k−1), with i = 1, . . . , r . Now by Propo-
sition 3.3, we know that T ′ ∈ Oc if and only if

dim(T0(Vi )) − dim(T0(Vi−1)) = dim(Vi/Vi−1),

for i = 1, . . . , �a,k . In fact, if Vi = Vi−1, then

dim(Vi/Vi−1) = 
{ j : � j = �i }.
By construction, if i ≤ �a,k , by Proposition 3.3, the fact that c contains �+

i
implies that if T ′ ∈ Oc,

dim(T0(Vi )) − dim(T0(Vi−1)) = dim(Vi/Vi−1).

The converse holds by the same reason. Again, this is an open condition, which
proves that Oc ∩ (Xk

a)W is open in Oc(k) × Hom(Vϕ,k−1,W ). ��
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Proposition 5.35. The morphism τW is an open immersion.

Proof. To see that it is open immersion, we shall use Zariski’s main theorem. Since
all Schubert varieties are normal, we observe that

(Zk,a)W × Hom(Vϕ,k−1,W )

are normal by theorem 1 of [19]. Also, by Proposition 5.31, we know that (Xk
a)W

is irreducible and normal, hence τW is an open immersion. ��
Proposition 5.36. Let c ∈ S̃(a)k . Then c ∈ S(a)k if and only if

Oc ∩ (Xk
a)W

is open in

(Oc(k) × Hom(Vϕ,k−1,W )).

Proof. We already showed in Lemma 5.34 that

Oc ∩ (Xk
a)W

is a sub-variety of

Oc(k) × Hom(Vϕ,k−1,W ).

Moreover, since τW is open by Proposition 5.35, we have

(Oc(k) × Hom(Vϕ,k−1,W )) ∩ (Xk
a)W

is open in

Oc(k) × Hom(Vϕ,k−1,W ).

Finally, by Proposition 5.29,

(Oc(k) × Hom(Vϕ,k−1,W )) ∩ (Xk
a)W

=
∐

d∈S̃(a)k ,d(k)=c(k)

Od ∩ (Xk
a)W .

The variety (Oc(k) × Hom(Vϕ,k−1,W )) ∩ (Xk
a)W is irreducible because (Oc(k) ×

Hom(Vϕ,k−1,W )) is irreducible, hence the stratification
∐

d∈S̃(a)k ,d(k)=c(k)

Od ∩ (Xk
a)W

by locally closed sub-varieties can only contain one term which is open, from the
point of view of Zariski topology. Since for any element

d′ ∈ {d ∈ S̃(a)k,d(k) = c(k)},
by (d) of Lemma 5.5, we know that there exists c′ ∈ S(a)k such that d′ > c′. Hence
we conclude that

{d ∈ S̃(a)k,d(k) = c(k)},
contains a unique minimal element, which lies in S(a)k . Now our proposition
follows. ��
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Corollary 5.37. Let a be a multisegment and

c ∈ S(a)k,

then

Pa,c(q) = Pa(k),c(k) (q).

Proof. First of all, by Proposition 5.28 and Künneth formula, we know that

H j (Oc)a = H j (Oc ∩ (Xk
a)W )a,

the localization being taken at a point in Oa ∩ (Xk
a)W . Since Oc is open in Oc,

by Proposition 5.35 and Proposition 5.36, we can regard Oc ∩ (Xk
a)W as an open

sub-variety of Ock × Hom(Vϕ,k−1,W ), hence

H j (Oc ∩ (X (k)
a )W )a = H j (Oc(k) × Hom(Vϕ,k−1,W ))a(k)

and Künneth formula implies that the latter is equal to

H j (Oc(k) )a(k) .

��

Corollary 5.38. Let d ∈ S(a) such that

d(k) = a(k),

and

c ∈ S(a)k,

then c < d, and

Pa,c(q) = Pd,c(q).

Proof. By Proposition 5.10, we know that there exists c′ ∈ S(a)k such that

d > c′, c′(k) = c(k).

Proposition 5.36 implies c′ = c (note that the open stratum is unique). Finally,
applying the Corollary 5.37 to the pairs {a, c} and {d, c} yields the result. ��



T. Deng

5.4. Some consequeces and remarks

In this section, we draw some conclusions from what we have done before, espec-
tially the properties related to ψk .

Proposition 5.39. The map

ψk : S(a)k → S(a(k))

c �→ c(k)

is bijective. Moreover,

• for c ∈ S(a)k

m(c, a) = m(c(k), a(k)).

• for b, c ∈ S(a)k , we have b > c if and only if b(k) > c(k).

Proof. By Proposition 5.36, we know that ψk is injective. Surjectivity is given by
Proposition 5.10.

For c ∈ S(a)k ,

m(c, a) = m(c(k), a(k))

is by Corollary 5.37 by putting q = 1, and applying Theorem 3.6.
Finally, for b, c ∈ S(a)k , if b > c, then c ∈ S(b)k , and by Lemma 5.5 (3), we

know that b(k) > c(k). Reciprocally, if b(k) > c(k), by Proposition 5.36, we know
that Ob ⊆ Oc, hence b > c. ��
Corollary 5.40. We have

•
π(a(k)) =

∑

c∈S(a)k

m(c, a)Lc(k) , (3)

• let b ∈ S(a) such that b satisfies the hypothesis Hk(a) and b(k) = a(k), then

m(b, a) = 1, S(a)k = S(b)k .

Proof. The first part follows from the fact that ψk is bijective and m(c, a) =
m(c(k), a(k)). For the second part of the corollary, we note that Lb(k) = La(k)

appears with multiplicity one in π(a(k)), then equation (3) implies m(b, a) =
m(b(k), a(k)) = 1. To see that S(a)k = S(b)k ⊆ S(b), note that we have
S(b)k ⊆ S(a)k together with two bijections

ψk : S(a)k → S(a(k)),

ψk : S(b)k → S(b(k)) = S(a(k)).

Hence comparing the cardinality gives S(a)k = S(b)k . ��
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Before we finish this section, let us remark that we can also work out a left
handed version of everything we have done in this sections. Let us briefly introduce
the main definitions, which will be of use in later sections.

Analogous to Definition 5.1, Definition 5.2 and Definition 5.3,

Definition 5.41. For � = [i, j] a segment, we put

−� = [i + 1, j], +� = [i − 1, j].
Definition 5.42. Let k ∈ Z and � be a segment, we define

(k)� =
{ −�, if b(�) = k;

�, otherwise .

For a multisegment a = {�1, . . . ,�r }, define
(k)a = {(k)�1, . . . ,

(k)�r , }.
Analogously, the Definition 5.3 has its left version.

Definition 5.43. We say that the multisegment b ∈ S(a) satisfies the hypothesis
k H(a) if the following two conditions are verified

(1) deg((k)b) = deg((k)a);
(2) there exists no pair of linked segments {�,�′} in b such that

b(�) = k, b(�′) = k + 1.

Definition 5.44. Let

k S̃(a) = {c ∈ S(a) : deg((k)c) = deg((k)a)}.
Definition 5.45. We define a morphism

kψ : k S̃(a) → S((k)a)

by sending c to (k)c.

Now all we have done in this section can be restated and proved for the left handed
objects above. Since the statements and their proofs are similar, we omit the details.

6. Reduction to symmetric case

6.1. Minimal degree terms

The goal of this section is to define the set S(a)d ⊆ S(a) and describe some of its
properties.

Definition 6.1. Let (k1, . . . , kr ) be a sequence of integers. We define

a(k1,...,kr ) = (((a(k1)) · · · )(kr )).



T. Deng

Definition 6.2. Let � = [k, �], we denote
a(�) = a(k,...,�).

More generally, for d = {�1 � · · · � �r }, let
a(d) = (· · · ((a(�r ))(�r−1)) · · · )(�1).

Definition 6.3. Let (k1, . . . , kr ) be a sequence of integers , then we define

S(a)k1,...,kr = {c ∈ S(a) : c(k1,...,ki−1) ∈ S(a(k1,...,ki−1))ki , for i = 1, . . . , r},
with the convention

k0 = −∞, a(−∞) = a, c(−∞) = c

and

ψk1,...,kr : S(a)k1,...,kr → S(a(k1,...,kr )),

sending c to c(k1,...,kr ).

Definition 6.4. Let d = {�1 � · · · � �r } such that �i = [ki , �i ]. We denote

S(a)d := S(a)kr ,...,�r ,kr−1,...,k1,...,�1

and

ψd := ψkr ,...,�r ,kr−1,...,k1,...,�1 .

Proposition 6.5. Let (k1, . . . , kr ) be a sequence of integers. Then the morphism

ψk1,...,kr : S(a)k1,...,kr → S(a(k1,...,kr )).

is a bijection. Moreover,

(1) For c ∈ S(a)k1,...,kr , we have

Pa,c(q) = Pa(k1,...,kr ),c(k1,...,kr ) (q).

(2) For b, c ∈ S(a)k1,...,kr , then b > c if and only if b(k1,...,kr ) > c(k1,...,kr ).
(3) We have

π(a(k1,...,kr )) =
∑

c∈S(a)k1,...,kr

m(c, a)Lc(k1,...,kr ) .

(4) For b ∈ S(a)k1,...,kr such that b(k1,...,kr ) = a(k1,...,kr ), we have

S(a)k1,...,kr = S(b)k1,...,kr .
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Proof. Injectivity follows from the fact

ψk1,...,kr = ψkr ◦ ψkr−1 ◦ · · · ◦ ψk1 .

For surjectivity, let d ∈ S(a(k1,...,kr )), we construct b ∈ S(a)k1,··· ,kr inductively
such that ψk1,...,kr (b) = d. Let ar = d, assume that we already construct ai ∈
S(a(k1,...,ki ))ki+1 satisfying that

a
(ki+1,...,k j )
i ∈ S(a(k1,...,k j ))k j+1

for all i < j ≤ r and a(ki+1,...,kr )
i = d.

Note that by the bijectivity of the morphism

ψki : S(a(k1,...,ki−1))ki → S(a(k1,...,ki )),

there exists a unique ai−1 ∈ S(a(k1,...,ki−1))ki , such that

a(ki )
i−1 = ai .

Finally, take b = a0 ∈ S(a)k1,...,kr . We show (1) by induction on r . The case for
r = 1 is by Corollary 5.37. For general r , by induction we have

Pa,c(q) = Pa(k1,...,kr−1),c(k1,...,kr−1) (q).

By definition c(k1,...,kr−1) ∈ S(a(k1,...,kr−1))kr , apply the case r = 1 to the pair
{c(k1,...,kr−1), a(k1,...,kr−1)} to obtain

Pa(k1,...,kr−1),c(k1,...,kr−1) (q) = Pa(k1,...,kr ),c(k1,...,kr ) (q).

Hence

Pa,c(q) = Pa(k1,...,kr ),c(k1,...,kr ) (q).

Also, to show (2), it suffices to apply successively the Proposition 5.39. (3) follows
from the bijectivity of ψk1,...,kr and (1). As for (4), we know by definition,

S(a)k1,...,kr ⊇ S(b)k1,...,kr .

We know that any for c ∈ S(a)k1,··· ,kr , we have c(k1,...,kr ) ≤ b(k1,...,kr ), by (2), this
implies that c ≤ b. Hence we are done. ��

Similarly, we have

Definition 6.6. Let (k1, . . . , kr ) be a sequence of integers, then we define

kr ,...,k1 S(a) = {c ∈ S(a) : (ki ,...,k1)c ∈ ki+1 S((ki ,...,k1)a), for i = 1, . . . , r}.
and

kr ,...,k1ψ : kr ,...,k1 S(a) → S((kr ,...,k1)a),

sending c to (kr ,...,k1)c.
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Notation 6.7. Let d = {�1, . . . ,�r } such that �i = [ki , �i ] with k1 ≤ · · · ≤ kr
We denote

dS(a) :=kr ,...,�r ,kr−1,...,k1,...,�1 S(a),

and

dψ :=kr ,...,�r ,kr−1,...,k1,...,�1 ψ.

Remark. Let k1, k2 be two integers. In general, we do not have

k2(S(a)k1) = (k2 S(a))k1 .

For example, let k1 = k2 = 1, a = {[1], [2]}, then
k2(S(a)k1) = {a}, (k2 S(a))k1 = {[1, 2]}.

Notation 6.8. We write for multisegments d1,d2, a,

d2 S(a)d1 := (d2 S(a))d1 , S(a)d1,d2 := (S(a)d1)d2 .

and

d2ψd1 := (d2ψ)d1, ψd1,d2 := (ψd1)d2

For b ∈ S(a),

(d2)b(d1) := (d2b)(d1), b(d1,d2) := (b(d1))(d2).

6.2. Main result: symmetrization of multisegments

Now we return to the main question, i.e., the calculation of the coefficient m(c, a)
for c ∈ S(a). Before we go into the details, we describe our strategies:

(i) Find a symmetricmultisegment, denotedbyasym, such that La is the unique term
of minimal degree in the image Lasym under some partial Bernstein-Zelevinsky
operator of considered as element inR.

(ii) For c ∈ S(a), find csym ∈ S(asym), such that we havem(c, a) = m(csym, asym).

Proposition 6.9. Let a be any multisegment, then there exists a regular multiseg-
ment b, and two multisegments ci , i = 1, 2 such that

b ∈ c2 S(b)c1 , a = (c2)b(c1)

Proof. Let a = {�1, . . . ,�r } be such that

�1 � · · · � �r .

Assume that there is a j such that e(� j ) appears in e(a) with multiplicity greater
than 1. Furthermore, assume that � j is the the smallest segment satisfying this
property. Then

e(�1) ≤ · · · < e(� j ) = · · · = e(�i ) < e(�i+1) ≤ · · · .
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Let �1 = [e(�i ) + 1, �], where � is the maximal integer such that for any m
such that e(�i ) ≤ m ≤ � − 1, there is a segment in a which ends in m. Let a1
be the multisegment obtained by replacing �i by �+

i , and all � ∈ a such that
e(�) ∈ (e(�i ), �] by �+. Now we continue the previous construction with a1 to
get a2, and proceed in the same way until we obtain a multisegment ar1 such that
e(ar1) contains no segment with multiplicity greater than 1. Let

c1 = {�1,�2, . . . ,�r1}.
Note that by construction, we have

�1 ≺ �2 ≺ · · · ≺ �r1 .

We show that ar1 ∈ S(ar1)c1 . Note that

ai = a(�r1 ,...,�i+1)
r1 ,

by induction on r1, we can assume that a1 ∈ S(ar1)�r1 ,...,�2 and show that
a ∈ S(a1)�1 . We observe that in a1, by construction, with the notations above,
� j , . . . , �i−1 are the only segments in a1 that end in e(�i ), and �+

i is the only
segment in a1 that ends in e(�i ) + 1. Hence we conclude that a1 ∈ S(a1)e(�i )+1.

For e(�i )+1 < m ≤ �, we know that a(e(�1)+1,...,m−1)
1 does not contain a segment

which ends inm−1, hence a(e(�1)+1,...,m−1)
1 ∈ S(a(e(�1)+1,...,m−1)

1 )m . We are done
by putting m = �.

Now same construction can be applied to show that there exists a multisegment
ar2 such that b(ar2) contains no segment with multiplicity greater than 1, and

c2 = {1�, . . . ,r2 �},
such that

ar2 ∈ c2 S(a2), ar1 = (c2)ar2

as minimal degree component.
Note that in this way we have constructed a regular multisegment b = ar2 ,

b ∈ c2 S(b)c1 , a = (c2)b(c1)

��
To finish our strategy (i), we are reduced to consider the case of regular multi-

segments.

Proposition 6.10. Let b be a regular multisegment, then there exists a symmetric
multisegment bsym, and a multisegment c such that

bsym ∈ cS(bsym), b = (c)(bsym).
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Proof. In general b is not symmetric, i.e, we do not have min{e(�) : � ∈ b} ≥
max{b(�) : � ∈ b}. Let

b = {�1, . . . ,�r }, b(�1) > · · · > b(�r ).

so that

b(�1) = max{b(�i ) : i = 1, . . . , r}.
If b is not symmetric, let �1 = [�, b(�1) − 1] with � maximal satisfying that for
any m such that � − 1 ≤ m ≤ b(�1), there is a segment in b starting in m. We
construct b1 by replacing every segment � in b ending in �1 by +�. Repeat this
construction with b1 to get b2, . . ., until we get bsym = bs , which is symmetric.
Let c = {�1, . . . ,�s}, then as before, we have

bsym ∈ cS(bsym), b = (c)(bsym).

��
As a corollary, we know that

Corollary 6.11. For any multisegment a, we can find a symmetric multisegment
asym and three multisegments ci , i = 1, 2, 3, such that

asym ∈ c2,c3 S(asym)c1 , a = (c2,c3)asym(c1).

Now applying Proposition 6.5

Proposition 6.12. The morphism

c2,c3ψc1 : c2,c3 S(asym)c1 → S(a)

is bijective, and for b ∈ S(a), there exists a unique bsym ∈ S(asym) such that

Pa,b(q) = Pasym,bsym (q).

6.3. Examples

In this section we shall give some examples to illustrate the idea of reduction to
symmetric case.

We first take a = {[1], [2], [2], [3]} to show how to reduce a general multiseg-
ment to a regular multisegment. The procedure is showed in the following picture.

Here we have a2 = {[0, 1], [1, 3], [2], [3, 4]}, such that

a2 ∈ [0,1]S(a2)[3,4], a = ([0,1])a([3,4])
2

Next, we reduce the regular multisegment a2 to a multisegment asym, as is
showed in the following picture.

Here,we have

asym = {[0, 3], [1, 5], [2, 4], [3, 6]} = �(w)
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where w = σ2 ∈ S4.
Now we take b = {[1, 2], [2, 3]}, we want to find bsym ∈ S(asym) such that

m(b, a) = m(bsym, asym). Actually, following the procedure in Fig. 2 above, we
have the situation shown in Fig. 4.

Here we get b2 = {[0, 3], [1, 4]}. Following the procedure in the Fig. 3, we
obtain the situation shown in Fig. 5.

Hence we get

bsym = {[0, 5], [1, 3], [2, 6], [3, 4]} = �(v)

with v = (13)(24) ∈ S4. From [20, 11.3], we know that m(b, a) = 2, hence we
get m(bsym, asym) = 2.

Remark. We showed in Sect. 2 that

m(bsym, asym) = Pw,v(1),

where Pv,w(q) is the Kazhdan-Lusztig polynomial associated to v,w. One knows
that Pv,w(q) = 1 + q, hence Pv,w(1) = 2.

As we have seen, to each multisegment, we have (at least) two different ways
to attach a Kazhdan-Lusztig polynomial:

(1) To use the Zelevinsky construction as described in section 4.2.
(2) To first construct an associated symmetric multisegment, and then attach the

corresponding Kazhdan-Lusztig polynomial.

Remark. In general, for a > b, (1) gives a polynomial PZ
a,b which is a Kazhdan-

Lusztig polynomial for the symmetric group Sdeg(a). (2) gives a polynomial PS
a,b,

which is a Kazhdan-Lusztig polynomial for a symmetric group Sn with n ≤ deg(a).
It may happen that n = deg(a). By Corollary 5.37, we always have PZ

a,b = PS
a,b.

Example 6.13. Consider a = {1, 2, 2, 3},b = {[1, 2], [3, 4]}, then by [18] section
3.4, we know that PZ

a,b = 1 + q. The symmetrization of a and b are given by

asym = �((2, 3)), bsym = �((1, 3)(2, 4)).

Hence PS
a,b = P(2,3),(1,3)(2,4) = 1 + q, which is the Kazhdan-Lusztig polynomial

for the pair ((2, 3), (1, 3)(2, 4)) in S4

7. Application

Definition 7.1. Two multisegments

a = {�1, . . . ,�r } and a′ = {�′
1, . . . ,�

′
r ′ }

have the same relation type if

• r = r ′;
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• there exists a bijection

ξ : a → a′

of multisets which preserves the partial order � and relation type of segments
and induces bijection of multisets

e(ξ) : e(a) → e(a′), b(ξ) : b(a) → b(a′).

satisfying

e(ξ)(e(�)) = e(ξ(�)), b(ξ)(b(�)) = b(ξ(�)).

Lemma 7.2. Let a and a′ be of the same relation type induced by ξ1. Let {�1 � �2}
be linked in a. Denote by a1 (a′

1, resp.) the multisegment obtained by applying the
elementary operation to {�1,�2} ({ξ(�1), ξ(�2)}, resp.). Then a1 and a′

1 also
have the same relation type.

Proof. We define a bijection

ξ1 : a1 → a′
1

by

ξ1(�1 ∪ �2) = ξ(�1) ∪ ξ(�2), ξ1(�1 ∩ �2) = ξ(�1) ∩ ξ(�2)

and

ξ1(�) = ξ(�), for all � ∈ a \ {�1,�2}.
It induces a bijection between the end multisets e(a1) and e(a′

1) as well as the
beginning multisets b(a1) and b(a′

1). Also the morphism ξ preserves the partial
order follows from the fact that for x, y ∈ e(a) such that x ≤ y, then e(ξ1)(x) =
e(ξ)(x) ≤ e(ξ1)(y) = e(ξ)(y) (The same fact holds for b(ξ1)). Finally, it remains
to show that ξ1 respects the relation type. Let � � �′ be two segments in a1,
if non of them is contained in {�1 ∪ �2,�1 ∩ �2}, then ξ1(�) = ξ(�) and
ξ1(�

′) = ξ(�′) and they are in the same relation type as {�,�′} by assumption.
For simplicity, we only discuss the case where� = �1∪�2 but�′ is not contained
in {�1 ∪ �2,�1 ∩ �2}, other cases are similar.

• If �′ cover �, then � cover �1 and �2, hence ξ1(�) = ξ(�) cover ξ(�1) and
ξ(�2), which implies ξ1(�

′) covers ξ1(�).
• If �′ is linked to � but not juxtaposed, then either �′ covers �2 and linked to

�1, or �′ is linked to �2 but not juxtaposed. In both cases we have ξ(�′) is
linked to ξ(�1) ∪ ξ(�2) and not juxtaposed.

• If�′ is juxtaposed to�, then�′ is juxtaposed to�2 since�2 � �1. Therefore
ξ(�′) is juxtaposed to ξ(�2)which implies ξ1(�

′) is juxtaposed to the segment
ξ1(�).

• If �′ is unrelated to �1 ∪ �2, then it is unrelated to both �1 and �2 with
�2 � �′, this implies that ξ(�′) is unrelated to ξ(�1) ∪ ξ(�2). ��
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Remark. As every elementb ∈ S(a) is obtained from a by a sequence of elementary
operations, we can define a morphism of poset

� : S(a) −→ S(a′).

Lemma 7.3. The application � is well defined and bijective.

Proof. We give a new definition of� in the followingway. For b ∈ S(a), we define

�(b) = {[b(ξ)(b(�)), e(ξ)(e(�))] : � ∈ b}
such a definition is independent of the choice of elementary operations. It remains
to see that it coincides with the one using elementary operation. In fact, let a1 be a
multisegment obtained by applying the elementary operation to the pair of segments
{�1 � �2}, then by our original definition of �, it sends a1 to a′

1 as in the previous
lemma. Now by the new definition, we have �(a1) given by

{ξ(�) : � ∈ a \ {�1,�2}} ∪ {[b(ξ)(b(�1)),

b(ξ)(b(�2))], [b(ξ)(b(�2)), b(ξ)(b(�1))]}.
By our definition of ξ , we get

[b(ξ)(b(�1)), b(ξ)(b(�2))] = ξ(�1) ∪ ξ(�2),

and

[b(ξ)(b(�2)), b(ξ)(b(�1))] = ξ(�1) ∩ ξ(�2).

Hence we conclude that � is well defined. Note that by our definition, since ξ

is invertible, we can use the same procedure to construct �−1. Now we have

��−1 = Id, �−1� = Id

by our definition above using b(ξ) and e(ξ). This shows that � is bijective. ��
Let a and a′ be two multisegments of the same relation type. Note that by

Corollary 6.11, we have a symmetric multisegment asym and three multisegments
ci , i = 1, 2, 3 such that

asym ∈ c2,c3 S(asym)c1, a = (c2,c3)asym(c1).

In the same way, we have

a′ sym ∈ c′
2,c

′
3
S(a′ sym)c′

1
, a′ = (c′

2,c
′
3)a′ sym(c′

1).

Lemma 7.4. The two multisegments asym and a′ sym have the same relation type.
Let �sym : S(asym) → S(a′ sym) be the bijection constructed in Lemma 7.3, then
we have the following commutative diagram

c2,c3 S(asym)c1
�sym

c2,c3ψc1

c′
2,c

′
3
S(a′ sym)c′

1

c′2,c′3ψc′1

S(a) �
S(a′).
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Proof. Note that by construction we know that the number of segments in asym is
the same as that of a (cf. Proposition 6.9 and Proposition 6.10). Let asym = {�1 �
· · · � �r }, then a = {(c2,c3)�(c1)

1 � · · · � (c2,c3)�
(c1)
r }. Also let a′ sym = {�′

1 �
· · · � �′

r }. We define

ξ sym :asym → a′ sym

�i �→ �′
i .

This automatically induces bijections

e(ξ sym) : e(asym) → e(a′ sym), b(ξ sym) : b(asym) → b(a′ sym),

since all 4 are sets (instead of multisets). Note that we have

ξ((c2,c3)�
(c1)
i ) = (c′

2,c
′
3)�

′(c′
1)

i

It remains to show that ξ sym preserves the relation type. Let i ≤ j . Then �i

and � j are linked if and only if one of the following happens

• (c2,c3)�
(c1)
i and (c2,c3)�

(c1)
j are linked (juxtaposed or not);

• (c2,c3)�
(c1)
i and (c2,c3)�

(c1)
j are unrelated.

� j covers �i if and only if (c2,c3)�
(c1)
j covers (c2,c3)�

(c1)
i . Since ξ preserves

relation types, this shows that ξ sym also preserves relation types.Hencewe conclude
that asym and a′ sym have same relation type. To see that the map �sym sends
c2,c3S(asym)c1 to c′

2,c
′
3
S(a′ sym)c′

1
, consider b ∈ S(a) and its pre-image bsym ∈

c2,c3S(asym)c1 under c2,c3ψc1 , whose existence and uniqueness is guaranteed by
Proposition 6.12.

We introduce a length function � : S(a) → Z≥0: �(a) = 0 and in general

�(b) = min{� : a = a0 > · · · > a� = b is a maximal chain}.
- First of all, we assume that �(b) = 1, i.e. b can be obtained from a by applying
the elementary operation to the pair {(c2,c3)�(c1)

i , (c2,c3)�
(c1)
j }(i < j). Let b̃ be the

element in S(asym) obtained by applying the elementary operation to the pair of
segments {�i ,� j } in asym. Then we have

b = (c2,c3)b̃(c1).

Let b̃′ = �sym(b̃). By construction, we have

b′ = �(b) = (c′
2,c

′
3)b̃′(c′

1).

Now consider

b̃0 = b̃ > · · · > b̃n = bsym

be a maximal chain of multisegments and let b̃′
i = �sym(b̃i ), then

b̃′
0 > · · · > b̃′

n = �sym(bsym).
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Let

b̃i = {�i,1 � · · · � �i,ri }, b̃′
i = {�′

i,1 � · · · � �′
i,ri }.

We prove by induction that

b′ = (c′
2,c

′
3)b̃

′(c′
1)

i .

We already showed the case where i = 0. Assume that we have

b′ = (c′
2,c

′
3)b̃

′(c′
1)

j

for j < i . Suppose that b̃i is obtained from b̃i−1 by applying the elementary
operation to the pair of segments {�i−1,αi−1 � �i−1,βi−1}. We deduce from the
fact b̃i ≥ bsym that we are in one of the following situations

• (c2,c3)�
(c1)
i−1,αi−1

= ∅ or (c2,c3)�
(c1)
i−1,βi−1

= ∅;
• b((c2,c3)�(c1)

i−1,βi−1
) = b((c2,c3)�(c1)

i−1,αi−1
);

• e((c2,c3)�(c1)
i−1,βi−1

) = e((c2,c3)�(c1)
i−1,αi−1

).

According the our assumption that b̃′
i = �sym(b̃′

i ), we have

ξ((c2,c3)�
(c1)
i−1, j ) = (c2,c3)�

′(c1)
i−1, j ,

therefore the pair {(c2,c3)�′(c1)
i−1,αi−1

, (c2,c3)�
′(c1)
i−1,βi−1

} also satisfies one of the listed

properties above. This implies that b̃′
i is sent to b

′ by c′
2,c

′
3
ψc′

1
. Note that by Propo-

sition 5.36, which implies that b′ sym is the minimal element that are mapped to b′
in S(a′ sym), we know that

b̃′
n(= �sym(bsym)) ≥ b′ sym.

Conversely, we have

�sym−1(b′ sym) ≥ bsym.

Combine the two inequalities to get

�sym(bsym) = b′ sym.

- The general case where �(b) > 1, we can choose a maximal chain of multi-
segments

a = a0 > · · · > a�(b) = b.

Let a′
i = �(ai ), by assumption, we can assume that for i < �(b), we have

�sym(asymi ) = a′ sym
i .

By considering the set S(a�(b)−1), we can reduce to the case where �(b) = 1. Hence
we are done. ��
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Theorem 7.5. For a and a′ be the multisegments of the same relation type. Then
for b ∈ S(a) with b′ = �(b), we have

Pa,b(q) = Pa′,b′(q).

Proof. First of all, we consider the case where a and a′ are symmetric multiseg-
ments. Let a = �(w) by fixing a map

� : Sn → S(aId).

Now since a and a′ have the same relation type, we know that there is a map
�′ : Sn → S(a′

Id) such that

a′ = �′(w).

Finally, let a = {�1, . . . ,�n} and a′ = {�′
1, . . . ,�

′
n} such that

b(�1) < · · · < b(�n), �′
i = ξ(�i ).

Without loss of generality, we assume that b(�1) = b(�′
1). We can assume that

b(�i ) = b(�i−1) + 1. In fact, if b(�i ) > b(�i−1) + 1, then by replacing �i by+�i , we get a new symmetric multisegment a1 which has the same relation type
as a. Moreover, let b ∈ S(a) and b1 be the image of b in S(a1) under the map
� : S(a) → S(a1) from Lemma 7.3. Then

Pa,b(q) = Pa1,b1(q)

by Corollary 5.37. It suffices to prove the theorem for a1 and a′. From now on, let
b(�i ) = b(�i−1) + 1 and b(�i ) = b(�′

i ) for all i . The same argument (as the
reduction from the pair (a, a′) to the pair (a1, a′)) shows that we can furthermore
assume that

e(�w−1(i)) = e(�w−1(i−1)) + 1, e(�′
w−1(i)) = e(�′

w−1(i−1)) + 1.

Now if e(�w−1(1)) < e(�′
w−1(1)

), then consider the truncation functor a′ �→
a

′(e(�
w−1(1))+1,...,e(�′

w−1(1)
))
, the latter is a symmetric multisegment having the same

relation type as a′, and by Proposition 6.5 (1)

Pa′,b′(q) = P
a
′(e(�

w−1(1)
)+1,...,e(�′

w−1(1)
))
,b

′(e(�
w−1(1)

)+1,...,e(�′
w−1(1)

)) (q).

Repeating the same procedure, in a finite number of steps, we find c, such that

a = a′(c)

and again by Proposition 6.5,

Pa,b(q) = Pa′,b′(q).

For general case, applying Corollary 6.11, there exist symmetric multisegment
asym and three multisegments ci , i = 1, 2, 3 such that

asym ∈ c2,c3 S(asym)c1 , a = (c2,c3)asym(c1).
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Similarly for a′,

a′ sym ∈ c′
2,c

′
3
S(a′ sym)c′

1
, a′ = (c′

2,c
′
3)a′ sym(c′

1).

By Proposition 6.12,

Pa,b(q) = Pasym,bsym (q), Pa′,b′(q) = Pa′ sym,b′ sym (q)

where bsym (resp. b′ sym) is the pre-image of b (resp. b′) in c2,c3 S(asym)c1 (resp.

c′
2,c

′
3
S(a′ sym)c′

1
). Now combining with Lemma 7.4 and the symmetric case we have

just proved, we have

Pasym,bsym (q) = Pa′ sym,b′ sym (q),

which implies Pa,b(q) = Pa′,b′(q). ��

Corollary 7.6. Let aId be a symmetric multisegment associated to the identity in
Sn and

� : Sn → S(aId).

Then

m(�(v),�(w)) = Pw,v(1).

Proof. The special case where

aId =
n∑

i=1

[i, i + n − 1]

is already treated in Corollary 4.15. The general case can be deduced from the
theorem above. ��
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