
LOGIC
Jesper Carlström

2008

(revised English edition 2013)

Jesper Carlström
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

http://www.math.su.se/~jesper/logikbok/

Translation from the Swedish original by Christian Esṕındola and H̊akon Robbestad Gylterud
Maintained by Peter LeFanu Lumsdaine; please report typos to p.l.lumsdaine@math.su.se

Last modified 2017-03-20

c© 2017 Jesper Carlström
Typeset in LATEX with the help of
Paul Taylor’s package Prooftree

http://www.math.su.se/~jesper/logikbok/
mailto:p.l.lumsdaine@math.su.se

Contents

To the students v

To the teacher vii

I Introduction 1

1 Boolean algebra – Introduction 3

1.1 Boole’s idea . 3

1.2 Examples of Boolean algebras 5

1.3 Some properties of Boolean algebras 6

1.4 Precedence rules . 8

1.5 Normal forms . 8

1.6 Simple equations . 11

1.7 Summary . 12

2 Boolean equations and implications 13

2.1 Equations, inequalities and equation systems 13

2.2 Implication . 17

2.3 Summary . 20

3 Inductively defined sets 21

3.1 Need for a simple set theory . 21

3.2 Natural numbers . 21

3.3 The algebra of two elements . 25

3.4 Induction and recursion . 25

3.5 Summary . 26

II Propositional logic 27

4 The language and semantics of propositional logic 29

4.1 Logical formulas . 29

4.2 Semantics . 31

4.3 Summary . 34

5 Natural deduction 35

5.1 Conjunction . 35

5.2 Implication . 36

5.3 Disjunction . 38

5.4 Negation and equivalence . 41

5.5 The formal point of view . 41

5.6 Miscellaneous exercises . 42

5.7 Summary . 43

c© 2017 Jesper Carlström i

CONTENTS

6 Soundness & Review exercises 45
6.1 Soundness . 45
6.2 Summary . 49
6.3 Review exercises . 49

7 Normal deductions 51
7.1 Introduction . 51
7.2 Glivenko’s theorem and normalization 52
7.3 Applications . 53
7.4 Summary . 57

8 Completeness 59
8.1 Maximal consistency . 59
8.2 Completeness . 61
8.3 Summary . 62

III Predicate logic 63

9 The language of predicate logic 65
9.1 Terms . 65
9.2 Formulas . 67
9.3 Summary . 71

10 Semantics 73
10.1 Interpretation of terms and formulas 73
10.2 Models and countermodels . 77
10.3 Bounded quantifiers . 79
10.4 Summary . 80

11 Simplifications 81
11.1 Algebraic simplifications . 81
11.2 Simplification by substitution 83
11.3 Summary . 87

12 Natural deduction 89
12.1 New rules . 89
12.2 Misc. exercises . 94
12.3 Summary . 95

13 Soundness & Review exercises 97
13.1 Soundness . 97
13.2 Summary . 100
13.3 Review exercises . 100

14 Completeness 103
14.1 Maximal consistency and the existence property 103
14.2 Completeness . 105
14.3 Compactness . 108
14.4 Summary . 109

IV Appendix and index 111

Normalization proofs 113

Solutions to the exercises 121

Index 136

ii c© 2017 Jesper Carlström

List of Figures

1.1 Axioms for Boolean algebras 4
1.2 Venn diagram . 6

5.1 Derivation rules for natural deduction in propositional logic . . 40

11.1 Some useful computation rules in algebraic predicate logic . . . 81

12.1 Additional rules for natural deduction in predicate logic 90
12.2 Solution of Example 12.1.15. 93

c© 2017 Jesper Carlström iii

LIST OF FIGURES

iv c© 2017 Jesper Carlström

To the students

Many of the exercises are not collected at the end of the chapter, as usual,
but inserted within the text itself. It is done precisely to point out when you
should do them. They are there because, in my opinion, you need to check you
have understood them before moving on. There are more exercises at the end
of the chapter. Sometimes you will find a definition squeezed in amongst them.
This is so because a logic student should practice also how to use definitions
without having them explained first. Many of the exercises involves proving
things. Logic is, after all, about proof.

Good luck!

Jesper Carlström
Stockholm
19 June 2007

c© 2017 Jesper Carlström v

To the students

vi c© 2017 Jesper Carlström

To the teacher

This study material has been developed for the course Logic AN, 7,5 hp, at the
Stockholm University Mathematics Department. The students at these courses
have varied backgrounds, from mathematics, to philosophy and computer sci-
ence. I have created this material with the intention of teaching the following
in a basic course:

• Natural deduction in tree form.

• Mathematical properties such as soundness and completeness.

• Logic considered as a part of Mathematics.

The only book which was available and satisfied these criterions was van Dalen’s
Logic and Structure. This has been used for a long time, but was regarded by
the students as too difficult. Teachers of the course thought it contained too
many mistakes, and explained some parts in unnecessarily complicated ways,
while it covered others too briefly. I have therefore decided to create new
literature in the same spirit, but with a style that could be expected to suit a
student better, so that more of them would complete the course.

When I got the assignment, I decided to improve the following aspects,
compared to van Dalen’s book:

• Set theory as the foundation of logic should be avoided since a natural
application of logic is precisely set theory.

• The text should have a consistent terminology and a consistent notation
to make the learning easier and more clear.

• Problems from exams should be included so that the students clearly see
what is expected of them. (Many of the problems are taken from previous
exams and are not constructed by me.)

• The text should be written in Swedish since it has been noticed that
learning in ones mother language is much more efficient.

• The division of the material should be easy enough to understand so that
it is clear what the student should do for every lecture, without having
to give further reading instructions.

It is precisely because of this last item that I have adapted the content of
the chapters, so that it is now suitable to take one chapter per lecture.

I will now comment on the material of certain chapters.
Chapters 1 and 2 deal with Boolean algebra. I consider it a natural in-

troduction to symbolic logic for those who are used to thinking algebraically.
The students that come from computer science usually recognize and treasure
this part, which also contains references to computer science. Truth tables
and normal forms are most easily described in an algebraic framework, and
deciding whether a formula is a tautology, involves calculations in Boolean al-
gebra. Last, but not least, Boolean algebra is an example of abstract algebra,
and thereby gives the students experience with the notion of models before the
subsequent chapters.

c© 2017 Jesper Carlström vii

To the teacher

Chapter 3 treats inductively defined sets. The sets of formulas, terms,
etc., which we later introduce and for which we give induction proofs, can be
defined in this way. The advantage of a chapter about inductively defined
sets is that one can discuss induction proofs and recursion in a natural way.
It also avoids formulating a foundational system (set theory or type theory,
for instance) for logic, and assumes instead a more structuralist approach:
it is inductively defined sets what we need, while it is another (and in the
context irrelevant) question in which framework we imagine that the theory
about inductively defined sets should be formulated. The only sets we use in
this course, which cannot be viewed as inductively defined sets, are the sets
of equivalence relations, in Chapter 14. It is possible to disregard such sets
by doing as Bishop did and letting equality be an equivalence relation rather
than an identity relation, but I found such exposition too unfamiliar for the
students.

In Chapter 6 the soundness of propositional logic is proved. Many books
underestimate the importance of the soundness theorem, but I found it im-
proper. Often, this is motivated by the fact that we have already argued for
the derivation rules when they were introduced, so we know that they are
sound. But these arguments are rarely solid, as they mainly serve as a sort of
inspiration. It is, for example, far from obvious that the rules for undischarged
assumptions are correct. In fact, one can look at the soundness theorem as
a proof of this. Some students question the validity of the falsity-elimination,
and are only convinced after seeing the proof of the soundness theorem.

Chapter 7 gives an introduction to normal derivations in propositional logic.
The main purpose is to give the reader a tool for finding derivations in natural
deduction in a methodical way, identifying which paths are dead ends. It is
precisely for that reason that I have chosen to put the normalization proof
in an appendix. Naturally, for a logician, it does not feel right to encourage
students not to look at the proofs, but there are empirical indications that
most students do not learn them since they are not expected to normalize when
solving exercices, but only to search for normal derivations. The only reason
why the normalization proof is in this course is the following: if something can
be derived at all, it can be derived by a normal derivation. Students conceive
the normalization proofs as difficult, but they often treasure the knowledge of
how to search for normal derivations. This gives the possibility of answering
precisely questions about which rules one “has to” use to derive a certain
formula. To make the machinery of notions as easy as possible, I have chosen
a definition of normal which is closely related to that of Seldin. It is useful
for propositional logic, but less useful for predicate logic, since it is founded on
Glivenko’s theorem. I have excluded normalization for predicate logic, since I
think it suffices to have seen this for propositional logic, and because it is more
complicated in the other case, with variable substitutions and everything.

Chapter 8 treats the completeness theorem. I have proceeded as in van
Dalen’s book and chosen a proof which ressembles that of predicate logic as
much a possible, with the intention of preparing them for this.

Chapter 10 introduces the semantics for predicate logic. Here I have chosen
to set up a clear machinery for reevaluations to facilitate the understanding of
how the truth value changes by substitution, as well as to make the soundness
theorem easier. This is a big difference compared to van Dalen’s book, where
substitutions take place in a completely informal way, and where the proof of
the soundness theorem presents some difficulties.

Chapter 11 concerns how one “simplifies” formulas; that is, given a formula,
how to find a new formula, which is simpler but has the same truth value as the
original. This chapter also covers simplifying expressions which contain sub-
stitutions, through the use of reevaluations. The notion of free for is naturally
introduced here.

In Chapter 12 the new rules which are needed for natural deduction are
presented. I have chosen the less general rules, which do not allow changing

viii c© 2017 Jesper Carlström

variables when performing universal introduction and existential elimination,
since I believe that the more general rules are too hard to grasp. In van
Dalen’s book Logic and Structure the simpler rules are used at first, but the
more general rules are introduced towards the end of the book. However, the
variable restrictions are formulated incorrectly, and the correct rules are more
numerous and more difficult to check. The only place where the simple rules
are a disadvantage in this book is in the proof of the model existence lemma,
where one has to take a detour (a certain derivation becomes two steps longer
before changing variables). If one wanted to perform normalization of predicate
logic, it would be good to choose the more general rules, but since I have chosen
to skip that topic one can restrict onself to the simpler rules.

I have included solutions to most of the exercises, except for the old exam
problems, whose solutions are available at http://www.math.su.se/.

Jesper Carlström
Stockholm
Januari 2008, revised
October 2009

Thanks

Thanks to Clas Löfwall, who, during his period as prefect, made sure that a
part of my teaching hours were reserved to writing this material. He also read
an early version and provided many valuable remarks. Some of the problems
included from old exams were constructed by him.

I thank Dag Prawitz for having given a critique of an early version of the
section about normal derivations. It led me to rewrite the section completely.
I hope that this made it considerably better.

Thanks also to Bengt Ulin, who helped me open my eyes to the pedagogical
aspects of Boolean algebras.

c© 2017 Jesper Carlström ix

http://www.math.su.se/

To the teacher

x c© 2017 Jesper Carlström

Part I

Introduction

c© 2017 Jesper Carlström 1

Chapter 1

Boolean algebra – Introduction

1.1 Boole’s idea

Modern symbolic logic can be said to have started with an observation due
to George Boole (1815–64). He noted that ordinary algebra can be used to
formulate and solve logical problems. Think for example of t as “the tall”,
s as “the short”, b as “the brown-haired”.Then tb is interpreted as “the tall,
brown-haired” and t + s as “the tall and the short”. One can formulate the
principle that no one is both tall and short through the rule ts = 0 and then
avoid problems by simplifying complicated expressions algebraically. For ex-
ample, an unnecessarily complicated description of a collection as “the tall,
which are brown-haired, but not the brown-haired short” which is symbolically
represented by t(b− bs) admits an algebraic simplication:

t(b− bs) = tb− tbs = tb− (ts)b = tb− 0b = tb (1.1.1)

which shows that you can more easily call this group of people “tall and brown-
haired”.

Boole also introduced the computation rule aa = a, or, to put it in another
way, a2 = a. This says, for example, that the brown-haired brown-haired people

In ring theory, in algebra, a
ring is said to be Boolean if
its elements satisfy the rule
a2 = a.

can be more easily described as brown-haired, and the short short people can
be more easily described as short. In other words, it does not matter if you
repeat a property several times. This computation rule can also be used to
conclude that “those from the tall and the short which are short”, can be more
easily described as short:

(t+ s)s = ts+ ss = 0 + s = s . (1.1.2)

Counting as Boole did has its problems, though. The following calculation
fully complies with the usual computation rules, while also uses the rule a2 = a:

2x = (2x)2 = 4x2 = 4x . (1.1.3)

If one takes 2x from both sides to get 0 = 2x, we conclude that the rule

a+ a = 0 (1.1.4)

must also hold. This says, if one applies it to s, that there are no people which
are “short and short”. Is this reasonable? Boole thought so. He simply did
not allow adding twice the same expresion; in fact, he only allowed addition
of two properties which are mutually exclusive. A problem with this idea is
that one rarely knows whether two things can be added when you compute. A
modern view is to accept addition of any two properties, but interpreting + as
the exclusive or, which in computer language is often abreviated as XOR: if a
and b are any two properties, then the property a+ b means of something that
it has either property a or property b but not both. With this interpretation,

c© 2017 Jesper Carlström 3

Boolean algebra – Introduction

it is quite reasonable to have the rule a + a = 0. One should just not read it
as Boole did; instead of reading the expression b+ s as “the brown-haired and
the short” one should read it as “either the brown-haired or the short, but not
both”. Since this version of “or” excludes the case of having both properties it
is know as the exclusive or.

Unfortunately, sometimes the exclusive or is not very useful. If the data
system of a ticket selling machine has indicated that discount should be offered
to retired people or to students, we would still want those retired people that
are students to receive the discount. If this is the interpretation of the word
“or”, it is called the inclusive or and often denoted with the symbol ∨ instead
of +. Even in mathematics the inclusive or is preferable. People say things

The symbol ∨ comes from the
first character of the latin vel,
which means “or”. such as “if a + b > 0, then a > 0 or b > 0” but they do not exclude the case

where both numbers can be positive.
For the inclusive or we do have the rule a ∨ a = a, just like aa = a. There

is, therefore, some sort of similarity, more particularly a duality. To highlight
this property one usually writes a∧a instead of aa. One reads ∨ as “or” and ∧

“Duality” refers to a pair that
relate each other as direct
opposite. Ironically, this
supposes that they are
actually strongly linked.
Indeed, a duality requires
that the pair consists of
conformationally similar
concepts, which are opposite
in another sense. For
example, the concepts of most
and least can be said to be
dual, but one would hardly
say that most and yellow are
dual.

as “and”. Hence, one reads t∧ b as “the tall and the brown-haired”, while t∨ b
means “the tall or the brown-haired”, but assuming one also includes the people
that are both tall and brown-haired. As we saw earlier, we have automatically
the rule a+ a = 0 with the usual computations. We cannot, therefore, expect
to count as with + when we use ∨. You can almost always think of ∨ as +,
but not really always. The problem is that you have no substraction; more
precisely, there is not always a solution to the equation a ∨ x = 0. Instead
of substraction, one has the complement : one can write ¬a for the property
“not a”. Hence, one writes, ¬t for those who are not tall, and ¬b for those
who have are not brown-haired. The foundational rules for ∨, ∧ and ¬ are not
different from the usual properties that hold. They are collected in Figure 1.1.
They are called axioms for Boolean algebra, even though Boole himself did
not study this algebra: the name is used to emphasize that it is developped in
a Boolean spirit. The list of axioms is unnecessarily long, since it is enough
to have (comm), (id), (distr) and (inv) to derive the rest of the rules. It is
convenient, however, to see all of them written down explicitly.

Learn the rules of Figure 1.1
by heart, so it becomes much
easier to solve problems. Use
the help of duality and the
names of the rules when you
memorize them.

a ∨ b = b ∨ a a ∧ b = b ∧ a (comm)

(a ∨ b) ∨ c = a ∨ (b ∨ c) (a ∧ b) ∧ c = a ∧ (b ∧ c) (ass)

a ∨ 0 = a a ∧ 1 = a (id)

a ∨ 1 = 1 a ∧ 0 = 0 (abs)

a ∨ a = a a ∧ a = a (idemp)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (distr)

a ∨ ¬a = 1 a ∧ ¬a = 0 (inv)

¬(a ∨ b) = ¬a ∧ ¬b ¬(a ∧ b) = ¬a ∨ ¬b (dM)

comm stands for commutativity
ass stands for associativity
id stands for identity element

abs stands for absorption
idemp stands for idempotence

distr stands for distributivity
inv stands for inverse element
dM stands for de Morgan’s rules

Figure 1.1: Axioms for Boolean algebras

1.1.5 Exercise. Which of the axioms for boolean algebras (Figure 1.1) are

4 c© 2017 Jesper Carlström

1.2 Examples of Boolean algebras

valid in usual algebra if we interpret ∨, ∧ as +, respectively ·, and ¬a as 1−a?

1.1.6 Exercise. Show that the axiom (idemp) is not really needed.

Hint. Begin by writing a ∧ a as (a ∨ 0) ∧ (a ∨ 0), then use (id) and
afterwards (distr).

1.1.7 Exercise. Show that ¬¬a = a for every a.

Hint. Show that ¬¬a = ¬¬a ∨ a and that a = a ∨ ¬¬a. Start, for

example, as follows: ¬¬a (id)
= ¬¬a ∨ 0

(inv)
=

1.2 Examples of Boolean algebras

1.2.1 Example (trivial Boolean algebra). The simplest example of Boolean
algebra is so simple that is called trivial. It simply lets 0 and 1 just be the
name of the same element ∗ and let ∗ ∨ ∗ = ∗ ∧ ∗ = ¬∗ = ∗. This algebra just
consists of a single element! As you might expect, it is not particularly useful.
But it can serve to understand that 0 6= 1 does not follow from the Boolean
algebra computation rules. Indeed, if it did, it should be valid in all Boolean
algebras, while in the trivial algebra 0 6= 1 is false.

1.2.2 Example (algebra with two elements). The simplest non trivial boolean
algebra is obtained by considering the set {0, 1} and defining the operations ∨,
∧ and ¬ through a few simple tables. Think of 0 as representing false and 1 as
representing true. Then, it is reasonable to set up the following so called truth
table.

a b a ∨ b
0 0 0
0 1 1
1 0 1
1 1 1

a b a ∧ b
0 0 0
0 1 0
1 0 0
1 1 1

a ¬a
0 1
1 0

(1.2.3)

This algebra is often called
the initial Boolean algebra.

1.2.4 Exercise. Check that the axioms of Figure 1.1 are satisfied if one defines
the operations in (1.2.3).

1.2.5 Exercise. Show that the table (1.2.3) can only be completed in one way
if we want the axioms of Figure 1.1 to hold. More specifically, show that the
columns under a ∨ b, a ∧ b and ¬a are fully determined by these axioms.

Hint. It suffices to consider axioms (id), (abs), (inv) to show that
the table is uniquely determined.

Despite its simplicity – or perhaps because of it – the two-elements-algebra
is very important. It has applications in digital technology, but will also be
basic for everything we do in this course. Once we introduce the semantics for
propositional logic and predicate logic, it will be this algebra the one we will
use (chapters 4 and 10).

1.2.6 Example (algebra generated by subsets). There is another important
algebra which is closer to what Boole wanted to do from the beginning. Con-
sider all the students in a classroom. We can draw, on the classroom floor,
three overlapping circles b, t, s (Figure 1.2), a so called Venn diagram. We ask

Venn diagrams are named
after the mathematician
John Venn (1834–1923). This
is a little unfair since
Leonhard Euler used them
already in 1768.

now all brown-haired people to stand in the circle b, all tall people in the circle
t, all short people in the circle s. Those who are brown-haired and tall can
stand in the area where b and t overlap; that is, where the circular disks (the
interior of the circles) intersect each other. Those who do not consider them-
selves to be brown-haired, tall or short can stand outside all circles. Where

That the intersection of t and
s is empty means that no one
is in the space that t and s
have in common.

circular disks t and s intersect each other there should be no one, since it is
not reasonable that someone is both tall and short. It is said, therefore, that
the intersection is empty and we denote t ∩ s = ∅. Note that names here are

c© 2017 Jesper Carlström 5

Boolean algebra – Introduction

b

t s

Figure 1.2: Venn diagram

somewhat different. We use ∩ instead of ∧ and ∅ instead of 0. Dually, we can
write ∪ instead of ∨ and often I instead of 1. One also often writes {b or bc

instead of ¬b and call this subset the complement of b – it is the subset of those
that are not in b. The collection b ∪ t is called the union of b and t since you
can think that joining the brown-haired and the the tall forms b ∪ t.

If one disregards the fact that the names have changed a little, the axioms
of Boolean algebras are satisfied (check some of them until you understand how
they work). We have therefore a Boolean algebra with elements ∅ and I, but
also b, t, s and all combinations between them, like b ∪ t. One calls this the
algebra generated from b, t, s.

1.2.7 Example (algebra of all subsets). Given a set, we can consider the
algebra of all its subsets. We interpret 0 as the empty set emptyset, 1 as
the whole set I (the one that contains all elements of the original set), ∧ as
intersection ∩, ∨ as union ∪, ¬ as complement {. the axioms for boolean
algebras are again satisfied, so this constitutes a new Boolean algebra. It
consists of the power set (the set of all subsets) of the original set, together
with the usual subset operations.

Let us now define precisely what a Boolean algebra is:

1.2.8 Definition. A Boolean algebra is a set M , with constants 0 ∈ M andI
1 ∈ M , together with operations ∨ and ∧ (binary) and ¬ (unary), such that
the axioms of Figure 1.1 are satisfied.

1.3 Some properties of Boolean algebras

It is easy to check that ¬0 = 1 and ¬1 = 0 in the Boolean algebras we previously
considered. Can we be sure that this holds in every Boolean algebra? For
Boolean algebras in general, the only thing we know is that they fulfill the
axioms. The answer is yes, which is shown by the fact that the following
calculation is correct in all Boolean algebras:

¬0
(id)
= ¬0 ∨ 0

(comm)
= 0 ∨ ¬0

(inv)
= 1 . (1.3.1)

1.3.2 Exercise. Show that ¬1 = 0 holds in all Boolean algebras.

1.3.3 Exercise. The following so called absorption rules hold: a∨ (a∧ b) = a
and a ∧ (a ∨ b) = a. The first one can be proved as follows:

Absorption rules:

a ∨ (a ∧ b) = a

a ∧ (a ∨ b) = a
a ∨ (a ∧ b) (id)

= (a ∧ 1) ∨ (a ∧ b) (distr)
= a ∧ (1 ∨ b)

(comm)
= a ∧ (b ∨ 1)

(abs)
= a ∧ 1

(id)
= a . (1.3.4)

Prove the other.

6 c© 2017 Jesper Carlström

1.3 Some properties of Boolean algebras

A very useful principle when one works with Boolean algebras (especially
when solving equations, as in Section 2.1) is that if a ∨ b = 0, then both
a = 0 and b = 0. This is also easily checked in the Boolean algebras we have
considered. To be sure that it holds in any Boolean algebra, we use that the
following is true if a ∨ b = 0:

a
(id)
= a ∧ 1

(1.3.1)
= a ∧ ¬0 = a ∧ ¬(a ∨ b) (dM)

= a ∧ (¬a ∧ ¬b)
(ass)
= (a ∧ ¬a) ∧ ¬b (inv)

= 0 ∧ ¬b (comm)
= ¬b ∧ 0

(abs)
= 0 . (1.3.5)

1.3.6 Exercise. Prove that, similarly, if a∨ b = 0, then b = 0. More precisely:
prove that it is true in all Boolean algebras. Prove also that if a ∧ b = 1, then
both a = 1 and b = 1.

We collect these useful results in the following theorem.

1.3.7 Theorem. In a Boolean algebra, if a ∨ b = 0, then a = 0 and b = 0.
Dually, if a ∧ b = 1, then a = 1 and b = 1.

The following exercise shows that this theorem should be read carefully:

1.3.8 Exercise. Show that in the Boolean algebra with two elements, if a∧b =
0, then a = 0 or b = 0. Give also an example of a Boolean algebra where this It does not always hold that if

a ∧ b = 0 then a or b are 0.
principle does not hold.

Perhaps you have already thought about the fact that in our examples there
is a ordering between the elements. In the Boolean algebra which consists of
only 0 and 1, it is natural to say that 0 ≤ 1, and in the algebra of all subsets
we have the relation ⊆ which says that each element in a certain subset is also
an element in another subset. For example, every person who is “brown-haired
and tall” is also “tall”, so we have b ∩ t ⊆ t. There is in fact such an ordering
in any Boolean algebra, which can be simply defined it in the following way:

1.3.9 Definition. In a Boolean algebra, a ≤ b means that a ∧ b = a.I
Note that in the Boolean algebra of subsets, a ≤ b is true precisely when

a ⊆ b is true.

1.3.10 Exercise. Show that 0 ≤ 1 holds, according to the definition.

1.3.11 Exercise. Show that a ∧ b ≤ b holds for any pair of elements a, b in
any Boolean algebra.

When expressing oneself as in
the statement of
Exercise 1.3.11 one does not
mean that you can choose a
Boolean algebra and show
that it holds there, but rather
that you prove that it should
hold in every Boolean
algebra. The idea is that if I
choose a Boolean algebra and
two elements a, b then you
should be able to show that
a ∧ b ≤ b holds in it.

1.3.12 Exercise. Show that ≤ is what a mathematician calls a partial order-
ing :

a ≤ a (reflexivity)

If a ≤ b and b ≤ c, then a ≤ c . (transitivity)

If a ≤ b and b ≤ a, then a = b . (antisymmetry)

1.3.13 Exercise. Show that ∨ gives the least upper bound in the following
sense:

a ≤ (a ∨ b)
b ≤ (a ∨ b)
If a ≤ c and b ≤ c, then (a ∨ b) ≤ c.

Hint. Here the absorption rules (exercise 1.3.3) comes into use.

1.3.14 Exercise. Show that ∧ gives the greatest lower bound. Start by defining
precisely what this means, analogously to the previous exercise.

1.3.15 Exercise. An atom is an element which is minimum amongst the
elements which are not 0. In plain language: an a 6= 0 such that if c ≤ a

Isn’t it wonderful what a
mathematician calls plain
language?for some c 6= 0, then c = a. Give examples of some atoms in some Boolean

algebras. Prove that they are indeed atoms.

1.3.16 Exercise. Prove that if a ≤ b, then (a ∨ c) ≤ (b ∨ c) for all c.

1.3.17 Exercise. Prove that if a ≤ b, then ¬b ≤ ¬a.

c© 2017 Jesper Carlström 7

Boolean algebra – Introduction

1.4 Precedence rules

Since we have associative rules in Boolean algebras, we do not need to write
all the parentheses. For example, one has:

(((a ∧ b) ∧ (c ∧ d)) ∧ e) ∧ f = a ∧ (((b ∧ c) ∧ d) ∧ (e ∧ f)) , (1.4.1)

so it is enough to write:

a ∧ b ∧ c ∧ d ∧ e ∧ f . (1.4.2)

The same happens with ∨. To further diminish the number of parentheses, one
usually lets ∧ “bind stronger” than ∨, in the same way as · binds stronger than
+:

a ∨ b ∧ c (1.4.3)

means a ∨ (b ∧ c). Finally, ¬ binds stronger than ∧.

1.4.4 Exercise. Simplify the following expression using Boolean algebra

a) x ∨ y ∧ y ∨ ¬x

b) x ∧ y ∨ y ∧ ¬x

c) ¬(¬(x ∧ y) ∨ x) ∨ y

1.5 Normal forms

In usual algebra one seldom accepts having expressions such as:

(x+ 3)(x− x) + x+ (x · x+ x)x+ (x · x · 3 + 4x)(x+ 3x) . (1.5.1)

As a rule, it is rewritten into

13x3 + 17x2 + x . (1.5.2)

This polynomial is in a kind of normal form. In Boolean algebras, normal forms
are important as well. In some sense they are even more important than in
usual algebra, as they can be used to solve equations to an even larger extent.
In Boolean algebras one has two sorts of normal forms: disjunctive respectively
conjunctive normal form. An expression in disjunctive normal form can look

Compare:

or: disjunction
and: conjunction
plus: addition
times: multiplication

as follows:

(¬x ∧ y ∧ z) ∨ (y ∧ z) ∨ x (1.5.3)

and an expression in conjunctive normal form can look like this:

(¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ x . (1.5.4)

1.5.5 Definition. An expression is in disjunctive normal form if it is a finiteI
disjunction of finite conjunctions of variables and/or negated variables. Every

Variables are denoted by
x, y, z, when letters
a, b, c, . . . are used, we assume
arbitrary elements in the
algebra. The variable x is in
both disjunctive and
conjunctive normal form. We
cannot know if a is in
disjunctive normal form, since
we do not yet know how the
element a is written.

variable may appear at most once in each conjunction. The expressions 0 and 1
are said to be in disjunctive normal form, though there are no other expressions
that contain them.

1.5.6 Definition. An expression is in conjunctive normal form if it is a finiteI
conjunction of finite disjunctions of variables and/or negated variables. Every
variable may appear at most once in each disjunction. The expressions 0 and 1
are said to be in conjunctive normal form, though there are no other expressions
that contain them.

8 c© 2017 Jesper Carlström

1.5 Normal forms

Just as an empty sum is 0 and an empty product is 1, we say that an empty Compare:

0∑
n=1

an = 0

0∏
n=1

an = 1

0∨
n=1

an = 0

0∧
n=1

an = 1

disjunction is 0 and an empty conjunction is 1.

1.5.7 Example. The following are all in disjunctive normal form:

1. x ∨ y ∨ ¬z,

2. x ∨ (y ∧ ¬z) ∨ w,

3. x ∧ y.

None of the following are in disjunctive normal form:

1. (x ∨ y) ∧ z,

2. (x ∧ ¬x) ∨ y,

3. 0 ∨ x.

1.5.8 Exercise. Which of the following expressions are in disjunctive normal
form? Which are in conjunctive normal form?

1. 0

2. (x ∨ y) ∧ z

3. x ∧ y ∧ z

4. x

5. x ∨ ¬x

6. (x ∨ ¬x) ∧ y

7. x ∨ 0

8. x ∨ (y ∧ 1)

9. a ∨ b (trick question)

Every Boolean expression can be “written in disjunctive normal form” (and
even in conjunctive normal form, which is completely dual). That is to say, in
every Boolean algebra one can construct an expression which is in disjunctive
normal form and which is equal to the one we started with. This can be done
in the following way:

1. Use Exercise 1.1.7 to rewrite ¬¬a as a.

2. Use (distr) to rewrite expressions of the form a∧ (b∨c) as (a∧b)∨ (a∧c).
Expressions of the form (a ∨ b) ∧ c are handled by first applying (comm)
to get c ∧ (a ∨ b) and afterwards continuing with (distr).

3. Use de Morgan’s laws to rewrite ¬(a ∧ b) as ¬a ∨ ¬b and ¬(a ∨ b) as
¬a ∧ ¬b.

4. Use (inv), (abs), (comm) and (ass) to rewrite conjunctions which con-
tain one variable, both negated and non negated, as 0 (for example, one
rewrites x ∧ y ∧ ¬x as 0).

5. Use (idemp), (comm) and (ass) to rewrite several occurrences of one
negated variable into one, and similarly for non negated variables (for
example, one rewrites x ∧ ¬y ∧ x ∧ ¬y as x ∧ ¬y).

6. Use (comm) and (abs) to rewrite a∧ 0 and 0∧ a as 0, and similarly a∨ 1
and 1 ∨ a as 1.

7. Use (comm) and (id) to rewrite a ∨ 0, 0 ∨ a, a ∧ 1 and 1 ∧ a as a.

c© 2017 Jesper Carlström 9

Boolean algebra – Introduction

Repeat these steps until none of them can be applied any further. Then you will
have something in disjunctive normal form. I practice, one does not write down
every step. For example, one writes ¬¬a as a without further justification, but
one should remember the reason (Exercise 1.1.7) to keep a clear conscience. In
the same way, one can rewrite ¬(a ∧ b ∧ c) as ¬a ∨ ¬b ∨ ¬c without specifying
all the steps.

1.5.9 Exercise. Write the following in disjunctive normal form:

a) x ∧ (y ∨ (z ∧ x))

b) x ∧ ¬(y ∨ ¬z) ∧ ¬(¬y ∧ ¬z),

c) ¬y ∧ ¬z ∧ ¬(x ∧ ¬(y ∨ ¬z))

Another way to convert an expression into disjunctive normal form is to
write down the truth table of the expression and read the disjuntive normal
form from it. We illustrate this with an example.

1.5.10 Example. Write x ∧ (y ∨ (z ∧ x)) in disjunctive normal form.

Solution. We construct a truth table:

Note the compact form of the
table: under every variable we
have put the values on the
current row; under each
operation we have put the
value resulting from
performing that operation.
The three columns on the left
can be completely ommitted,
but one has then to keep in
mind that if a variable occurs
several times on the same
row, (as is here the case
withx), it has to have the
same value in each
occurrence.

x y z x ∧ (y ∨ (z ∧ x))
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 1 1 0 0 0
0 1 1 0 0 1 1 1 0 0
1 0 0 1 0 0 0 0 0 1
1 0 1 1 1 0 1 1 1 1
1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1

(1.5.11)

From the truth table we can see that the expression is true in the last three
columns. If we construct an expression for each of these rows, we can later put
them together; first we create an expression with has the value 1 on the third
last row, but 0 on every other. We are able to do so by choosing the expression
x ∧ ¬y ∧ z: for this to have the value 1, we must have precisely x = 1, y = 0,
z = 1. For the last two rows we choose x∧y∧¬z respectively x∧y∧z. Finally,
we combine these expressions with disjunctions:

(x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z) ∨ (x ∧ y ∧ z) . (1.5.12)

It can be likely the case that you got a shorter expression after doing Exer-
cise 1.5.9 a. There is nothing wrong if one gets a different answer: normal
forms are not unique in Boolean algebras.

The previous method has a theoretical problem: indeed, we see that we
always get an expression in disjunctive normal form, but how do we know that
it is always equal to the one we started with in every Boolean algebra? The
tables shows that as long as we replace the variables of the expression by 0
or 1, we will get an equality. But in many Boolean algebras, there are lots
of other elements as well. How can we know that we will get equality even if
we replace instead the variables by these? Theorem 2.1.39 will prove that this
in fact works: it is enough to check by inserting 0 or 1 to be sure that the
expressions are equal for every other replacement. This is a quite surprising
property of Boolean algebras.

10 c© 2017 Jesper Carlström

1.6 Simple equations

1.6 Simple equations

We will now investigate how to solve equations where the right hand side is 0.
In the next paragraph we will build further on this by finding out how to deal
with equations where the right hand side is something else.

1.6.1 Example. Solve the equation x ∧ y ∧ ¬z = 0.

The right hand side 0, the left
hand side only conjunctions
and negations: different
methods in different Boolean
algebras.Solution. The solutions in the two elements algebra are easy to find. There

they are given by all possible combinations except (x, y, z) = (1, 1, 0). One can
see this by solving the corresponding equation where one interchanges the 0
and the 1. In that case, Theorem 1.3.7 implies that one need to have x = 1,
y = 1, ¬z = 1.

In other Boolean algebras one cannot necessarily describe the solutions that
neatly; we will content ourselves analyzing what the equation says about a
colletion where x, y, z are interpreted as three subsets, ∧ is interpreted as ∩,
and so on. In that case, the equation clearly says that the intersection between
x, y and ¬z is empty. Any collection which has that property can therefore be
seen as a solution to the equation. One can take Venn diagrams as in Figure 1.2
as a guide, and colour the area which is empty according to the equation.

The example is typical: all equations where the right hand side is 0 and the
left hand side is a conjunction of variables and negated variables can be handled
in the same way. If the left hand side is something else, one can always write
it in disjunctive normal form and later apply Theorem 1.3.7 to get a system of
equations of the previous type. We will also illustrate this with an example.

1.6.2 Example. Solve the equation x ∧ (y ∨ (z ∧ x)) = 0.

The right hand side 0, and
arbitrary left hand side: write
the left hand side in
disjunctive normal form and
continue as in the above
example.

Solution. We start by writing the left hand side in disjunctive normal form,
according to (1.5.12), for example, so that we get the equation:

(x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z) ∨ (x ∧ y ∧ z) = 0 . (1.6.3)

According to Theorem 1.3.7 this has the same solutions as the system of equa-
tions:

x ∧ ¬y ∧ z = 0

x ∧ y ∧ ¬z = 0

x ∧ y ∧ z = 0 .

(1.6.4)

In the Boolean algebra with two elements one finds the solutions by marking in
a table those elements which are common for each of the equations in the system
(for example, one writes the eight possible rows and cross out the ones which
are impossible according to the three equations). In a Venn diagram one can
colour the three areas which are empty according to the three equations. Any
collection which is empty in all the couloured areas solves the equations.

That one cannot precisely describe the solutions makes the situation analo-
gous to the case of indetermined equation system in linear algebra. Sometimes
the solution set for a system of equations is a whole plane of points; one cannot
then give a unique solution, but has instead to consider the equation as solved
when one has given the plane in a suitable way. In Boolean algebra, the most
suitable way is often to give a number of conjunctions which shall be 0.

1.6.5 Example. In a database in a pharmaceutical company one has stored
information about gender and illness history. Let x be the women, y be the
men, and z those people that have insomnia. In a certain search, one needs to
pick the people that fulfill the query (x∨¬y)∧ ((z∧ (¬x∨y))∨¬((x∧¬y)∨ z).
An employee in the company complains and claims that no one will be picked
out in this query. Is he correct?

c© 2017 Jesper Carlström 11

Boolean algebra – Introduction

Solution. He claims that the company database material solves the equation:

(x ∨ ¬y) ∧ ((z ∧ (¬x ∨ y)) ∨ ¬((x ∧ ¬y) ∨ z) = 0 .

Let us look at the solution of this. We first write the left hand side in disjunctive
normal form: (x∨¬y)∧ ((z∧ (¬x∨y))∨¬((x∧¬y)∨z) = (x∨¬y)∧ ((z∧ (¬x∨
y)) ∨ ((¬x ∨ y) ∧ ¬z) = (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (z ∨ ¬z) = (x ∨ ¬y) ∧ (¬x ∨ y) =
(x ∧ y) ∨ (¬y ∧ ¬x). The equation is equivalent to the system:{

x ∧ y = 0

¬x ∧ ¬y = 0 .

This means that the skeptic is correct if and only if the database contains:
a) no one who is both a woman and a man b) no one who is neither a woman
nor a man.

1.6.6 Exercise. Solve the equation x ∧ ¬(y ∨ ¬z) ∧ ¬(¬y ∧ ¬z) = 0.

1.6.7 Exercise. Solve the equation ¬y ∧ ¬z ∧ ¬(x ∧ ¬(y ∨ ¬z)) = 0.

1.7 Summary

You have encountered Boolean algebra, which was historically the first ap-
proach to formal mathematical symbolic logic. This will be useful to you,
partly as a foundation for logic, and partly as an example of an abstract alge-
braic theory. That there are numerous Boolean algebras that fulfill the same
axioms is an example of the fact that a theory can have many models, which
is something that we will use further on in the course. In the next chapter you
will learn more about how to solve equations in Boolean algebras. The most
important thing to remember in the sequel is the ability to algebraically sim-
plify Boolean expressions to be able to calculate the so called truth values. The
ability to set up and apply truth tables is valuable when one decides whether
a so called formula is true in every possible so called interpretation, something
you will do many times during this course.

12 c© 2017 Jesper Carlström

Chapter 2

Boolean equations and implications

2.1 Equations, inequalities and equation systems

Previously we have seen how to solve equations where the right hand side is 0;
even those systems of equations of that type can be solved in the same way.
We will see now how the same method can be applied to solve inequalities. An
example will be soon presented, but first we need a lemma to show how one
can replace inequalities by equations that have precisely the same solutions.

2.1.1 Lemma. The inequality a ≤ b is equivalent to the equation a ∧ ¬b = 0.

Proof. Assume that a ≤ b, which means that a∧ b = a. Put ∧¬b on both sides;
then we get a∧ b∧¬b = a∧¬b. The left hand side can now be simplified using
(inv) and (begr) to 0.

Assume, on the other hand, that a ∧ ¬b = 0. Then we have:

a ∧ b = (a ∧ b) ∨ 0 = (a ∧ b) ∨ (a ∧ ¬b) = a ∧ (b ∨ ¬b) = a ∧ 1 = a , (2.1.2)

that is a ≤ b.

2.1.3 Example. Solve the inequality x ∧ y ≤ y ∧ z.

Solution. We start by asserting that the inequality is equivalent to the equation
x ∧ y ∧ ¬(y ∧ z) = 0 according to the lemma. Then we can proceed as before:
write the left hand side in disjunctive normal form

Inequality: exchange them
with equations where the
right hand side is 0.

x ∧ y ∧ ¬(y ∧ z) = x ∧ y ∧ (¬y ∨ ¬z) (2.1.4)

= x ∧ ((y ∧ ¬y) ∨ (y ∧ ¬z)) (2.1.5)

= x ∧ (0 ∨ (y ∧ ¬z)) (2.1.6)

= x ∧ y ∧ ¬z (2.1.7)

and conclude that the solution is given by the equation:

x ∧ y ∧ ¬z = 0 . (2.1.8)

With the help of inequalities we can now solve arbitrary equations. Equa-
tions of the form a = b can be written, with the help of antisymmetry (Exer-
cise 1.3.12), as a system of inequalities

Arbitrary equations: rewrite
the system with two
inequalities and proceed using
the method for solving
inequalities.

{
a ≤ b
b ≤ a

(2.1.9)

which can then be solved as we did above.

c© 2017 Jesper Carlström 13

Boolean equations and implications

2.1.10 Example. Solve the equation x ∧ y = y ∧ z.

Solution. We start by rewriting the equation into the system:{
x ∧ y ≤ y ∧ z
y ∧ z ≤ x ∧ y .

(2.1.11)

We have seen already in the previous example that the upper inequality has the
same solutions as x∧y∧¬z = 0. Similarly, we can show that the lower inequality
has the same solutions as ¬x ∧ y ∧ z = 0. In the algebra of two elements, all
combinations except (1, 1, 0) and (0, 1, 1) are solutions to the equation. In
general, we cannot give a better answer than these two equations.

Now there are no difficulties in handling systems of equations and systems
of inequalities; one just applies precisely the same methods. However, it is

Systems of equations: no
more difficult than equations.
One just get a system of
equations bigger than the
system we started with.

sometimes an advantage to apply the following method for solving an inequality
rather than applying Lemma 2.1.1: given an inequality LHS ≤ RHS, rewrite
the LHS in dsjunctive normal form and the RHS in disjunctive normal form.
Use now that a ∨ b ≤ c is equivalent to the system:{

a ≤ c
b ≤ c

(2.1.12)

according to Exercise 1.3.13. Dually, a ≤ b ∧ c is equivalent to the system{
a ≤ b
a ≤ c .

(2.1.13)

In this way we can rewrite one large inequality into many small ones.

2.1.14 Example. Solve the inequality (x ∧ y) ∨ z ≤ (¬y ∨ z) ∧ ¬w.

Solution. Here we do not have to write in normal form because the left hand
side is already written in disjunctive normal form and the right hand side is
already given in conjunctive normal form. It follows immediately that the
inequality is equivalent to the system:

x ∧ y ≤ ¬y ∨ z
z ≤ ¬y ∨ z

x ∧ y ≤ ¬w
z ≤ ¬w .

(2.1.15)

The first inequality can be written in equational form: x ∧ y ∧ ¬(¬y ∨ z) = 0,
which, when the left hand side is written in disjunctive normal form, becomes
x ∧ y ∧ ¬z = 0.

The second inequality in the system is always true, since the right hand side
is greater than the left hand side (see Exercise 1.3.13). Hence, we can ignore
this one.

The third inequality in the system is equivalent to the equation x∧y∧w = 0.
The fourth inequality in the system is equivalent to the equation z∧w = 0.
The original inequality is thus equivalent to the system:

x ∧ y ∧ ¬z = 0

x ∧ y ∧ w = 0

z ∧ w = 0 .

(2.1.16)

We have already an answer in a good form. The complicated inequality has
changed into three conditions which are considerably easier to check and to
understand. Furthermore, one can get rid of one of them. Since variables x

14 c© 2017 Jesper Carlström

2.1 Equations, inequalities and equation systems

and y occur in the first two equations, we can simplify a bit more. We rewrite
the second equation as:

x ∧ y ∧ (z ∨ ¬z) ∧ w = 0 (2.1.17)

which, when we rewrite the left hand side in disjunctive normal form, gives the
equation system: {

x ∧ y ∧ z ∧ w = 0

x ∧ y ∧ ¬z ∧ w = 0
(2.1.18)

Now we see that the upper equation follows from the last equation in (2.1.16),
while the second one follows from the first equation in (2.1.16). Clearly, the
second equation in (2.1.16) follows from the other two, so the latter one is
enough. We can therefore answer that our original inequality is equivalent to
the system: {

x ∧ y ∧ ¬z = 0

z ∧ w = 0 .
(2.1.19)

2.1.20 Example. Solve the inequality (¬y ∨ z) ∧ ¬w ≤ (x ∧ y) ∨ z.

Solution. We write the left hand side in disjunctive normal form and the right
hand side in conjunctive normal form:

(¬y ∧ ¬w) ∨ (z ∧ ¬w) ≤ (x ∨ z) ∧ (y ∨ z) . (2.1.21)

Now we can rewrite the inequality as the following system:
¬y ∧ ¬w ≤ x ∨ z
z ∧ ¬w ≤ x ∨ z
¬y ∧ ¬w ≤ y ∨ z
z ∧ ¬w ≤ y ∨ z .

(2.1.22)

The second inequality is always true, as z∧¬w ≤ z ≤ x∨z (see Exercise 1.3.13,
and dually for conjunction). Likewise for the fourth equation. The other two
can be written in equational form:{

¬y ∧ ¬w ∧ ¬(x ∨ z) = 0

¬y ∧ ¬w ∧ ¬(y ∨ z) = 0
(2.1.23)

which, when the left hand side is written in disjunctive normal form, becomes:{
¬y ∧ ¬w ∧ ¬x ∧ ¬z = 0

¬y ∧ ¬w ∧ ¬z = 0 .
(2.1.24)

Here we see that the upper equation follows from the lower one, so only the
lower one is relevant. The original inequality is thus equivalent to:

¬y ∧ ¬w ∧ ¬z = 0 . (2.1.25)

2.1.26 Example (from the exam on 2007-08-17). Solve the equation (y∧x)∨
(x ∧ z) = x ∧ (x ∨ z).

Solution. We first simplify the right hand side to x (absorption rule). The
equation can now be written as a system of inequalities:{

(y ∧ x) ∨ (x ∧ z) ≤ x
x ≤ (y ∧ x) ∨ (x ∧ z) .

(2.1.27)

c© 2017 Jesper Carlström 15

Boolean equations and implications

In the first inequality, the left hand side is in disjunctive normal form, so it can
be rewritten as the system: {

y ∧ x ≤ x
x ∧ z ≤ x

(2.1.28)

which is solved by using the definition and instances of idempotence. We
can therefore ignore this one. The original equation is thus equivalent to the
inequality:

x ≤ (y ∧ x) ∨ (x ∧ z) . (2.1.29)

We write the right hand side in conjunctive normal form:

x ≤ x ∧ (y ∨ z) . (2.1.30)

This inequality is equivalent to the system:{
x ≤ x
x ≤ y ∨ z .

(2.1.31)

The first of these equalities is always satisfied, so we can ignore it. The original
equation is thus equivalent to the inequality:

x ≤ y ∨ z . (2.1.32)

One cannot answer the question in a simpler way than this. Possibly, one
prefers to write the inequality as an equation:

x ∧ ¬(y ∨ z) = 0 (2.1.33)

which can be simplified into

x ∧ ¬y ∧ ¬z = 0 . (2.1.34)

When you do the exercises below, you can try to solve the inequalities
which arise both with the above method and through a direct application of
Lemma 2.1.1.

2.1.35 Exercise. Solve the inequality x ∧ y ≤ z.

2.1.36 Exercise. Solve the equation x ∧ ¬(y ∨ ¬z) = ¬y ∧ ¬z.

2.1.37 Exercise. Solve the following system of equations and inequalities:
x ∧ ¬(y ∨ ¬z) = ¬y ∧ ¬z

x ∧ y ≤ z
y ∧ z = 0

2.1.38 Exercise (from the exam on 2007-01-10). Solve the equation x ∧ (y ∨
z) = (y ∨ z) ∧ (x ∨ y)

The methods we have presented in this section can also be used to prove
the following useful theorem:

2.1.39 Theorem. If an equation is satisfied when its variables are substituted
by 0 and 1, it is also satisfied by all the elements of any Boolean algebra.

Proof. Assume we have an equation which is satisfied when variables are substi-
tuted by 0 and 1. Apply the methods we have seen so far to write the equation
as a system of equations where the right hand side is 0 and the left hand side
is a conjunction of variables and negated variables. If all left hand sides are 0
(that is, we have empty conjunctions) then we are done, since the equation we
started with is equivalent to 0 = 0. Assume, therefore, that some left hand side

16 c© 2017 Jesper Carlström

2.2 Implication

contains a variable. Since every insertion of 0 and 1 makes this left hand side
equal to 0, there must be some variable which occurs both negated and non
negated in it, otherwise we could choose insertion of 0 and 1 for each variable
so the left hand side is not 0, contradicting the fact that the equation is solved
by all substitutions. But if a variable occurs both negated and non negated,
the whole left hand side can be written as 0 by using (ass), (komm), (inv) and
(id). To conclude, we have that only using the axioms of Boolean algebras we

The proof is quite compact; it
is not important to learn it by
heart, but the theorem is
important in itself, since it
shows that the methods of
truth tables are useful when
writing expressions in
disjunctive normal form
(Example 1.5.10).

could show that the equation we started with is equivalent to 0 = 0; that is,
every insertion of elements of the Boolean algebras into the variables solves the
equation

2.2 Implication

Let us, as an introduction, consider a little bit informally a Boolean algebra of
conditions. You can think about them as conditions for picking out entries in a
database, but just as well as conditions for specifying a subset in mathematics:
the condition odd gives, for instance, the odd numbers as a subset of the natural
numbers. If a and b are two conditions, then the condition a ∧ b is satisfied
precisely when both a and b are satisfied. The condition a ∨ b is satisfied
precisely if at least one of the conditions a and b are satisfied. The condition
0 is that which is never fulfilled, while the condition 1 is that which is always
fulfilled. Two conditions are said to be equal if they are satisfied on the same
set of things.

Now let a, b, c be three conditions and assume that the following has been
observed:

Everything which fulfills conditions a and b fulfills condition c. (2.2.1)

We then naturally draw the conclusion:

Everything which fulfills the condition a fulfills that if b then c. (2.2.2)

Indeed, we know that if condition a is fulfilled, we then know that if b is fulfilled,
according to (2.2.1), condition c will be fulfilled. Conversely, we can go from
observation (2.2.2) to (2.2.1), since if a and b are fulfilled then a is fulfilled,
and then, according to (2.2.2) that if b, then c; hence, since b is fulfilled it
follows that c is fulfilled. We have therefore observed an equivalence between
the principles (2.2.1) and (2.2.2).

In the language of Boolean algebra we can express (2.2.1) as a ∧ b ≤ c, but
(2.2.2) cannot be so easily expressed, since we do not have any symbols for
if... then.... We will introduce further below such a symbol →, and call the
corresponding operation implication. We shall do this so that the equivalence
between (2.2.1) and (2.2.2) can be expressed as

(a ∧ b) ≤ c ⇐⇒ a ≤ (b→ c) . (2.2.3)

Such a connection between ∧ and → is in mathematics called a Galois connec-
tion. This kind of connections occurs in many places in mathematics.

We will now introduce an implication that fulfills (2.2.3), which in the alge-
bra of conditions will work as a proper formal correspondence to if... then...,
even though we will see that it has certain properties that one does not nor-
mally associate to if... then.... In other Boolean algebras we cannot expect
that such an implication will correspond to the normal use of if... then... in a
great extent: there are infinitely many Boolean algebras which are not related
to conditions, but it was exactly the example of conditions what we have used
to intuitively motivate implication. For example, in the two elements algebra,
if... then... is a pretty far-fetched interpretation; what does “if 0 then 1” mean?
We do not use this kind of sentences in our everyday language. The motivation

c© 2017 Jesper Carlström 17

Boolean equations and implications

we can give in general to introduce implication is that a Galois connection is
certainly a good thing to introduce. That is shown by experience in all areas
of mathematics. In different Boolean algebras, the interpretation of → will
be different, but the Galois connection will always be there. In the algebra of
conditions, the Galois connection captures exactly the important equivalence
between (2.2.1) and (2.2.2). Further below we will prove that the operation
→ can always be defined in a way that one really gets the Galois connection
with ∧. For a start, you can investigate by yourself how it has to be in the two
elements algebra.

2.2.4 Exercise. Investigate how→ must work in the case of the two elements
Boolean algebra by studying the case a = 1 in (2.2.3). Draw up a truth table
for → as in (1.2.3).

We will now address the problem of how to introduce implication once and
for all, by doing it simultaneously in every Boolean algebra. First we notice that
the left hand side in (2.2.3) can be rewritten as an equation: a∧b∧¬c = 0. This
equation can be rewritten as a ∧ ¬(¬b ∨ c) = 0, which then can be expressed
as the following inequality: a ≤ ¬b ∨ c. We can therefore express (2.2.3)
equivalently as:

a ≤ (¬b ∨ c) ⇐⇒ a ≤ (b→ c) . (2.2.5)

This is naturally fulfilled if (b→ c) = ¬b∨ c, so one solution could be to simply
define (b→ c)

def
= ¬b ∨ c. But perhaps there are other better ways? No, it is

certainly not the case: we must have (b→c) = ¬b∨c if (2.2.5) shall be valid for
all choices of a. Indeed, if we let a = (b→ c) in (2.2.5) we get (b→ c) ≤ (¬b∨ c)
and if we let a = (¬b ∨ c) we get (¬b ∨ c) ≤ (b→ c). Since ≤ is shown in
both directions, we get the equality. Because of this, we state the following
definition:

2.2.6 Definition. In a Boolean algebra, we define a→ b as ¬a ∨ b.I

One usually reads a → b as “if a, then b”, even when it does not have
any immediate intuitive meaning. It may feel strange to say “if 0, then 1”,
but in Boolean algebras one often uses that expression. Remember that only

Precedence rules:
→ has lower priority than ∧
and ∨, thus x ∧ y→ z ∨ w
means (x ∧ y)→ (z ∨ w). in some special cases we have made attempts to capture something intuitive

using this. It is the Galois connection (2.2.3) the property of mathematical
importance, and the one which one looks for when introducing implication.
The interpretation of if... then... is less important. If one thinks that this is a
point of view excessively formal, since Boolean algebra is about truth values,
one can think of a→ b as “b is at least as true as a”.a→ b can be thought of as “b

is at least as true as a”.

a→ b = 1 if and only if a ≤ b. 2.2.7 Example. If 0 and 1 are truth values, where 0 represents false and 1
represents true, then 1 is at least as true as 0, and thus 0→ 1 is true.

2.2.8 Example. If b, t, s stands for brown-haired, tall, respectively short, then
a person has the property b→ t if the fact that he is tall is at least as true as
the fact that he has brown hair. In other words, all blondes belong to b→ t,
no matter their height, as it is false that they are brown-haired.

2.2.9 Exercise. Do you think it feels correct to say about a short blonde that
if she is brown-haired then she is tall? Only you have the correct answer to
this exercise.

2.2.10 Example. “If he is the king then I am Donald Duck” is something one
could say. With this phrase, one might just mean that it is at least as true that
I am Donald Duck as he is the king.

Let us now see how one can use implication in the most intuitive interpre-
tations: when dealing with conditions. Let us take a concrete example.

2.2.11 Example. In a database of numbers from an experiment one wants to
pick out those numbers a that satisfy the conditions:

18 c© 2017 Jesper Carlström

2.2 Implication

• a is divisible by 3,

• if a is divisible by 2, then it is divisible by 4,

We let x be divisibility by 3, y be divisibility by 2 and z be divisibility by
4. The condition we should use can therefore be given as x ∧ (y → z). The
content of the database is as follows: 1, 3, 6, 4, 12. We shall investigate each
and every of these numbers regarding the condition x ∧ (y→ z). The numbers
must satisfy the condition x and the condition y→ z to be picked out. When
we investigate if the number 1 satisfies the conditions, we discover immediately
that condition x is not satisfied, so this number is not picked out. The next
number is 3. Here the condition x is fulfilled, so it has thus far survived” our
criteria. The next condition is y→ z; that is, if it is divisible by 2 then it must
be divisible by 4. But we do not have divisibility by 2, so we are allowed to
say that this condition do not give us any problems either: the number 3 has
complied with our criteria and is then picked out. Next number is 6. Here
condition x is satisfied, as well as y, but z is not satisfied. Hence, the criteria
that if y then z fails. Therefore the number 6 is not picked out. Next number,
4, fails to satisfy the first condition, x, and hence it is not included. However,
when we get to the number 12 we find that all the conditios x, y, z are satisfied,
and hence, also the condition y → z is fulfilled. Therefore, the number 12 is
picked out. The numbers we have picked out are then {3, 12}. Note that in
this reasoning, one intuitively thinks about the condition y→ z as only being
relevant when y is fulfilled. When y is not fulfilled, one thinks that one can
skip this condition. In a process when one filters elements that do not satisfy
certain conditions, skipping is in practice the same as saying that the condition
is fulfilled. Instead of saying: “if y is not fulfilled one skips the condition y→z”
one can say “if y is not fulfilled, one regards y→ z to be satisfied”. A moment
of thought shows that the condition y→z will thus always be fulfilled whenever
¬y ∨ z.

2.2.12 Exercise. Check that (a→ 0) = ¬a holds in any Boolean algebra.

2.2.13 Exercise (from the exam on 2005-08-23). Write the following expres-
sions in disjunctive normal form: ¬(¬(x ∧ z)→ x)→ ((z ∨ y) ∧ y).

2.2.14 Definition. By a↔ b we mean that (a→ b) ∧ (b→ a).I
a↔ b can be thought of as “a
and b are equally true”. One
calls ↔ equivalence. It has as
low precedence as →.2.2.15 Exercise. Make a truth table for ↔. One column for a, one column

for b and one column for a↔ b.
a↔ b = 1 if and only if a = b.

2.2.16 Exercise. Make a truth table for the following expression:

(x ∧ w→ y ∨ z)↔ (y ∨ x ∨ ¬(w ∧ z)) .

You do not need to unwind the definition of ↔, but regard it as an operation
with its own truth table.

2.2.17 Exercise. Give an expression a which has the following truth table.

x y z a
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

2.2.18 Exercise. Simplify the following expressions using Boolean algebra.

c© 2017 Jesper Carlström 19

Boolean equations and implications

a) x ∧ (x→ y)

b) ¬x→ x

c) (x ∧ ¬x)→ y

d) x ∨ y→¬x ∧ y

2.2.19 Exercise. Show that the inverse is unique; that is, that if x ∧ y = 0
and x ∨ y = 1, then y = ¬x.

Hint. Solve the equation y = ¬x using the standard methods.

2.2.20 Exercise (from the exam on 2008-01-09). Simplify (x∨ y)→ (¬x∧ y).

2.2.21 Exercise (from the exam on 2007-10-18). Simplify: (y ∨ x) ∧ (x→ y).

2.2.22 Exercise (from the exam on 2008-01-09). Solve the equation x∧ (y→
z) = (x ∧ y)→ (x ∧ z).

2.2.23 Exercise (from the exam on 2007-10-18). Solve the equation ¬(x ∧
y) ∧ (¬x ∨ z) = ¬(y ∧ z)→ z.

2.3 Summary

You have learnt how to solve equations in Boolean algebras. We have also
introduced implication, which will be important during the whole course. We
will not go further into Boolean algebra. The ability to see when two Boolean
equations are equal (by solving equations!) is important to decide under which
conditions formulas have the same truth value. But it is more important, for the
rest of this course, to have the ability to compute algebraically using Boolean
algebra.

20 c© 2017 Jesper Carlström

Chapter 3

Inductively defined sets

3.1 Need for a simple set theory

Anyone who questions the validity of a mathematical result is referred to the
proof. He or she must find a weakness in the proof for his or her objection
to be taken seriously. The proof is constructed purely on logical steps, so to
be able to rely on the proof, one has first to rely on the logic applied. How
does one know that it is sound? One method is to use mathematics to prove
that it is, but then one runs into an uncomfortable circular reasoning: one
justifies mathematics saying that it is correct by the logical laws, which are in
turn justified by saying that we have mathematically proven they are correct.
Imagine that if the logic is wrong, it will let us do wrong mathematics! In that
case one perhaps can, using wrong mathematics, prove that the logic is correct,
even if it is not.

Few logicians today believe that one can do logic fully without mathematical
methods. Therefore, it is doubtful whether logic in itself could be used as a
foundation of mathematics entirely. However, one can settle for a small amount
of mathematics when one studies logic, and then the logic can be applied to
check more advanced mathematics. The mathematics one needs to do basic
logic is a very simple kind of set theory. It is “simple” not in the sense that it
should be very easy to understand, but in the sense that it does not have to
be powerful enough to contain all mathematics – it is sufficient that it gives us
tools for handling what we need to do logic.

The sets we need are all inductively defined. That means that one can
handle them in such an easy way that it ressembles manipulations in a pro-
gramming language. In fact, functional programming languages such as OCaml

If you learn the principles for
inductively defined sets, you
will understand the rest more
easily, since everything we are
going to do follows from these
principles.

has support for inductively defined sets (which are called inductive data types).
The most well known inductively defined set is the set of the natural numbers,
which is therefore a good first example.

3.2 Natural numbers

0, 1, 2, 3 and so on are called natural numbers. From that explanation we can
infer which mathematical objects are denoted by “natural numbers” but does
it actually say what they really are? For example, does it answer the question
of what the natural number 3 really is? A moment of thought reminds us that
the natural number 3, for instance, could be a number of things (the property
of being three things) or a point in the number line, or many other things. It is
difficult to find an explanation which answers in an exhaustive way what the
number 3 is.

One can then assert that the different areas of applications have something
in common, which leads us to use the label “natural numbers”. This common
thing reveals itself already in the fact that we can explain which are the natural

c© 2017 Jesper Carlström 21

Inductively defined sets

numbers by saying something as simple as “0, 1, 2, 3, and so on”. According
to this explanation, the essential property of the number 3 is that it is the
successor of the number 2, which is in turn the successor of the number 1,
which in turn is the successor of the number 0. We say nothing about what
the number 3 can be used for or in which contexts it occurs. The only thing we
communicate is the counting principle, namely, that one can get the natural
numbers through

• starting,

• continuing.

These two points say the essential about counting using natural numbers. We
use the natural number 3 for a certain number, since we can count “one, two,
three” when we have to deal with three things. In the same way, we use
natural numbers for certain points on the number line, since these points can
be constructed through the principle of starting and continuing: one chooses a
beginning, origin, and then continues by pointing into the line in equally long

Origin: from the latin origo,
beginning.

distances, one after another, in a given direction.
This simple explanation of what natural numbers are, that we have just

given, shows why we, with our limited mental capabilities, can succeed in han-
dling this infinitely large set of natural numbers: it is not required that we
think of infinitely many elements at the same time, but only that we under-
stand the two ways in which natural numbers can be constructed. The whole
set of natural numbers is given (induced) by these two principles, so one says
that it is inductively generated by them. That it is “infinite” only means that
there is no limit regarding for how long one can continue generating natural
numbers.

We have already the foundations of a theory of inductive definitions. We
have created natural numbers and will later, similarly, create other sets which
are needed in logic. To do so in an orderly way, we need a better notation than
the one we used above. Let us, therefore, reformulate the two rules for creating
a natural number:

0 ∈ N
n ∈ N
s(n) ∈ N

. (3.2.1)

This already looks more cryptic, but it is nothing else than a way of writing
the two rules “one begins” and “one continues”. Every rule is symbolized by
a horizontal line. Above each rule we can see what one needs to be allowed to
apply it. Under the line we can see what one is allowed to conclude by the help
of this rule. The rule on the left has nothing above the line, so one does not
need anything to be able to apply it. It says that one is allowed to conclude
that “0 is a natural number”. In other words: it says that “one begins”. The
rule on the right says that if one has a natural number, called n, one is allowed
to get a new natural number, called s(n). Thus, one only says that for every

The symbol s is traditionally
used and stands for
“successor”. natural number n, there is a successor. In other words: the rules says “one

continues”.
The two rules can, in the programming language OCaml be applied to define

a data type of natural numbers:

type n =

| O

| S of n

These two rules tell us everything about what natural numbers are, if we
mean by them the string of words used to count. In contrast, they say very little
about what properties natural numbers have. For example, it is still difficult to
comprehend why Fermat’s last theorem is true, even though we know precisely
what objects it is about. Nor does the definition say anything about how one
can use the natural numbers. The connection to numeration, to points on
the number line, etc., is not reached at all by the definition. Furthermore, we

22 c© 2017 Jesper Carlström

3.2 Natural numbers

usually count “0, 1, 2, 3, and so on”, rather than “0, s(0), s(s(0)), s(s(s(0))),
and so on”. This is done, of course, because it is confusing to say “the successor
of the successor of the successor of zero”. The point is that the idea of natural
numbers has to do with the fact that we use successors, but not necessarily
that we call them “successors” in our everyday language. In fact, we have to
explain for those who are learning to count and read digits that, for instance,
4 is the successor of 3. That is, we must define:

1
def
= s(0)

2
def
= s(1)

3
def
= s(2)

4
def
= s(3)

5
def
= s(4)

6
def
= s(5)

7
def
= s(6)

8
def
= s(7)

9
def
= s(8)

and then we must also explain that one uses two digits to denote the successor
of 9. We leave this for now, since it does not have any relation with inductively
defined sets, but rather to how we, in our culture, denote numbers.

We now proceed to define functions on natural numbers. Not even for this
any advanced set theory is needed. We have already encountered s, which
can be looked as a function of N into itself. It acts by associating, for every
number, its successor. We now define a function which shall decrease the value
of number one step. This is not possible to do for number 0, as it is “the
beginning”, so there is no smaller number in the set N. We therefore let the
decreasing function be 0 on the number 0.

Now, how does one define a function on N? We shall define it for every
element, and there are precisely two sorts of elements, since there are two rules
to form elements in N: a natural numebr is either of the form 0 or of the form
s(n), where n is a natural number. We call the function p and define it on both p is used for Predecessor.

sorts:

p(0)
def
= 0 (3.2.2)

p(s(n))
def
= n. (3.2.3)

We therefore define the function by saying how it is computed for all sorts of
elements in the set.

In OCaml one can write the definition as follows:

let p = function

| O -> O

| S x -> x

Addition is defined in a similar manner, in two cases:

a+ 0
def
= a (3.2.4)

a+ s(n)
def
= s(a+ n) (3.2.5)

Addition occurs on the right side of (3.2.5). One therefore says that the defini-
tion is “recursive”. The computation of 3 + 2 is done as follows, by unwinding
definitions:

Here we use the definition of
+, 2 and 1.

3 + 2
def
= 3 + s(1)

def
= s(3 + 1)

def
= s(3 + s(0))

def
= s(s(3 + 0))

def
= s(s(3)). (3.2.6)

We can now use the definition of 4 and 5 reversely, so that we get s(s(3))
def
=

s(4)
def
= 5 and we can give the answer “5” as the result of this computation.

In OCaml one must specify that + occurs on the right hand side by writing
rec for “recursive” in the definition:

c© 2017 Jesper Carlström 23

Inductively defined sets

let rec plus a = function

| O -> a

| S x -> S (plus a x)

The definition of brings nothing new, except that one can choose to have
the recursion in the first argument, if one wants to:

0 · a def
= 0 (3.2.7)

s(n) · a def
= (n · a) + a (3.2.8)

In the definition of exponentiation, the recursion has to occur in the second
argument:

a0 def
= 1 (3.2.9)

as(n) def
= an · a. (3.2.10)

We can now compute in a completely automatic way, by unwinding definitions,

23 def
= 2s(2) (3.2.11)
def
= 22 · 2 (3.2.12)
def
= 2s(1) · 2 (3.2.13)
def
= (21 · 2) · 2 (3.2.14)
def
= (2s(0) · 2) · 2 (3.2.15)
def
= ((20 · 2) · 2) · 2 (3.2.16)
def
= ((1 · 2) · 2) · 2 (3.2.17)
def
= ((s(0) · 2) · 2) · 2 (3.2.18)
def
= ((0 · 2 + 2) · 2) · 2 (3.2.19)
def
= ((0 + 2) · 2) · 2 (3.2.20)
def
= ((0 + s(1)) · 2) · 2 (3.2.21)
def
= (s(0 + 1) · 2) · 2 (3.2.22)
def
= (s(0 + s(0)) · 2) · 2 (3.2.23)
def
= (s(s(0 + 0)) · 2) · 2 (3.2.24)
def
= (s(s(0)) · 2) · 2 (3.2.25)

and so on. It is apparent that this is an extremely time consuming process,
but it follows simple principles and the definitions clearly convey the idea of
how computation works. For more efficient calculations one has to find smarter
ways to compute the result.

For the sake of completeness, we also consider the definition of minus. Since
we have no negative numbers, we let a− b be zero in case b is greater than a.

a− 0
def
= a (3.2.26)

a− s(n)
def
= p(a− n) (3.2.27)

3.2.28 Exercise. Compute 1 + 2, 1 · 2 and 1− 2 by unwinding the definitions
(no short cuts!).

3.2.29 Exercise. Describe what the following function does (defined on nat-
ural numbers):

f(a, 0)
def
= a

f(a, s(n))
def
= s(f(p(a), n))

24 c© 2017 Jesper Carlström

3.3 The algebra of two elements

3.3 The algebra of two elements

We can define the algebra with two elements inductively. We call it Boole.

0 ∈ Boole 1 ∈ Boole
(3.3.1)

The operations are defined using the same principles as for natural numbers.
Since the set is defined by two rules, there are two rows when we define func-
tions.

3.3.2 Definition.I

¬0
def
= 1 a ∧ 0

def
= 0 a ∨ 0

def
= a

¬1
def
= 0 a ∧ 1

def
= a a ∨ 1

def
= 1

3.3.3 Exercise. Use Definition 2.2.6 to compute a→ 0 and a→ 1 if the other
operations are defined according to 3.3.2.

3.4 Induction and recursion

We have already seen the principle of recursion: when a set is inductively
defined, one defines functions from it by giving the function values for the
different cases that can occur. That is how we defined predecessor, as well
as addition, multiplication, and more, as well as the Boolean operations. An
important sophistication of recursion is that the computation of a value can
lead to a new expression that in turn has to be computed, and which in itself
contains the function which is to be calculated. For instance, if one tries to
compute a+s(b), one gets the expression s(a+b), which itself contains +. One
has to be careful not to give definitions which lead to infinite computations.
For example, it is not allowed to define a function f as:

f(0)
def
= 0 (3.4.1)

f(s(n))
def
= f(s(s(n))) (3.4.2)

since computing f(1) would lead to a series of computation steps which never
end. It is difficult to be precise as to which recursive definitions are acceptable
and which must be avoided. This is a question better reserved for deeper
studies on inductively defined sets. We shall not cover that in the course, but
will content ourselves to verify manually that each computation in a recursive
definition terminates after a finite number of steps.

Related to recursion is induction. While recursion is used for defining func-
tions, induction is used to prove things about inductively defined sets. These
are two different tools, but the way of working with them are so alike that is
very easy to confuse them.

The idea in both recursion and induction is the following. Inductively de-
fined sets are described by a number of rules. Every element in an inductively
defined set is therefore in one of the forms which occurs underneath these rules
lines. For example, natural numbers are either of the form 0 or s(n). If one
wants to define a function on all natural numbers, or prove a theorem about
all natural numebrs, it is sufficient to consider numbers of each of these forms.
Furthermore, one can assume that the function values, or the validity of the
theorems, are already established for the parts involved. If, for example, one
defines a function on the natural numbers and considers the case s(n), one
assumes that the function value on n is already given. If one, in a similar fash-
ion, proves a theorem about natural numbers and considers the case s(n), one
assumes that the validity of the theorem is already given in the case n. These
hypotheses, the inductive hypothesis, are justified by the fact that the set is
built up only by these given rules. Therefore, one only needs to check that the
validity of the theorem is preserved in every step of this process.

We will consider some examples of proof by induction.

c© 2017 Jesper Carlström 25

Inductively defined sets

3.4.3 Theorem. For every natural number x we have 0 + x = x.

Proof. We shall prove the theorem in two cases, since there are two ways of
constructing natural numbers (3.2.1).

1. x is of the form 0. In this case, we need to show that 0 + 0 = 0, but this
follows directly from the definition of + (3.2.4). This case is, thus, clear.

2. x is of the form s(n). In this case we need to show that 0 + s(n) = s(n).
we use (3.2.5) and see that the left hand side is transformed into s(0+n).
The inductive hypothesis says that 0 + n = n, so s(0 + n) = s(n). Then
this case is also covered.

Not only with natural numbers can one do proofs by induction. It works
for all inductively defined sets. In some cases, such as the case Boole, no
inductive hypothesis occur, since the rules (3.3.1) have nothing above the line.
The following theorem illustrate this:

3.4.4 Theorem. In the set Boole, for every element x we have x ∧ x = x.

Proof. Since Boole is defined by two rules (3.3.1) there are two cases to check.

1. x is of the form 0. In this case we need to show that 0 ∧ 0 = 0. But it
follows from the definition that a ∧ 0

def
= 0.

2. x is fo the form 1. In this case we need to show that 1 ∧ 1 = 1. But it
follows from the definition that a ∧ 1

def
= a.

Later, when we define more complicated sets inductively, we shall have more
complicated induction proofs – more cases and more inductive hypothesis. The
principles are always the same: for every rule we have, defining the set, one gets
a case to consider, and one gets an inductive hypothesis for every expression
above this rule’s line.

3.5 Summary

You have seen how one can introduce and reason about inductively defined
sets without referring to more advanced set theory or more advanced results
in mathematics. An example is the set of natural numbers. You have seen
how the foundations of arithmetic is built according to these principles and
using recursion. It has been explained why inductively generated sets lead
naturally to induction proofs and recursion, as well as how these tools are
applied. The most important for you to take into account for the rest of this
course is precisely the insight of how to define sets inductively and perform
inductive proofs, as well as how to define functions using recursion.

26 c© 2017 Jesper Carlström

Part II

Propositional logic

c© 2017 Jesper Carlström 27

Chapter 4

The language and semantics of propo-
sitional logic

4.1 Logical formulas

This course is about mathematical logic, which means that one handles propo-
sitions in a mathematical way. There is no more mystery in this than there
is in mathematics about natural numbers; we just have a set of propositions
rather than a set of numbers to work with. We simply change the definition of
natural number a little and we will get propositions rather than numbers.

To begin with, we need propositional variables; that is, symbols for arbitrary
propositions. We shall dedicate ourselves to formal logic, which is called like
that precisely because the logical rules should not be affected by what the
propositions mean – only the form shall be relevant. For instance, we will be
able to say things such as: if the propositions P1 and P2 are true, then the
proposition P1∧P2 is true – and this will hold no matter what P1 and P2 stand
for. That is why one denotes them by non descriptive letters: to stress the fact

Metavariables: ϕ,ψ, . . .

Object variables:
P1, P2, . . .

On one hand, Greek variables
are used as variables; on the
other hand, P1, . . . , Pn will
denote propositional
variables. These are two
different sort of variables.

The difference is that ϕ,ψ, . . .
stand for arbitrary formulas,
while P1, P2, . . . are specific
formulas which one can think
of as variables, namely, by
imagining that they stand for
propositions such as “the sun
is shining” or “the grass is
green”.

Compare this with the set of
polynomials- with real
coefficients-. In this set, x is a
specific element, namely the
polynomial x. we say such
things as “let p be an
arbitrary polynomial”, but we
cannot say “let x be an
arbitrary polynomial”. Here p
varies over the set of
polynomials (p is a
metavariable), while x is fixed
as symbolizing a variable (x is
an object variable).

In practice, this difference
means that we can say things
such as “let ϕ be any
formula” while the same
meaning should be
nonsensical if we exchange ϕ
for P1, which could never be
any formula – since P1 is a
specific fixed formula.

that their meaning can vary. It will not be sufficient with P1 and P2, there is
no limit to how many propositional variables we may need. Instead of deciding
the number of variables in advance, we leave it open and say it in the following
way: the set Pvar of propositional variables is defined inductively through the
following rules, where n counts how many propositional variables we want:

P1 ∈ Pvar
. . .

Pn ∈ Pvar
(4.1.1)

We therefore have n such rules, and each and everyone of them says that
something is a propositional variable. This is not entirely satisfactory, since we
would also want to have composed propositions such as P1 ∧ P2. We shall call
them formulas rather than propositions, since they are just formal expressions,
whose meaning depend on how one interprets P1 and P2. More specifically,
we define the set Form inductively by the following rules, where Greek letters
are used as variables in Form in the same manner as we use Latin letters for
variables in N.

c© 2017 Jesper Carlström 29

The language and semantics of propositional logic

4.1.2 Definition.INote that the set Form
depends on n. We could write
Form(n) instead of Form, but
in practice we will not have
any difficulties if we omit n.

P1 ∈ Form
. . .

Pn ∈ Form

> ∈ Form

⊥ ∈ Form

ϕ ∈ Form ψ ∈ Form

(ϕ ∧ ψ) ∈ Form

ϕ ∈ Form ψ ∈ Form

(ϕ ∨ ψ) ∈ Form

ϕ ∈ Form ψ ∈ Form

(ϕ→ ψ) ∈ Form

The formula > should be thought of as a proposition which is always true,
while ⊥ symbolizes a proposition which is always false. You may miss ¬ from
Boolean algebras. We will omit this operation, since it is cumbersome to handle
too many of them. Instead, we will look at ¬ϕ as an abbreviation of ϕ→⊥
(compare Exercises 2.2.12 and 3.3.3).

4.1.3 Definition. We introduce the following abbreviations, if ϕ,ψ are for-I
mulas:

¬ϕ def
= (ϕ→⊥)

ϕ↔ ψ
def
= ((ϕ→ ψ) ∧ (ψ→ ϕ))

If we want to write the proposition “the sun is shining and the grass is
green” as an element in Form we can let the variable P1 stand for “the sun is
shining” and the variable P2 for “the grass is green”, so that we can express
what we want with the formula P1 ∧ P2, which is an element of Form. We

Since ∧, ∨, → are used to join
formulas together into bigger
formulas, they are called
connectives. We will even call
> and ⊥ connectives, more
specifically nullary
connectives.

must be careful if we have to express “the sun is shining, the grass is green
and I am happy” as an element in Form, since there are actually two formulas
which can express this. Spontaneously one might want to say P1∧P2∧P3, but
we have not introduced the possibility of constructing ternary ∧-propositions,
only binaries. We must therefore differentiate the formulas constructed in the
following way:

P1 ∈ Form

P2 ∈ Form P3 ∈ Form

(P2 ∧ P3) ∈ Form

(P1 ∧ (P2 ∧ P3)) ∈ Form

(4.1.4)

respectively

P1 ∈ Form P2 ∈ Form

(P1 ∧ P2) ∈ Form P3 ∈ Form

((P1 ∧ P2) ∧ P3) ∈ Form .

(4.1.5)

Note that parentheses can be used in the end formula to make it clear how it
is formed. Sometimes it is superfluous to know how a proposition was formed,
and then one can disregard parentheses, but sometimes they are necessary, for
example, P2∧P3 is a “subformula” of P1∧ (P2∧P3), but it is not a subformula
of (P1 ∧P2)∧P3, so when we later deal with subformulas, it will be impossible
to be careless and write “P1 ∧ P2 ∧ P3”. In other contexts, it will often not be
a problem

Parentheses are used to say in
which order one constructs a
formula.

• sometimes it is
important to put
parentheses,

• sometimes they are not
needed.

In the definition, we have not said a word about the fact that we will let ∧
symbolize “and”, and so on. Precisely as in the case of the natural numbers,
whose meaning could be numeration, points on a number line or something

30 c© 2017 Jesper Carlström

4.2 Semantics

else, we will not mention in the definition itself what we use the formulas for.
Until further notice, they will just be empty formal expressions, whose meaning
we can decide upon later.

It is important to remember the difference between what we have just done
and Boolean algebra. In Boolean algebras we have, for instance, a∧ a = a, but
this is not true in the set Form of formulas. The formula P1 ∧ P1 is a different

The set Form is not a
Boolean algebra, even though
the notation is very similar!formula than P1. The equality = here means the same formula, not the same

value. The set Form is simply not a Boolean algebra, the rules of computation
do not hold.

4.1.6 Exercise. Derive, as in (4.1.4) and (4.1.5):

a) ((P1→ P2) ∧ ⊥) ∈ Form

b) ¬P1 ∈ Form

c) ⊥↔> ∈ Form

4.2 Semantics

In the previous section we introduced the set Form of propositional formulas,
but mentioned only vaguely how the formulas should be interpreted. In this
section we shall formulate it more mathematically.

First of all, we say that the basic formulas P1, . . . , Pn can be interpreted
in many ways. One can think of them as “the sun is shining” or “the grass
is green”, but also as mathematical propositions like “3 is a prime number”
– and even as false mathematical propositions: “all prime numbers are odd”.
When we think of the formulas P1, . . . , Pn as specific propositions, we say that
we give an interpretation of the formulas. The formulas are the same, but
the interpretations can vary in infinitely many ways. Often one denotes an
interpretation by A. One says that the formulas P1, . . . , Pn are interpreted
as the propositions PA1 , . . . , P

A
n . An interpretation is thus a sort of function, P1 is a formula, PA1 is a

proposition
which for every propositional variable Pi assigns a proposition PAi . Since the
propositional variables are interpreted, we automatically get an interpretation
of all formulas by reading ∧ as and, ∨ as or, → as entails (or as if ... then
...), > as the true and ⊥ as the false. As pointed out when we were doing
Boolean algebra, these expressions from natural language are often ambiguous.
Therefore, one uses truth values to be more precise. The truth value of a
formula is 1 if it is interpreted as a true proposition, and 0 if it is interpreted as
a false proposition. One often denotes truth values by double square brackets.
Since this is a function on Form, which is inductively defined, the definition
becomes recursive.

4.2.1 Definition. The truth value of a formula is an element in Boole deter-I
mined by an interpretation A through:

[[Pi]]
def
=

{
1 if PAi is true

0 if PAi is false
(4.2.2)

[[>]]
def
= 1 (4.2.3)

[[⊥]]
def
= 0 (4.2.4)

[[ϕ ∧ ψ]]
def
= [[ϕ]] ∧ [[ψ]] (4.2.5)

[[ϕ ∨ ψ]]
def
= [[ϕ]] ∨ [[ψ]] (4.2.6)

[[ϕ→ ψ]]
def
= [[ϕ]]→ [[ψ]] (4.2.7)

Since [[ϕ]] depends on the interpretation A, one often writes [[ϕ]]
A

. When
there is no possibility of confusion, though, one only writes [[ϕ]].

4.2.8 Exercise. Check that the following holds for all formulas ϕ,ψ.

c© 2017 Jesper Carlström 31

The language and semantics of propositional logic

a) [[¬ϕ]] = ¬[[ϕ]].

b) [[ϕ↔ ψ]] = [[ϕ]]↔ [[ψ]].

Hint. It may look obvious, but the problem is that we have defined
the operation differently in Boolean algebras and in Form. Use the
definitions 4.1.3 and 2.2.14, as well as Exercise 3.3.3.

4.2.9 Example. Assume that PA1 and PA2 are true. Compute [[¬(P1∨P2)→⊥]].

Solution.

[[¬(P1 ∨ P2)→⊥]]
def
= [[¬(P1 ∨ P2)]]→ [[⊥]] (4.2.10)

= ¬[[P1 ∨ P2]]→ [[⊥]] (4.2.11)
def
= ¬([[P1]] ∨ [[P2]])→ [[⊥]] (4.2.12)
def
= ¬(1 ∨ 1)→ 0 (4.2.13)
def
= ¬1→ 0 (4.2.14)
def
= 0→ 0 (4.2.15)
def
= 1 (4.2.16)

4.2.17 Exercise. Assume that PA1 , PA2 , PA4 are false, while PA3 and PA5 are
true. Compute [[¬(P2→¬P3) ∧ (P1→ P5)]]. Justify!

4.2.18 Example. Compute [[(P1 ∨ ¬(P2 ∧ P3))→>]].

Solution. Here we do not need to know whether PA1 , PA2 , PA3 are true, since
Exercise 3.3.3 allows us to go almost directly to the answer.

[[(P1 ∨ ¬(P2 ∧ P3))→>]] = [[P1 ∨ ¬(P2 ∧ P3)]]→ [[>]] (4.2.19)

= [[P1 ∨ ¬(P2 ∧ P3)]]→ 1 (4.2.20)

= 1 (4.2.21)

With some experience, one sees that while calculating truth values, the
recursion makes the square brackets “move in” into the smaller parts of the
formula. One can therefore skip several steps.

The word tautology is
explained in dictionaries as
“unnecessary repetition”, but
it is not in this sense that it is
used in logic, although the
etymology is the same. In
antiquity, propositions of the
type “humans are humans” or
“odd numbers are odd” used
to be considered. Here, there
is certainly a needless
repetition, but logicians have
instead focused on the
obviousness of these
propositions. Already Fredrik
Afzeliusa (1839) wrote:
“Analytical judgements, in
which the predicates as well
as its characteristics, are not
obviously contained in the
subject, but which completely
coincide with themselves are
called tautological; for
instance, humans are
humans.”b Etymologically,
the prefix “tauto” has the
same origin as “auto” and
means self, while “logy”
comes from the greek “logos”
and can mean both word and
reason, rationality, clarity.
One can thus translate
“tautology” directly as “self
word” (repetition) or
“self-evident”.

aAfzelius (1812-1896) was a
teacher of philosophy at Uppsala
University, and an early exponent
of Hegel’s ideas in Sweden.

bSuggested translation of
“Analytiska Omdömen, i
hvilka Predikatet icke blott
inh̊alles i Subjektet s̊asom dess
Kä nnetecken, utan alldeles sam-
manfaller kallas Tavtologiska, t.
ex. Menniskan är Menniska.”

Solution Example 4.2.9. [[¬(P1 ∨ P2)→⊥]] = ¬(1 ∨ 1)→ 0
def
= 0→ 0

def
= 1.

4.2.22 Example. Compute [[(P1→ P2) ∨ (P2→ P1)]].

Solution.

[[(P1→ P2) ∨ (P2→ P1)]]
def
= ([[P1]]→ [[P2]]) ∨ ([[P2]]→ [[P1]]) (4.2.23)

= ¬[[P1]] ∨ [[P2]] ∨ ¬[[P2]] ∨ [[P1]] (4.2.24)

= 1 (4.2.25)

Here we have an example where one does not need to know if the variables
involved are interpreted as true formulas or not. The formula has value 1 in all
interpretations – we say that it is “true in all interpretations”. Such a formula
is called a tautology.

4.2.26 Definition. A tautology is a formula which is true in all interpretations.I

If one would like to investigate if a formula is a tautology, one could check,
using Boolean algebra, if its truth value is 1 no matter what the values of the
propositional variables are, as we did in the previous example. Another way is
to construct a truth table for the formula.

32 c© 2017 Jesper Carlström

4.2 Semantics

4.2.27 Example. Check using a truth table that (P1→ P2) ∨ (P2→ P1) is a
tautology.

Solution. Below P1 and P2 we write the corresponding truth values in all pos-
sible combinations. In general we write the table as usual:

(P1 → P2) ∨ (P2 → P1)
0 1 0 1 0 1 0
0 1 1 1 1 0 0
1 0 0 1 0 1 1
1 1 1 1 1 1 1

(4.2.28)

Answer: since there are only ones in the rows underneath ∨, the formula is a
tautology.

If one chooses to compute with Boolean algebras, it is convenient to use the
following definition

4.2.29 Definition (logical equivalence). If ϕ,ψ are formulas, then ϕ ≈ ψI
means that [[ϕ]] = [[ψ]] is true in all interpretations.

When one calculates using ≈
one does not need to put so
many parentheses. The fact
that P1 ∨ P2 ∨ P3 can be
interpreted as two different
formulas does not matter,
since their value is the same.

4.2.30 Example. Check, using Boolean algebras, that (P1→P2)∨ (P2→P1)
is a tautology.

Solution. (P1→ P2) ∨ (P2→ P1) ≈ ¬P1 ∨ P2 ∨ ¬P2 ∨ P1 ≈ >.

4.2.31 Exercise. Show that if ϕ,ψ are formulas, then ϕ↔ψ is a tautology if
and only if ϕ ≈ ψ.

4.2.32 Exercise. Decide which of the following formulas are tautologies.

A difference between = and
≈:

P1 ∧ P1 6= P1

P1 ∧ P1 ≈ P1
a) ¬(P1 ∧ P2)↔ (P1→¬P2)

b) (P1→ P2) ∨ (P2→ P3)

c) (P1→ (P2→ P3))↔ ((P1 ∧ P2)→ P3)

d) ((P1 ∧ P4)→ (P2 ∨ P3))↔ (¬P1 ∨ P2 ∨ P3 ∨ P4)

Hint. It is often convenient to use Exercise 4.2.31.

4.2.33 Exercise (from the exam on 2003-01-09). Decide whether the following
formula is a tautology:

(P3 ∨ P1→¬P2 ∧ P3)→ (P2 ∨ ¬P3→¬P1) .

4.2.34 Exercise (from the exam on 2002-08-20). Assume that ϕ, ψ, σ are
formulas that satisfy:

ϕ ∧ σ ≈ ψ ∧ σ
ϕ ∨ σ ≈ ψ ∨ σ .

Show that ϕ ≈ ψ.

4.2.35 Exercise (from the exam on 2004-10-18). Decide whether ((P2→P1)→
P2)→ P2 is a tautology.

4.2.36 Exercise (from the exam on 2005-01-07). Decide whether ((P1→P1)→
P1)→ P1 is a tautology.

4.2.37 Exercise (from the exam on 2005-08-23). Is

((P1 ∧ P2)→ P3)↔ ((P1→ P3) ∨ (P2→ P3))

a tautology?

4.2.38 Exercise (from the exam on 2004-08-17). Decide whether (P3→¬P1)∨
¬P2 is a tautology.

c© 2017 Jesper Carlström 33

The language and semantics of propositional logic

4.2.39 Definition. By A � ϕ it is meant that [[ϕ]]
A

= 1. In that case one saysIThe term model was coined
when Felix Klein (1849–1925)
constructed a “model” of
geometry with the negation of
the parallel axiom; that is, a
new interpretation of the
geometric concepts in which
the parallel axiom is false.

that “ϕ is true in A” or that “A is a model of ϕ”. If Γ is a set of formulas, “A
is a model of Γ” means that A is a model of every formula in Γ.

4.2.40 Definition. By ϕ1, . . . , ϕn � ϕ it is meant that ϕ is true in every inter-I

Do you understand the
difference between A � ϕ and
ψ � ϕ?

pretation in which ϕ1, . . . , ϕn are true. One says that ϕ is a logical consequence
of ϕ1, . . . , ϕn.

4.2.41 Exercise. What does one get from Definition 4.2.40 when n = 1 re-
spectively n = 0?

4.3 Summary

You have seen how the set Form is defined and how one defines important
functions on it by recursion. An example of such a function is the truth value
function [[·]]. You have encountered the term interpretation and have prac-
ticed deciding whether a formula is a tautology, that is, whether it is true in
every interpretation. You have seen how one can use truth tables for this, as
well as algebraic methods for Boolean algebras. The most important thing to
take with you for the rest of the course is the understanding of the notions of
interpretation and tautology as well as an insight of what the set Form consists
of. The notation [[ϕ]]

A
will be used a lot, so you should make sure to have a

good understanding of it.

34 c© 2017 Jesper Carlström

Chapter 5

Natural deduction

In the previous chapter we defined how truth values for formulas are calculated
in various interpretations. We shall now forget the interpretations for a while
and think about logic in yet another way. In the next chapter we shall prove
that what we do here is in fact “sound” regarding the semantics (Soundness
theorem 6.1.5, page 45).

Now we shall instead approach the formulas reminding ourselves how one
usually reasons about and, or and if ... then ... and try to expose such
rules with a horizontal line as we have previously seen. We shall discuss some

We construct derivations
which graphically look like a
tree. It is often easier to
construct them from below,
but they are best read from
top to bottom. When one
speaks or writes about a
derivation, one expresses
oneself as if what is below
comes after what is above,
even though the derivation is
constructed in the other way
around.

different rules, and then, little by little, a limited set of rules will emerge. The
final rules are collected in Figure 5.1 on page 40. It is important that you learn
these rules carefully. They have to be used precisely as they stand, with ϕ, ψ, σ
substituted by arbitrary formulas. What the various dots and square brackets
mean will be explained soon.

5.1 Conjunction

What does one have to know to conclude that the formula ϕ ∧ ψ symbolizes
a true proposition? The typical situation is that one knows that ϕ and ψ
symbolize true propositions. We therefore establish the following rule:

ϕ true ψ true

ϕ ∧ ψ true
. (5.1.1)

For the sake of simplicity, we will skip, in what follows, the label “true”. We
will write instead

ϕ ψ

ϕ ∧ ψ
. (5.1.2)

This is not the only rule we need for ∧. With it we can only introduce con-
junctions, but we can never get rid of them. We therefore call this rule an
introduction rule and we also introduce two elimination rules

ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ

(5.1.3)

which says that if ϕ ∧ ψ symbolize a true proposition, then so does ϕ, as well
as ψ.

We might as well establish rules for quinary conjunction:

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5
, (5.1.4)

ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5

ϕ1
· · · ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5

ϕ5
(5.1.5)

but we will just consider binary conjunctions, since those are the ones we have
in Form. Although it is worth mentioning that for an n-ary conjunction we
will get:

c© 2017 Jesper Carlström 35

Natural deduction

1. one introduction rule which consists of n formulas above the line and the
n-ary conjunction itself underneath the line,

2. n elimination rules which consist of the conjunction itself above the line
and– in the i-th elimination rule– the i-th conjunct underneath the line.

The conjuncts are formulas
which are glued together by
applying ∧ to get more
complex formulas. This perhaps comes useful to us, since we have a 0-ary conjunction in Form –

given that we have decided that > is such a thing. Thus, it should have an
introduction rule which has 0 formulas above the line and the formula > below
it:

> (5.1.6)

According to the same analogy, it should have 0 elimination rules. Thus, the
only rule we have about > says that without knowing anything in particular,
we can conclude that > symbolizes the true proposition.

With the rules we have just written down, we can derive in the shape of a
tree, for instance, that the formula (>∧>)∧(>∧>) symbolizes a true formula.

> >
> ∧>

> >
> ∧>

(> ∧>) ∧ (> ∧>)

(5.1.7)

One calls this way of deriving formulas natural deduction, since it ressembles
how one reasons informally in mathematics.

We say “derive” when we
construct these trees, but we
cannot yet be certain that the
trees work to prove things.
We shall show later that this
is the case, but until then you
should look at the trees as
pure formal mathematical
objects that we manipulate.

One can also, starting with the formula P1∧P2, derive the formula P2∧P1.

P1 ∧ P2

P2

P1 ∧ P2

P1

P2 ∧ P1

(5.1.8)

Observe the difference between (5.1.7) and (5.1.8). In the former derivation,
all formulas at the top of the tree have a line above them, which meant that
we could conclude that they symbolize true propositions. In the latter tree,
there are no such lines, and that is sensible if we consider that P1 ∧ P2 does
not always symbolize a true proposition – its truth value depends on how we
interpret P1 and P2. In the first case (5.1.7) one says that one has “derived
(> ∧>) ∧ (> ∧>)” and writes

` (> ∧>) ∧ (> ∧>) (5.1.9)

to denote that there exists a derivation of the formula. In the second caseRemember the difference
between � and `.

(5.1.8) one says that one has “derived P2 ∧ P1 from P1 ∧ P2” and writes

(P1 ∧ P2) ` (P2 ∧ P1) (5.1.10)

to denote that there is a derivation from P1∧P2 to P2∧P1. One thinks of P1∧P2

as an assumption (sometimes called hypothesis), so that (5.1.8) symbolizes the
argument.

Assume that P1 ∧ P2 is true. (...) Then P2 ∧ P1 is also true. (5.1.11)

5.2 Implication

When one has done an argument as (5.1.11) in a mathematical proof, one
usually summarizes the situation by claiming an implication:

If P1 ∧ P2, then P2 ∧ P1.

36 c© 2017 Jesper Carlström

5.2 Implication

Such propositions are what we symbolize with→. From this we find the natural
introduction rule for→: if one could derive a formula ψ from a formula ϕ, then
ϕ→ψ is true. Furthermore: the formula ϕ was an assumption when we derived
ψ, but it is no longer used as an assumption when we have concluded that ϕ→ψ
is true. Consider, for example, the following argument:

Assume that n is odd. (...) Thus, n2 is odd. Therefore, it is true
that if n is odd, then n2 is odd.

The last sentence says that “if n is odd, then n2 is odd”, it does not say “assume
that n is odd, then it is true that if n is odd then n2 is odd”. The assumption
that n is odd is only used during the argument, but it is later discharged.
One marks discharged assumptions by putting them within square brackets.
Therefore, the rules of implication introduction become:

[ϕ]
···
ψ

ϕ→ ψ

(5.2.1)

Here we have a big difference compared to all the previous rules we have ex-
pressed in this line form. In these rules, there were the formulas which were
above the line the ones one needed to be able to apply the rule. Here, it is the
whole derivation above the line one has to possess.

While the previous sort of
rules are called inference rules
one often calls this latter form
of rules deduction rules. This
is not something you need to
remember.

When one discharges an assumption, one sometimes says one removes them.
One can remove as many instances of an assumption as one wants – from zero
to several billions. In practice, one almost always wants to discharge as many as
possible. In the following example there are two instances which are discharged:

5.2.2 Example. Derive (P1 ∧ P2)→ (P2 ∧ P1).

Solution.
[P1 ∧ P2]

P2

[P1 ∧ P2]

P1

P2 ∧ P1

(P1 ∧ P2)→ (P2 ∧ P1)

In the following example, which is also correct, there are no instances of the
assumption which are discharged:

5.2.3 Example. Derive P1→>.

Solution.

>
P1→>

5.2.4 Exercise. Derive (P1 ∧ (P2 ∧ P3))→ ((P1 ∧ P2) ∧ P3).

For the implication elimination we have the following rule. It says that it
is correct to conclude that n2 is odd if one knows both that it is true that “if
n is odd, then n2 is odd” and that “n is odd”.

ϕ→ ψ ϕ

ψ
(5.2.5)

5.2.6 Example. Derive (ϕ ∧ ψ)→ σ from ϕ→ (ψ→ σ).

c© 2017 Jesper Carlström 37

Natural deduction

Solution.

ϕ→ (ψ→ σ)

[ϕ ∧ ψ]

ϕ

ψ→ σ

[ϕ ∧ ψ]

ψ

σ

(ϕ ∧ ψ)→ σ

As you can see, it starts getting difficult to see which rule is applied where.
One therefore puts some small markings to the right of the line. One writes I
with the introduction rule and E with the elimination rule. Furthermore, one
writes where the assumption is discharged by enumerating them. The previous
tree is therefore given the following markings:

ϕ→ (ψ→ σ)

[ϕ ∧ ψ]1
∧E

ϕ
→E

ψ→ σ

[ϕ ∧ ψ]1
∧E

ψ
→E

σ
→I1

(ϕ ∧ ψ)→ σ

5.2.7 Exercise. Derive ϕ→ (ψ→ σ) from (ϕ ∧ ψ)→ σ and give the tree the
correct markings.

5.2.8 Example. Derive P1→ P1.

Solution. One could do it in the following way:

[P1]1 [P1]1
∧I

P1 ∧ P1
∧E

P1
→I1

P1→ P1

This seems to be unnecessarily long, though. Instead, one could do it like this if
only one accepts that the “tree” which is symbolized by the vertical lines in the
implication-introduction rules could be a single formula: P1. It then works as
both an assumption which is discharged and a formula which is derived under
the assumption.

[P1]1
→I1

P1→ P1

We will consider such derivations to be correct.

5.3 Disjunction

The derivation rules for disjunction will in general be dual to those of conjunc-
tion. For an n-ary disjunction we get:

1. n introduction rules which consist of the disjunction itself under the line,
and above the line, in the i-th introduction rule, we have the i-th disjunct.

The conjuncts are formulas
which are glued together by
applying ∨ to get more
complex formulas. 2. One elimination rule.

The introduction rules are thus like the conjunction elimination rules, but
turned upside down.

ϕi

ϕ1 ∨ · · · ∨ ϕn
. (5.3.1)

38 c© 2017 Jesper Carlström

5.3 Disjunction

It is tempting to do something similar with the elimination rule. Unfortunately,
this would not work very well, since it would mean that we would get more
formulas under the line, which would not work quite well with our other rules.
Instead, the elimination rules should be like:

ϕ1 ∨ · · · ∨ ϕn

[ϕ1]
···
σ · · ·

[ϕn]
···
σ

σ

(5.3.2)

At first glance, this rule may seem somewhat difficult to read. The idea behind

The assumption ϕi is only
allowed to be discharged in
the subtree symbolized by

[ϕi]
···
σ.

the rule is that if we know that ϕ1 ∨ · · · ∨ ϕn is true, and we have derivations
of σ from each and every one of ϕ1, . . . , ϕn, then σ must be true.

The vertical dots symbolize derivations precisely as in the case of implica-
tion introduction. The disjunction elimination also discharges assumptions. It
is important to understand that discharging ϕi must only occur in the corre-
sponding subtree; that is, the one which is symbolized by the dots under ϕi. In
this subtree, however, one can discharge as many instances of ϕi as one wants
– from none to millions.

For a binary disjunction we get the introduction rules:

ϕ

ϕ ∨ ψ
ψ

ϕ ∨ ψ
(5.3.3)

and the elimination rule:

ϕ ∨ ψ

[ϕ]
···
σ

[ψ]
···
σ

σ

(5.3.4)

For our nullary disjunction ⊥ we get, according to the same pattern, 0
introduction rules, and the elimination rule:

⊥
σ
. (5.3.5)

The fact that we do not get any introduction rule should be interpreted by the
fact that we are never allowed to conclude that ⊥ symbolizes a true formula.
The elimination rule means that if we have concluded that ⊥ is true, then we
can also conclude that σ is true, for any formula σ. We can look at this as
saying that one might as well “give up” and interpret everything as true if one
has succumbed to interpret ⊥ as true. A better explanation I personally think
is reasonable is to simply look at ⊥ as a nullary disjunction and observe that
the rule follow the pattern. It is us who decide what ⊥ should mean, so we are
free to say it should be a nullary disjunction, from which the rule follows.

5.3.6 Exercise. Show that ϕ ` ϕ ∨ ⊥ holds for any formula ϕ, i.e. that one
can derive ϕ ∨ ⊥ from ϕ.

5.3.7 Exercise. Show that one can derive ψ ∨ϕ from ϕ∨ψ, i.e., that ϕ∨ψ `
ψ ∨ ϕ holds for any formulas ϕ,ψ.

5.3.8 Exercise. Show that ϕ ∨⊥ ` ϕ is true for any formula ϕ, i.e., that one
can derive ϕ from ϕ ∨ ⊥.

5.3.9 Exercise. Derive ϕ ∨ ϕ→ ϕ. (In other words, construct a derivation
without any undischarged assumption.)

5.3.10 Exercise. Derive (ϕ ∨ ψ) ∨ σ→ ϕ ∨ (ψ ∨ σ).

c© 2017 Jesper Carlström 39

Natural deduction

>I
>

⊥
⊥E

σ

ϕ ψ
∧I

ϕ ∧ ψ
ϕ ∧ ψ

∧E
ϕ

ϕ ∧ ψ
∧E

ψ

ϕ
∨I

ϕ ∨ ψ
ψ

∨I
ϕ ∨ ψ ϕ ∨ ψ

[ϕ]
···
σ

[ψ]
···
σ
∨E

σ

[ϕ]
···
ψ

→I
ϕ→ ψ

ϕ→ ψ ϕ
→E

ψ

[¬σ]
···
⊥

RAA
σ

Figure 5.1: Derivation rules for natural deduction in propositional logic

40 c© 2017 Jesper Carlström

5.4 Negation and equivalence

5.4 Negation and equivalence

We do not formulate any rules for ¬ and↔, because these operations are defined
in terms of others (Definition 4.1.3). The following derivation is therefore
correct:

[⊥]1
→I1¬⊥
→I2>→¬⊥

>I
>

→I3¬⊥→>
∧I

>↔¬⊥

(5.4.1)

To see this, you can substitute ¬⊥ by ⊥→⊥, and so on.
The rules we have seen so far are not enough if one would like, for example,

to be able to derive the formula P1 ∨ ¬P1 (you will be able to prove this in
Exercise 7.3.9). Therefore, one adds a specific rule for such purpose, called
RAA.

RAA = reductio ad absurdum.
This could be a distortion of
the phrase deductio ad
absurdum (derivation of the
impossible) which one finds in
older texts.

[¬σ]
···
⊥

RAA
σ

(5.4.2)

It deviates in its form from the previous rule. It is in fact a strengthening of
the rule ⊥E, since both allow us to conclude σ from ⊥, but RAA allows us also
to discharge as many instances of the assumption ¬σ as we like. Using RAA
one can derive ϕ ∨ ¬ϕ in the following way, for every formula ϕ:

5.4.3 Example. Derive ϕ ∨ ¬ϕ.

Solution.

[¬(ϕ ∨ ¬ϕ)]2

[¬(ϕ ∨ ¬ϕ)]2
[ϕ]1

∨I
ϕ ∨ ¬ϕ

→E
⊥
→I1¬ϕ
∨I

ϕ ∨ ¬ϕ
→E

⊥
RAA2

ϕ ∨ ¬ϕ

5.4.4 Exercise. What formula does one derive if one changes the last rule to
→I above?

5.5 The formal point of view

We have now gone through all the rules there are and that are allowed in natural
deduction. When correcting exams, though, it is apparent that many students
invent their own additional rules. This is not allowed. We will prove theorems
by natural deduction and the proofs of these theorems will use in an essential
way that no other rules other than the ones we have collected in Figure 5.1
occur. You should learn them by heart, which means that you should both
memorize them and understand how they are used. You should always mark
every rule you use by its name, it makes it clearer both to yourself and the
ones who read your derivation that the rules you use actually exist and are
applicable. You can look at derivations as a sort of game. The point is that
you succeed with the exercise by following the rules.

5.5.1 Definition. 1. By ϕ1, . . . , ϕn ` ϕ we mean that there exists a deriva-
tion that concludes ϕ, according to the rules in Figure 5.1, where there

It is not mandatory to make
use of the formulas to the left
of `.are no undischarged assumptions except, possibly, ϕ1, . . . , ϕn.

c© 2017 Jesper Carlström 41

Natural deduction

2. One says that such a derivation is “a derivation of ϕ from ϕ1, . . . , ϕn”.

3. When constructing such derivations, one says that one is “deriving ϕ from
ϕ1, . . . , ϕn”.

4. By ` ϕ it is meant, in particular, that there is a derivation concluding ϕ
without any undischarged assumptions.

5. One says that such a thing is “a derivation of ϕ”.

6. When constructing such a derivation, one says that one is “deriving ϕ”.

Though we take such a formal point of view on derivations, the rules we have
chosen are of course not randomly chosen. We have motivated the introduction
of the rules which we have collected in Figure 5.1. In principle we could add
more rules, but we are satisfied with those we have, since they are enough for
what we are going to do. We will prove this in Chapter 8: the rules we have
introduced is a complete system in the sense that everything which is true in all
interpretations, and which can be expressed in the language we are studying,
can also be derived through the rules we collected in Figure 5.1 (Completeness
theorem 8.2.3, page 62).

5.6 Miscellaneous exercises

5.6.1 Exercise (from the exam on 2004-01-08).
Give a complete derivation in natural deduction of the following formula:

(¬ϕ→ ψ)↔ (ϕ ∨ ψ)

5.6.2 Exercise (from the exam on 2002-10-21).
Give a complete derivation in natural deduction of the following formula:

¬(P1→ P2)↔ P1 ∧ ¬P2

5.6.3 Exercise (from the exam on 2002-08-20).
Give a complete derivation in natural deduction of the following formula:

(P3→ (P1→ P2))↔ (P3 ∧ P1→ P2)

5.6.4 Exercise (from the exam on 2004-10-18).
Give a complete derivation in natural deduction of the following formula:

((ϕ→ ψ)→ ψ)↔ (ϕ ∨ ψ)

5.6.5 Exercise (from the exam on 2005-01-07).
Give a complete derivation in natural deduction of the following formula:

((ϕ ∨ ψ) ∧ ¬ψ)↔ (ϕ ∧ ¬ψ)

5.6.6 Exercise (from the exam on 2005-01-07).

a) Find all mistakes in the following derivation. Specify them carefully!

[ϕ ∨ ψ]1
∨E

ϕ

[ϕ ∨ ψ]1
∨E

ψ
∧I

ϕ ∧ ψ
→I1

(ϕ ∨ ψ)→ (ϕ ∧ ψ)

b) Give examples of formulas ϕ,ψ such that there is a correct derivation of
(ϕ ∨ ψ)→ (ϕ ∧ ψ). Motivate them carefully!

c) Show that if ϕ,ψ are formulas such that ` (ϕ∨ψ)→ (ϕ∧ψ) holds, then
we also have ϕ ` ψ.

42 c© 2017 Jesper Carlström

5.7 Summary

5.7 Summary

You have learnt what a derivation in natural deduction is. The difference
between discharged and undischarged assumptions has been explained and you
have learnt when an assumption may be discharged. The most important thing
to remember for the rest of this course is the ability to construct a derivation,
to decide whether a derivation is correct and the insight that only the given
rules are allowed in such derivations.

c© 2017 Jesper Carlström 43

Natural deduction

44 c© 2017 Jesper Carlström

Chapter 6

Soundness & Review exercises

6.1 Soundness

We have encountered the expressions

ϕ1, . . . , ϕn � ϕ , (6.1.1)

ϕ1, . . . , ϕn ` ϕ . (6.1.2)

Although they look much alike, they are two completely different things. The
former (6.1.1) means that the formula ϕ is true in certain interpretation, while
the latter (6.1.2) means that ϕ can be derived according to certain rules. The
reason the notation is so similar is that (6.1.1) and (6.1.2) are in fact equivalent.
This says that, even though they mean different things, they always happen
to be true at the same time. Here we will show that (6.1.2) implies (6.1.1). In
Chapter 8 we will show that the converse is also true.

What a derivation is has been defined inductively in Chapter 5, even if we
have not written the inductive definition properly. Now it is the time to do
that, since we will prove propositions about all derivations and we would need
to do it through an inductive argument.

A formula is a derivation, namely, the derivation of the formula from itself.
The rules in Figure 5.1 construct the rest of the derivations. If, for example,
D′ and D′′ are derivations whose conclusions are ϕ1 respectively ϕ2, then

D′ D′′
∧I

ϕ1 ∧ ϕ2

(6.1.3)

is a derivation. Another example is the following: if D′ is a derivation whose
conclusion is ψ, then

D′
→I

ϕ→ ψ
(6.1.4)

– possibly with one or more assumptions of ϕ marked as discharged – is also a
derivation.

The two examples we have seen above should be enough to understand how
one defines the set of derivations inductively. This definition automatically
gives principles for doing proofs by induction on the structure of derivations.
We will do such a proof now that we reach one of the most important theorems
of this course.

6.1.5 Theorem (soundness theorem). Consider a derivation in natural de-
duction. Then the concluded formula is true in all interpretations in which the
undischarged assumptions hold.

Proof. Let us show this by induction on the structure of derivations. This
means that we will assume, before the proof:

c© 2017 Jesper Carlström 45

Soundness & Review exercises

1. that D is a derivation in natural deduction concluding ϕ,

2. (inductive hypothesis) that the theorem is true for all derivations we have
encountered in our construction of D.

Our task is to show that [[ϕ]]
A

= 1 for all interpretations A in which the
undischarged assumptions are true. We go through various cases depending on
which rule is the last rule that has been applied in D.

Most of the cases have similar
proofs, so you can, if you want
you, be satisfied by reading
the cases 2, 3, 7 and 9. Case 0: D is of the form

ϕ (6.1.6)

Then ϕ is both the conclusion and the undischarged assumption, so in this case
the claim is obvious.

Case 1: D is of the form
>I

> (6.1.7)

Then ϕ = > and we have [[ϕ]] = [[>]] = 1.
Case 2: D is of the form

D′
⊥E

ϕ
(6.1.8)

where D′ is a derivation concluding ⊥. The inductive hypothesis gives that
the theorem is true for it. That is, ⊥ is true in all interpretations in which all
undischarged assumptions are true. But ⊥ is not true in any interpretation,
so there cannot be any interpretation in which all undischarged assumptions
are true. Therefore, it holds that ϕ is true in all interpretations in which all

One says that something is
vacuously true when it is true
for all elements with a certain
property because there are no
elements with that property.

undischarged assumptions are true – since there are zero such interpretations.
Case 3: D is of the form

D′ D′′
∧I

ϕ1 ∧ ϕ2

(6.1.9)

where D′ concludes ϕ1 and D′′ concludes ϕ2. Every A which interprets all
undischarged assumptions in D as true interprets also the undischarged as-
sumptions in D′ and D′′ as true. Thus, [[ϕ1]] = [[ϕ2]] = 1 for all such interpre-
tations. But then [[ϕ]] = [[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∧ [[ϕ2]] = 1 ∧ 1 = 1.

Case 4: D is of the form
D′
∧E

ϕ
(6.1.10)

where the conclusion of D′ is ϕ1 ∧ ϕ2. Thus, we have ϕ = ϕi for i = 1 or
i = 2. Every A which interprets all undischarged assumptions in D as true also
interprets the undischarged assumptions in D′ as true. Thus [[ϕ1 ∧ ϕ2]] = 1 for
such interpretations. But then [[ϕ1]] = [[ϕ2]] = 1, so [[ϕ]] = 1.

Case 5: D is of the form
D′

∨I
ϕ1 ∨ ϕ2

(6.1.11)

where the conclusion of D′ is ϕi for i = 1 or i = 2. Every A which interprets
all undischarged assumptions in D as true also interprets the undischarged
assumptions in D′ as true. Thus, [[ϕi]] = 1 for such A. It follows that [[ϕ]] =
[[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∨ [[ϕ2]] ≥ [[ϕi]] = 1.

Case 6: D is of the form

D′ D1 D2
∨E

ϕ
(6.1.12)

where

• D′ concludes ϕ1 ∨ ϕ2,

• D1 and D2 concludes ϕ,

• (possibly) some undischarged assumptions of ϕ1 in D1 have been marked
as discharged and

46 c© 2017 Jesper Carlström

6.1 Soundness

• (possibly) some undischarged assumption of ϕ2 in D2 have been marked
as discharged.

The inductive hypothesis says that the theorem is true for D′,D1,D2.

Consider now an interpretation A in which all undischarged assumptions
in D are true. Then all undischarged assumptions in D′ are also true, so
[[ϕ1 ∨ ϕ2]] = 1. Since [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∨ [[ϕ2]], one of the disjuncts has to be
1, say [[ϕi]] = 1. Consider now Di. The undischarged assumptions in this are
either ϕi, which is true in A, or they are also undischarged in D. Thus, all
undischarged assumptions in Di are true in A. It follows that the conclusion
of Di is true in A, but this is precisely ϕ.

Case 7: D is of the form

D′
→I

ϕ1→ ϕ2

(6.1.13)

where D′ concludes ϕ2 and (possibly) some assumptions of ϕ1 in D′ have been
marked as discharged. Consider now an interpretation in which all undis-
charged assumptions in D are true. We will show that [[ϕ1→ ϕ2]] = 1; that is
to say, if [[ϕ1]] = 1 then [[ϕ2]] = 1. This follows from the fact that, if [[ϕ1]] = 1,
then all undischarged assumptions in D′ are true, and therefore also ϕ2 is true
according to the inductive hypothesis.

Case 8: D is of the form

D′ D′′
→E

ϕ
(6.1.14)

where D′ is a derivation of ψ → ϕ and D′′ is a derivation of ψ. Every A
which interprets the undischarged assumptions in D as true also interprets the
undischarged assumptions in D′ and D′′ as true. Thus, ψ→ ϕ and ψ are true
in such interpretation. It follows that ϕ is true in that interpretation.

Case 9: D is of the form

D′
RAA

ϕ
(6.1.15)

where D′ concludes ⊥ and (possibly) some assumptions of ¬ϕ in D′ are marked
as discharged. Then ⊥ is true in all interpretations in which all asumptions
in D are true at the same time as ¬ϕ is true. But ⊥ is not true in any
interpretation, so it follows that ¬ϕ is not true in any interpretation in which
all undischarged assumptions in D are true. Therefore, ϕ must be true in all
such interpretations.

One can formulate the soundness theorem in another way, which at first
glance might seem stronger. To do this we need some definitions. We will
generalize � and ` so that we allow not only finitely many formulas in the left,
but even infinitely many.

6.1.16 Definition. If Γ ⊆ Form, then Γ � ϕ means that every model of Γ isI
a model of ϕ. Definition 4.2.39 defines what

a model is.

6.1.17 Definition. If Γ ⊆ Form, then Γ ` ϕ means that ϕ can be derivedI
without any other rules than those given in Figure 5.1 and without any other
undischarged assumptions, except, possibly, formulas in Γ. Γ 6` ϕ means that
no such derivation exists.

6.1.18 Exercise. How can one express {ϕ1, . . . , ϕn} � ϕ and {ϕ1, . . . , ϕn} ` ϕ
using the old notation?

c© 2017 Jesper Carlström 47

Soundness & Review exercises

6.1.19 Theorem (soundness theorem in another formulation). Γ ` ϕ ⇒ Γ �
ϕ

Proof. Assume that Γ ` ϕ; that is, there is a derivation D of ϕ where the
undischarged assumptions γ1, . . . , γn are all in Γ. For all interpretations A in
which all formulas in Γ are true, we have that γ1, . . . , γn are true, and thus,
from the soundness theorem 6.1.5 it follows that in all such interpretations ϕ
is also true, which was what we had to show.

Special case of the soundness
theorem: ` ϕ ⇒ � ϕ says
that only tautologies can be
derived without undischarged
assumptions. With the help of the soundness theorem we can sometimes easily show

results about interpretations.

6.1.20 Example. Show that if P1 ∧P2 is true in A, then P2 ∧P1 is true in A.

Solution. Follows from soundness and (5.1.8).

6.1.21 Example. Show that for all formulas ϕ,ψ, we have that ((ϕ ∨ ψ) ∧
¬ψ)↔ (ϕ ∧ ¬ψ) is a tautology.

Solution. It follows from the soundness theorem and the answer to Exercise 5.6.5.

6.1.22 Exercise. Show that P1→ ((P2 ∨P3)∧ (P4 ∨P5)→P1) is a tautology.

6.1.23 Example. Show that if ` ϕ↔ ψ then ϕ ≈ ψ.

Solution. Assume that ` ϕ↔ψ. According to the soundness theorem, we have
� ϕ↔ ψ. The rest follows from Exercise 4.2.31.

One can also show that it is impossible to derive certain formulas by using
only the rules in Figure 5.1.

6.1.24 Example. Show that 6` (P1 ∨ P2); that is, it is not possible to derive
the formula using the rules in Figure 5.1.

Solution. Assume that one could derive P1 ∨ P2. Then it should, according to
the soundness theorem, be a tautology. But it is not, since it is false in the
interpretation in which P1 and P2 are both intepreted as false propositions.

6.1.25 Exercise. Show that one cannot derive (P1 ∨ P2)→ P1.

6.1.26 Definition. To say that Γ is inconsistent means that Γ ` ⊥. By Γ isI
consistent it is meant that Γ 6` ⊥.

6.1.27 Example. Show that {P1, P2, P3, P4} is consistent.

Solution. Assume that {P1, P2, P3, P4} was inconsistent; that is,

P1, P2, P3, P4 ` ⊥ .

Then, according to the soundness theorem, P1, P2, P3, P4 � ⊥. But if A in-
terprets P1, P2, P3, P4 as true, then we still have [[⊥]]

A
= 0, which contradicts

P1, P2, P3, P4 � ⊥.

6.1.28 Exercise (from the exam on 2002-10-21). Decide if the following sub-
sets of Form are consistent.

a) {P1 ∨ P2, P2 ∨ ¬P3,¬P3 ∨ ¬P4, P3 ∨ ¬P1,¬P2 ∨ P4}

b) {P1→ P2, P2→ P3, P3→¬P1, P4→ P2, P3→¬P4,¬P4→ P1}

6.1.29 Exercise (from the exam on 2005-01-07). Give examples of formulas
ϕ,ψ for which no correct derivation of (ϕ∨ψ)→(ϕ∧ψ) exists. Cf. Exercise 5.6.6.

6.1.30 Example. Show that no derivation of P1 ∨¬P1 can be concluded with
an introduction rule.

48 c© 2017 Jesper Carlström

6.2 Summary

Solution. The only introduction rule which could possibly have been used is the
or-introduction rule. Assume then that we have a derivation of P1 ∨ ¬P1 con-
cluded by an or-introduction rule. If the last step in the derivation is removed,
we would have a derivation of either P1 or ¬P1. In the first case, we should
have, according to the soundness theorem, � P1, which we do not have, since P1

can be interpreted as false. In the other case, we would have � ¬P1, which we
do not have, since P1 can be interpreted as true, in which case [[¬P1]] = 0.

6.1.31 Exercise. Show that no derivation of P1∨(P2∨P3) from (P1∨P2)∨P3

can conclude with an introduction rule. (It follows that Exercise 5.3.10 cannot
be solved with a tree that concludes in two introduction rules.)

6.1.32 Exercise. Show that a derivation of ϕ ∨ (ψ ∨ σ) from (ϕ ∨ ψ) ∨ σ can
conclude with an introduction rule for some choices of ϕ,ψ, σ, but not for all.

6.1.33 Exercise. Show that no derivation without undischarged assumptions
can end with ⊥-elimination.

6.1.34 Exercise. Show that one cannot solve Exercise 5.3.7 with a tree ending
in a introduction rule.

6.1.35 Exercise. Show that one cannot derive (P1 ∨ P2)→ (P1 ∨ P2) using a
tree ending in two introduction rules, but it is possible to derive it in another
way.

6.1.36 Exercise. Show that if one derives P1 → P1 by a tree ending in an
introduction rule, one must discharge at least one assumption.

6.1.37 Exercise.

a) Show that ϕ1, . . . , ϕn � ϕ ⇐⇒ [[ϕ1]] ∧ · · · ∧ [[ϕn]] ≤ [[ϕ]] for all interpre-
tations.

b) Show that ϕ1, . . . , ϕn, ϕ � ψ ⇐⇒ ϕ1, . . . , ϕn � ϕ→ ψ follows from the
Galois connection (2.2.3). This can thus be used as an alternative proof
for soundness in the case of implication introduction.

6.1.38 Exercise. Complete by yourself the cases ∧I and →I of the proof of
the soundness theorem without looking in the book.

6.2 Summary

The only result of this chapter is the soundness theorem. It is one of the most
important theorems in propositional logic. What is important to take with you
for the rest of the course is the ability to use the soundness theorem to see
that certain attempts of deriving a formula are doomed to fail (this way you
will find the viable paths more easily), as well as the ability to see that certain
formulas cannot be derived at all if the formulas in a given set should only to
be used as undischarged assumptions. A special case of this is the proof of
consistency: you should be able to prove using the soundness theorem that a
given set of formulas is consistent. Another special case is the fact that only
tautologies can be derived without undischarged assumptions.

If you are still in doubt about whether some of the rules in natural deduction
are correct, take another look at the proof of the soundness theorem. There
it is in fact proven that the rules are correct in a certain sense – namely, that
they are in agreement with the semantics.

6.3 Review exercises

6.3.1 Exercise. Show that in any Boolean algebra we have a→ b = 1 if and
only if a ≤ b.

c© 2017 Jesper Carlström 49

Soundness & Review exercises

Hint. Use (2.2.3).

6.3.2 Exercise. Describe what this function does (defined on natural num-
bers):

f(a, 0)
def
= a

f(a, s(n))
def
= s(f(a, n))

6.3.3 Exercise. We define the number of operations in a formula in the fol-
lowing way, as a function from Form to N:

One says that ϕ is atomic if
a(ϕ) = 0.

a(Pj) = 0

a(>) = 1

a(⊥) = 1

a(ϕ ∧ ψ) = s(a(ϕ) + a(ψ))

a(ϕ ∨ ψ) = s(a(ϕ) + a(ψ))

a(ϕ→ ψ) = s(a(ϕ) + a(ψ))

Compute a(>↔¬P1). You do not need to show every step.

6.3.4 Exercise. Are these propositions about formulas in Form true?

a) (⊥ ∧⊥) = ⊥

b) (P1↔⊥) = (¬P1 ∧ (⊥→ P1))

c) (⊥ ∧⊥) ≈ ⊥

d) (P1↔⊥) ≈ (¬P1 ∧ (⊥→ P1))

6.3.5 Exercise (from the exam on 2004-01-08). Give a formula ϕ which solves
the following problem:

• if P1 is interpreted as false, ϕ is also interpreted as false,

• if P1 is interpreted as true, ϕ is interpreted as true if and only if precisely
one of P2 and P3 are interpreted as true.

6.3.6 Exercise (from the exam on 2005-08-23).
Give a complete derivation in natural deduction of the following formula:

((ϕ ∨ ψ)→ σ)↔ ((ϕ→ σ) ∧ (ψ→ σ))

6.3.7 Exercise (from the exam on 2004-08-17).
Give a complete derivation in natural deduction of the following formula:

You have seen this earlier in
the text, but try not to look
at it.

¬¬(ϕ ∨ ¬ϕ)

6.3.8 Exercise (from the exam on 2003-10-20).
Give a complete derivation in natural deduction of the following formula:

ϕ ∧ (ψ ∨ σ)↔ (ϕ ∧ ψ) ∨ (ϕ ∧ σ)

6.3.9 Exercise (from the exam on 2003-08-19).
Give a complete derivation in natural deduction of the following formula:

((P3→ P1)→ P2)↔ ((¬P3→ P2) ∧ (P1→ P2))

6.3.10 Exercise (from the exam on 2003-01-09).
Give a complete derivation in natural deduction of the following formula, with-
out using RAA:

(¬P1→¬P2)↔¬(¬P1 ∧ P2)

50 c© 2017 Jesper Carlström

Chapter 7

Normal deductions

The purpose of this chapter is to give you the chance to polish your ability
to construct derivations and learn how to look for them more systematically.
The theory is rather extensive, but several proofs have been put in an appendix
(Normalization proofs, p. 113), and you do not have to read them if you are not
particularly interested. The important thing is that you understand how you
can search more efficiently for derivations with knowledge about the so called
normal derivations. With such knowledge, one can discover which attempts are
dead ends and get good hints about which possibilities one should investigate.

7.1 Introduction

For a derivation to be non-normal we say, loosely speaking, that it contains
detours (we shall soon make this precise). For example, a derivation of the
following form is not normal:

[ϕ]
···
ψ

→I
ϕ→ ψ

···
ϕ
→E

ψ

(7.1.1)

since one can avoid the introduction of → through the transformation

···
ϕ
···
ψ.

(7.1.2)

In (7.1.1) one simply replaces each discharged assumption of ϕ by the sub-
derivation which concludes ϕ and take away the last two steps in the derivation.
One says that one normalizes the derivation when one straightens out such
detours. The observation is that when we introduce a logical operation and
then immediately remove it, it is unnecessary to have introduced it at all.
We say that a derivation is normal if it does not contain such an unnecessary
complication. We need to make more precise what one calls an “unnecesasry
complication”. To facilitate this, we introduce some new terminology.

7.1.3 Definition. In every derivation rule (Figure 5.1, page 40) we call theI
formulas above the line premises and those which are underneath the line
conclusions. In the elimination rule, we call those premises whose operations
are eliminated main premises and the others are called side premises or minor
premises.

c© 2017 Jesper Carlström 51

Normal deductions

7.1.4 Exercise. Go through all the derivation rules and mark where are the
premises. Which of these are main premises, respectively side premises?

Hint. There are only three side premises in the table.

It is not really the formula in itself which is a premise, respectively, a
conclusion, but it is rather its place which decides that. One can thus not say
that the premises are a subset of Form and so on. Often the same formula is
conclusion in one rule and premise in the next one (namely, when it is not an
assumption nor the conclusion of the entire derivation).

7.1.5 Definition. A derivation (in propositional logic) is normal if no mainI

The definition of normal we
use here ressembles the one
given by Seldin, but is
somewhat simplified. It is
easier to understand and
sufficient for this course, but
has some disadvantages in
other applications compared
to the usual definition.

premise in an elimination rule is the conclusion in any other rule but ∧E or
→E.

One can ask if there are many derivations which are normal according to this
definition. In fact, every derivation can be “normalized”, which means that one
gradually transforms it until a normal derivation occurs, similarly to the case
of normalizing Boolean expressions (Section 1.5). This is what Theorem 7.2.6
says. We shall see first how, step by step, one approaches normal derivations
through succesive transformations.

7.2 Glivenko’s theorem and normalization

We start by observing that one can always do without RAA, except, possibly, in
the last step. We shall see that if RAA is used further up in the derivation, one
can transform the derivation so that the usage of RAA is pushed downwards.
By repeating this process, one gets a derivation where RAA is not used at all
except, possibly, in the last step.

Consider, for example, the following derivation:

¬¬(ϕ→ ψ) [¬(ϕ→ ψ)]1
→E

⊥
RAA1

ϕ→ ψ ϕ
→E

ψ .

(7.2.1)

It is not normal, since the main premise in the last elimination rule is the
conclusion of RAA. But it can be transformed to

¬¬(ϕ→ ψ)

[¬ψ]1
[ϕ→ ψ]2 ϕ

→E
ψ
→E

⊥
→I2¬(ϕ→ ψ)
→E

⊥
RAA1

ψ

(7.2.2)

which is indeed a bigger derivation, but where the usage of RAA has been
pushed down to become the last step, making the resulting derivation normal.
The fact that this can always be done is the content of the following theorem.
The theorem in itself does not guarantee that the result becomes normal, only
that the RAA can be pushed down. In a later theorem we shall also prove that
one can always get a normal result.

7.2.3 Theorem (Glivenko’s theorem). Every derivation can be transformed
so that in the end it becomes a derivation in which RAA does not occur except
possible at the last step, and in which all undischarged assumptions occurred
(as undischarged assumptions) in the original derivation.

Proof. See the Normalization proof in the appendix (p. 113).

52 c© 2017 Jesper Carlström

7.3 Applications

A corollary, which in itself is sufficient to prove Glivenko’s theorem, is the
following:

7.2.4 Theorem. If Γ ` ⊥, then there exists an RAA-free derivation from Γ
to ⊥.

Proof. Assume that Γ ` ⊥. According to Glivenko’s theorem, there is a deriva-
tion from Γ to ⊥ in which RAA does not occur except, possibly, at the last step.
But if this is the case, the last step can be removed if possible assumptions of
[¬⊥] are replaced by derivations:

[⊥]
→I

¬⊥ .
(7.2.5)

A consequence of this theorem is that when one looks for derivations, one
can consider the usage of RAA only at the end of the derivation, if one uses it
at all. Above the last rule, the derivation will be RAA-free.

RAA-free derivations are
often called intuitionistic
since the validity of the rule
RAA is questioned by
intuitionism. Intuitionism is a
school of thought within
mathematical philosophy
which bears suspicions
towards the way
mathematicians handle
infinity. The semantics we
will go through in the next
part (Predicate logic) is
rejected by intuitionism,
which chooses instead to
explain the meaning of logical
operations in another way.
According to this
explanation, one cannot
motivate the fact that RAA is
a correct rule, so it is
excluded from intuitionistic
logic. Intuitionistic logic has
been shown later to have
applications in other contexts
as well.

We now know that one can always transform derivations so that any possible
use of RAA is pushed downwards until it is only used in the last step. In a
similar fashion, one can go through the sort of transformations, examples of
which have been given in (7.1.1)→(7.1.2), to reach a normal derivation. This
is the content of the following theorem.

7.2.6 Theorem (weak normalization). Every derivation can be transformed in
such a way that a normal derivation is reached, in which all undischarged as-
sumptions existed already (as undischarged assumptions) in the original deriva-
tion. If the original derivation was RAA-free then the resulting derivation con-
sists only on the rules that were used in the original one.

Proof. See the Normalization proof in the appendix (p. 115).

It follows immediately from the theorem that if Γ ` ϕ, there exists a normal
derivation of ϕ in which all undischarged assumtions belong to Γ. That Γ `
ϕ means exactly that there is a derivation of ϕ in which all undischarged
assumptions are in Γ. According to the result above, one can normalize a
derivation in a way that all undischarged assumptions already existed in the
original one. The theorem can also be applied to answer questions of the type:
can one derive ¬(P1 ∧P2)→ (¬P1 ∨¬P2) only by using the rules ∨I, →I, →E
and ∧E? The answer is no, because if one could succeed in this, one could
also normalize a derivation and get a normal derivation without undischarged
assumptions in which only the rules ∨I, →I, →E and ∧E are used. That no
such normal derivation exists is something you will hopefully be able to prove
yourself after reading some of the following section.

7.3 Applications

Now that we know that derivations can always be normalized, we know also that
when looking for a derivation, it is sufficient to just look for normal derivations.
This means that we can limit our search quite severely. The following theorems
are used to get an overview of how normal derivations look like. The first says,
for instance, that if we search for a normal derivation without undischarged
assumptions, we will not be able to end with an elimination rule

7.3.1 Theorem. If a normal derivation ends in an elimination rule, then the
Remember that ⊥ is a
subformula of, for example,
¬P1.main premise is a subformula in some undischarged assumption.

One can also formulate this
proof as an induction proof
over the structure of the
derivation.

Proof. The main premise in the last elimination rule cannot be the conclusion
of any other rule than ∧E or→E (this is required for the derivation to be called
normal). This also holds for the main premise in the row above. The same

c© 2017 Jesper Carlström 53

Normal deductions

holds for every row upwards in the derivation. When we follow the derivation
upwards along the main premise we will thus only pass through the last rule
and rules of the type ∧E and →E. None of these rules discharge assumptions
about their main premises, so at last we will reach a main premise which is an
undischarged assumption. Every conclusion in the rules we have passed through
is a subformula in the main premise of the same rule, and hence it follows that
the conclusion of the derivation is a subformula of the undischarged assumption
we have reached.

7.3.2 Exercise. Show that if a normal derivation ends with ⊥E, there has to
be an undischarged assumption which has ⊥ as a subformula.

7.3.3 Exercise. Show that if ` ϕ there is a normal derivation of ϕ which
concludes either with RAA or an introduction rule.

7.3.4 Exercise. Can one derive ¬(P1 ∧ P2)→ (¬P1 ∨ ¬P2) solely by the use
of the rules ∨I, →I, →E and ∧E?

The following theorem shows which formulas one has to use in a RAA-free
derivation:

7.3.5 Theorem (subformula property). In every normal derivation without
RAA, every formula is a subformula of either the conclusion or one of the
undischarged assumptions of the derivation.

Proof. Since every subderivation of a normal derivation is normal, we can prove
the result by induction over the structure of normal derivations.

If the last rule is >I the result is obvious. If the last rule is ⊥E then
the inductive hypothesis says that every formula, except the conclusion, is a
subformula of the undischarged assumptions or of ⊥. It is therefore sufficient
to show that ⊥ is a subformula of some undischarged assumption. But this
was done in Exercise 7.3.2.

If the last rule is an introduction rule, which does not discharge any as-
sumption, the result follows from the induction hypothesis and the fact that
the premises in the last rule are subformulas of the conclusion.

In the case of →I, whose conclusion is ϕ→ψ, the result follows from what
the inductive hypothesis says about the last formula, namely, that in fact every
formula is a subformula of ϕ, ψ or of some assumption which is left undischarged
by the last rule. Since both ϕ and ψ are subformulas of the conclusion of the
derivation, the result follows.

In the case of ∧E and →E we can use the previous theorem to assert
that the main premise is a subformula of an undischarged assumption. The
side premises in →E are subformulas of the conclusion. The rest follows by
inductive hypothesis.

Only the case of ∨E is left. Assume therefore that the derivation looks like
this:

···
ϕ ∨ ψ

[ϕ]
···
σ

[ψ]
···
σ
∨E

σ

(7.3.6)

The inductive hypothesis says:

1. that every formula in the left is a subformula of one of the undischarged
assumptions or of ϕ ∨ ψ,

2. that every formula in the middle is a subformula of an undischarged
assumption or of ϕ or σ,

3. that every formula in the right is a subformula of an undischarged as-
sumption or of ψ or σ.

54 c© 2017 Jesper Carlström

7.3 Applications

We can then draw the conclusion that every formula is a subformula of an
undischarged assumption, or of ϕ∨ψ or of σ. It remains to show that ϕ∨ψ is
a subformula of an undischarged assumption, but this follows from the previous
theorem.

7.3.7 Exercise. Show that one cannot possibly derive P1 without any undis-
charged assumptions (this follows easily from the soundness theorem, but try
to do it with the methods of this chapter).

7.3.8 Exercise. Show that one cannot possibly derive ¬P1 without any undis-
charged assumptions (this exercise is also easily solved by the soundness theo-
rem, but it is possible to do it with the methods of this chapter as well).

7.3.9 Exercise. Show that one cannot derive P1 ∨ ¬P1 without using RAA. Example 5.4.3 shows how it
can be done with RAA.

7.3.10 Exercise. Can one derive ¬(P1 ∧ P2)→ (¬P1 ∨ ¬P2) without RAA?

7.3.11 Exercise. Show that every RAA-free normal derivation of (P1∨P2)∨P3

from P1 ∨ (P2 ∨ P3) contains only the rules ∨I and ∨E. More generally: show

Think how useful results of
the type of Exercise 7.3.11
are! If one wants to search for
a RAA-free derivation, one
has, at any point, only two
rules to choose between. This
means that to construct such
a derivation is almost
automatic.

that if Γ contains only formulas which do not have any other logical connectives
besides ∨, and ϕ is also such a formula and can be derived from Γ without RAA,
then there is a normal derivation of ϕ from Γ which only uses ∨I and ∨E.

The following theorem shows that it is nearly always sufficient to search for
derivations which end with an introduction rule.

7.3.12 Theorem. Assume that Γ ` ϕ.

1. If ϕ is a ∧-formula, then there is a normal derivation from Γ to ϕ which
ends with ∧I.

2. If ϕ is a →-formula, then there is a normal derivation from Γ to ϕ which
ends with →I.

Proof. Assume that ϕ = ϕ1 ∧ ϕ2 and that we have a derivation

···
ϕ1 ∧ ϕ2

(7.3.13)

whose undischarged assumptions are in Γ. Then the following is also such a
derivation:

···
ϕ1 ∧ ϕ2

∧E
ϕ1

···
ϕ1 ∧ ϕ2

∧E
ϕ2
∧I

ϕ1 ∧ ϕ2 .

(7.3.14)

We can now normalize the sub-derivations which conclude ϕ1 respectively ϕ2

and obtain, thereby, a normal derivation.
Assume instead that ϕ = ϕ1→ ϕ2 and that we have a derivation

···
ϕ1→ ϕ2

(7.3.15)

where the undischarged assumptions are in Γ. Then the following is also such
a derivation:

···
ϕ1→ ϕ2 [ϕ1]

→E
ϕ2

→I
ϕ1→ ϕ2 .

(7.3.16)

We can now normalize the sub-derivations which conclude ϕ2 and thereby get
a normal derivation.

c© 2017 Jesper Carlström 55

Normal deductions

7.3.17 Example. Look for a derivation of (ϕ ∨ ψ)↔¬(¬ϕ ∧ ¬ψ).

Solution. Since this is a ∧-formula (↔ is defined as such) we know that it
should end with a ∧I. So what we are left with is to search for a derivation of

To understand this example
you should take pen and
paper and construct the
derivation while you are
reading. (ϕ ∨ ψ)→¬(¬ϕ ∧ ¬ψ) (7.3.18)

and
¬(¬ϕ ∧ ¬ψ)→ (ϕ ∨ ψ) . (7.3.19)

Let us start with the first one. It is a →-formula, so the derivation should
conclude with →I. We are left with searching for a derivation from ϕ ∨ ψ to
¬(¬ϕ ∧ ¬ψ). Again, the conclusion is a →-formula, so we can conclude using
→I again. This is as far as we get following this line of reasoning; we do the
corresponding work for (7.3.19). It is a →-formula so it should end with →I.
This is as far as we get in this case. We now know that the derivation can end
as follows:

⊥
→I

¬(¬ϕ ∧ ¬ψ)
→I

(ϕ ∨ ψ)→¬(¬ϕ ∧ ¬ψ)

ϕ ∨ ψ
→I

¬(¬ϕ ∧ ¬ψ)→ (ϕ ∨ ψ)
∧I

(ϕ ∨ ψ)↔¬(¬ϕ ∧ ¬ψ)

(7.3.20)

What is left is to derive ⊥ from {¬ϕ ∧ ¬ψ, ϕ ∨ ψ} as well as to derive ϕ ∨ ψ
from ¬(¬ϕ ∧ ¬ψ). Let us start with the first one. The rule RAA is, according
to Theorem 7.2.4 not needed at all here, so we look for an RAA-free derivation.

It is impossible to end with an introduction rule, since no such rule has the
conclusion ⊥. It thus has to end in an elimination rule. It is sufficient to look
for a normal derivation. But then we know that the main premise in the last
rule has to be a subformula of either ¬ϕ ∧ ¬ψ or ϕ ∨ ψ. Therefore, →E, ∨E
and ⊥E are the only possibilities, but the last one is completely unnecessary
to use in this case. Both →E and ∨E are however possible to proceed with.
We study the latter possibility. Then we get the following situation:

ϕ ∨ ψ ⊥ ⊥
∨E

⊥
→I

¬(¬ϕ ∧ ¬ψ)
→I

(ϕ ∨ ψ)→¬(¬ϕ ∧ ¬ψ)

ϕ ∨ ψ
→I

¬(¬ϕ ∧ ¬ψ)→ (ϕ ∨ ψ)
∧I

(ϕ ∨ ψ)↔¬(¬ϕ ∧ ¬ψ)

(7.3.21)

On the left, what remains to do is to derive ⊥ from {¬ϕ∧¬ψ, ϕ} respectively
{¬ϕ ∧ ¬ψ, ψ}. Then we have to use →E, and at the top ∧E. The left side is
now done, and we proceed to complete the right side.

It is unreasonable to end a derivation of ϕ ∨ ψ with an introduction rule,
since certain choices of ϕ and ψ makes them underivable. If we choose an

How does one know that a
derivation of ϕ ∨ ψ from
¬(¬ϕ ∧ ¬ψ) cannot possible
end with ∨I? Remember that
ϕ and ψ stand for arbitrary
formulas. If, for example,
ϕ = ψ = > then one can in
fact end with ∨I. But when
we seek a derivation of ϕ ∨ ψ
from ¬(¬ϕ ∧ ¬ψ) we look for
a shape in which ϕ and ψ
occur as symbols which can
be replaced by arbitrary
formulas. If the derivation
ends with ∨I then this means
that we have to create a
sub-derivation of ϕ from
¬(¬ϕ ∧ ¬ψ) (or of ψ), which
should be correct no matter
which formula we replace ϕ
and ψ by. This is not
possible. If we, for instance,
put ⊥ instead of ϕ and >
instead of ψ, then a derivation
from ¬(¬ϕ ∧ ¬ψ) to ϕ cannot
be correct (according to the
soundness theorem or the
subformula property).

elimination rule and seek a normal derivation, the main premise has to be a
subformula of ¬ϕ∧¬ψ, so ∨E is excluded. The rules ∧E and→E are excluded
since their main premises always contain the conclusion as a subformula. We
are left with only ⊥E and RAA. The former is a dead end, according to what
we have previously seen. Hence the only rule we are left with now is RAA. We
have then the following situation:

[ϕ ∨ ψ]

[¬ϕ ∧ ¬ψ]
∧E

¬ϕ [ϕ]
→E

⊥

[¬ϕ ∧ ¬ψ]
∧E

¬ψ [ψ]
→E

⊥
∨E

⊥
→I

¬(¬ϕ ∧ ¬ψ)
→I

(ϕ ∨ ψ)→¬(¬ϕ ∧ ¬ψ)

⊥
RAA

ϕ ∨ ψ
→I

¬(¬ϕ ∧ ¬ψ)→ (ϕ ∨ ψ)
∧I

(ϕ ∨ ψ)↔¬(¬ϕ ∧ ¬ψ)
(7.3.22)

56 c© 2017 Jesper Carlström

7.4 Summary

It remains to derive ⊥ from {¬(¬ϕ ∧ ¬ψ), ¬(ϕ ∨ ψ)}. We start solving this
problem, once again, with the observation that we can look for RAA-free deriva-
tions.

In the next step we cannot use an introduction rule, and ⊥E is not ap-
plicable. Therefore, it is one the rules ∧E, →E and ∨E the ones we need to
use. But in order for the derivation to be normal, the main premise must be a
subformula of ¬(¬ϕ ∧ ¬ψ) or ¬(ϕ ∨ ψ), so the only possible rule we can use is
→E. The first main premise has to be ¬ϕ, ¬ψ, ¬(ϕ ∨ ψ) or ¬(¬ϕ ∧ ¬ψ). The
first two cases are excluded, as they require that we derive the side premises ϕ
respectively ψ, which is impossible, in general. The two other cases are both
possible ways to proceed. We stop the process here, as it continues in a similar
way.

7.3.23 Exercise. Look for a derivation of ((P1→ P1)→ P1)→ P1.

7.3.24 Exercise (from the exam on 2006-01-12). Look for a derivation of
((ϕ→ ψ)→ ψ)↔ (¬ϕ→ ψ).

7.3.25 Exercise. Look for a normal derivation from P1 → P2, ¬P1 → P2 to
P2.

7.3.26 Exercise (from the exam on 2005-10-20). Derive ¬(¬ϕ ∧ (ψ→ ϕ))↔
(ϕ ∨ ψ).

7.3.27 Exercise (from the exam on 2006-08-22). Derive (¬P1∨¬P2)↔¬(P1∧
P2).

7.3.28 Exercise (from the exam on 2006-10-19). Derive ϕ→ ((ϕ→ ψ)↔ ψ).

7.3.29 Exercise (from the exam on 2007-01-10). Derive ((ϕ ∨ ψ) ∧ ¬ϕ)↔
¬(ψ→ ϕ).

7.3.30 Exercise (from the exam on 2007-08-17). Derive ((ϕ→ ψ) ∧ (¬ϕ→
ψ))↔ ψ.

7.3.31 Exercise (from the exam on 2007-10-18). Derive ((ϕ→ ψ) ∧ ¬ψ)↔
¬(ϕ ∨ ψ).

7.4 Summary

This chapter has dealt with normal derivations. The definition we have used is
somewhat simplified compared to the usual one. You have seen that it leads to
the subformula property for RAA-free normal derivations and other properties
which simplify seeking normal derivations. The most important thing to bring
with you for the rest of the course is the ability to efficiently find a derivation
by searching for a normal derivation. It is also good to be able to prove that
certain attempts to find derivations are doomed to fail. It is not important
that you learn the theory of this section, but that you look at this section only
as a way of helping you to look for a derivation.

c© 2017 Jesper Carlström 57

Normal deductions

58 c© 2017 Jesper Carlström

Chapter 8

Completeness

We are now going to do something which seems completely impossible. We
shall prove that everything which is true in every interpretation can be proved
in natural deduction (if it can be expressed in the language we have built). The
idea is the following: we shall construct an interpretation of the formulas in
which the meaning of a formula will be precisely that it can be proven. Since
they are true in this interpretation, they can be proven. This idea cannot be
done in a straightforward way, but will be there as a guiding star. Instead of
interpreting formulas so that they say of themselves that they can be proven,
we interpret them in a way that their meaning is to be included in a so called
maximally consistent extension of the set of undischarged assumptions. This
eventually leads to the desired result. But first we need to define and study
maximal consistency.

8.1 Maximal consistency

8.1.1 Definition. Γ is maximally consistent if it is maximal amongst theI
consistent subsets of Form, ordered by inclusion. In simple words, this means
that

1. Γ is consistent,

Maximally consistent sets
play more or less the same
rules as maximal ideals do in
ring theory.

2. if Γ ⊆ U ⊆ Form and U is consistent, then U = Γ.

None of the set of formulas we have considered so far are maximally con-
sistent. In fact, every maximally consistent set is infinite, which follows from
the fact that they are closed under derivations according to the next theorem.

An example of a maximally
consistent set that one gets
by considering a particular
interpretation is the following:
take every formula which is
true in the interpretation.

8.1.2 Theorem (closure under derivations). If Γ is maximally consistent, and
Γ ` ϕ, then ϕ ∈ Γ.

Proof. Assume that Γ is maximally consistent and Γ ` ϕ. Let U = Γ ∪ {ϕ}.
Then Γ ⊆ U . It follows from the definition of maximal consistency that Γ = U if
we show that U is consistent. Assume therefore that U ` ⊥. We will show that
this leads to a contradiciton. Indeed, in that case, there should be a derivation
of ⊥ from the assumptions which are either ϕ or formulas in Γ. Since Γ ` ϕ,
any assumptions of ϕ in the derivation can be replaced with derivations of ϕ
from Γ. In this way we were able to construct a derivation of ⊥ from Γ, which
is impossible since Γ is consistent.

8.1.3 Exercise. Show that every maximally consistent set of formulas is infi-
nite.

8.1.4 Theorem. Γ is maximally consistent if and only if it is consistent and
whenever Γ ∪ {ϕ} is consistent, then ϕ ∈ Γ.

c© 2017 Jesper Carlström 59

Completeness

Proof. (⇒) Take U = Γ ∪ {ϕ}. If U is consistent, then according to the
definition of maximal consistency, U = Γ, and hence ϕ ∈ Γ.

(⇐) Assume that Γ ⊆ U ⊆ Form and that U is consistent. We will show
that it follows then that U = Γ. Take an arbitrary formula ϕ ∈ U . Then
Γ ∪ {ϕ} ⊆ U , is consistent. Hence we have ϕ ∈ Γ. But ϕ was arbitrary in U ,
so we have U ⊆ Γ. Thus U = Γ.

Since we have not seen a single example of a maximally consistent set, one
can question why they are so important. The answer is that every consistent
set Γ can be extended to a maximally consistent set Γ∗ and it can be used
to prove the completeness theorem, which is very useful. We shall start by
constructing the extension and will prove later that it has the properties we
want.

As a step along the way we start by constructing an infinite sequence of

It is not important that you
learn by heart how Γ∗ is
constructed, but you should
understand the construction
to be able to follow the
reasoning in this chapter.

growing consistent subsets. A sequence is nothing else but a function from N, so
the definition is recursive and stated in two lines, as usual. We use the fact that
Form is countable; that is to say, Form = {ϕ0, ϕ1, ϕ2, . . .} for some enumeration
of the formulas. We shall not explicitly define such an enumeration, but will
content ourselves by asserting that it is possible to define it.

Γ0
def
= Γ (8.1.5)

Γs(n)
def
=

{
Γn ∪ {ϕn} if consistent

Γn otherwise.
(8.1.6)Those who have concerns

about definitions by cases
which are difficult to decide
may instead define Γs(n) as
Γn ∪ {ϕ | ϕ = ϕn and

Γn ∪ {ϕn} consistent}. 8.1.7 Lemma. The sequence {Γi} is an increasing sequence of consistent sets
if Γ is consistent.

Proof. That the sequence is increasing follows from the fact that (8.1.6) spec-
ifies that the formulas which are in Γn will also be in Γs(n). But we require
more to show that every set in the sequence is consistent.

We will do the proof by induction. That Γ0 is consistent follows from (8.1.5)
and that Γ is consistent. Let us now do the induction step and assume, hence,
the inductive hypothesis: that Γn is consistent. It follows immediately by
construction of Γs(n) that it is consistent.

We now let

Γ∗ =

∞⋃
i=0

Γi . (8.1.8)

8.1.9 Lemma. If Γ∗ ` ϕ then Γn ` ϕ holds for some n.

Proof. Assume that Γ∗ ` ϕ; that is, there are γ1, . . . , γm ∈ Γ∗ and a derivation
from γ1, . . . , γm to ϕ. Since every γj belongs to Γ∗, which is the union of all
such Γi, then every γj is in some Γi. Take n sufficiently large as to have every
γj in Γn.

8.1.10 Theorem. If Γ is consistent, Γ∗ is maximally consistent.

Proof. Assume first that Γ∗ is inconsistent; that is, that Γ∗ ` ⊥. Then, accord-
ing to the previous lemma, Γn ` ⊥ for some n, which is not the case, according
to Lemma 8.1.7. Thus, Γ∗ is consistent.

We shall now prove that Γ∗ is maximally consistent through an application
of Theorem 8.1.4. Assume therefore that Γ∗∪{ϕ} is consistent. Take n so that
ϕ = ϕn. Then ϕ ∈ Γs(n), according to (8.1.6). Hence, ϕ ∈ Γ∗.

8.1.11 Theorem. If ϕ 6∈ Γ∗, then ¬ϕ ∈ Γ∗.

60 c© 2017 Jesper Carlström

8.2 Completeness

Proof. Assume that ϕ 6∈ Γ∗. We can show that ¬ϕ ∈ Γ∗ by applying Theo-
rem 8.1.4 if we prove that Γ∗ ∪ {¬ϕ} is consistent. Assume therefore that it is
inconsistent, and derive a contradiction.

We should then have some derivation

γ1 · · · γn ¬ϕ

···
⊥

(8.1.12)

where γ1, . . . , γn ∈ Γ∗. But we can then continue with RAA and discharge the
assumption ¬ϕ. Then we would have Γ∗ ` ϕ, and since maximally consistent
sets are closed under derivations, we would have ϕ ∈ Γ∗, which contradicts our
assumption.

8.1.13 Exercise. Show that if ¬ϕ 6∈ Γ∗ then ϕ ∈ Γ∗.

8.1.14 Exercise. Show that if ¬ψ ∈ Γ∗ and (ϕ ∨ ψ) ∈ Γ∗, then ϕ ∈ Γ∗.

8.1.15 Exercise. Show that if ψ ∈ Γ∗ then (ϕ→ ψ) ∈ Γ∗.

8.1.16 Exercise. Show that if ϕ 6∈ Γ∗, then (ϕ→ ψ) ∈ Γ∗.

8.1.17 Exercise (from the exam on 2004-01-08).

a) Prove that {P1, P2, P3,¬P1 ∨ ¬P2} is inconsistent.

b) Is the set of all propositional variables maximally consistent?

8.2 Completeness

We will now use maximally consistent extensions to find interpretations in
which all formulas in a consistent set are true.

8.2.1 Exercise. Show that if Γ has a model, then Γ is consistent.
Remind yourself of the
definition of a (4.2.39).

8.2.2 Lemma (model existence lemma). If Γ is consistent, then it has a model.

Proof. Assume that Γ is consistent and that Γ∗ is a maximally consistent ex-
tension of Γ. We define an interpretation by interpreting every propositional
variable Pi as the proposition Pi ∈ Γ∗. We will check that for every ϕ ∈ Form
it holds that ϕ ∈ Γ∗ ⇐⇒ [[ϕ]] = 1. In this case we know that every formula in
Γ will have truth value 1, so the interpretation will be a model of Γ.

We prove this claim by induction on the complexity of the formula. There
are a number a cases to consider– one for every sort of formulas.

For propositional variables, this is true by definition.
For >, both > ∈ Γ∗ and [[>]] = 1 hold.
For ⊥ it holds that ⊥ 6∈ Γ∗ (since Γ∗ is consistent) and [[⊥]] = 0.
For formulas of the form ϕ∧ψ we use the inductive hypothesis, which says

that ϕ ∈ Γ∗ ⇐⇒ [[ϕ]] = 1 and the same for ψ. If, therefore, (ϕ∧ψ) ∈ Γ∗, then
it follows, since maximally consistent sets are closed under derivations, that
ϕ,ψ ∈ Γ∗, and thus [[ϕ∧ψ]] = [[ϕ]]∧ [[ψ]] = 1∧1 = 1. Conversely, if [[ϕ∧ψ]] = 1,
then we have [[ϕ]] = [[ψ]] = 1, and hence ϕ,ψ ∈ Γ∗. Thus, (ϕ∧ψ) ∈ Γ∗ because
Γ∗ is closed under derivations.

For formulas of the form ϕ ∨ ψ we also use the induction hypothesis, but
consider two cases: [[ψ]] = 0 respectively [[ψ]] = 1. In the first case we have, by
inductive hypothesis, that ψ 6∈ Γ∗, which means, according to Theorem 8.1.11,
that ¬ψ ∈ Γ∗. Assume now that (ϕ ∨ ψ) ∈ Γ∗. Then we have, according to
Exercise 8.1.14, that ϕ ∈ Γ∗, and hence [[ϕ]] = 1 according to the inductive
hypothesis, so it follows that [[ϕ ∨ ψ]] = [[ϕ]] ∨ [[ψ]] = 1 ∨ 0 = 1. On the other
hand, if [[ϕ ∨ ψ]] = 1, it follows that [[ϕ]] = 1 and thus by inductive hypothesis
ϕ ∈ Γ∗ – and since Γ∗ is closed under derivations, it follows that (ϕ∨ψ) ∈ Γ∗.

c© 2017 Jesper Carlström 61

Completeness

The case where [[ψ]] = 1 is easy: then ψ ∈ Γ∗ by inductive hypothesis. Hence
we have both (ϕ ∨ ψ) ∈ Γ∗ and [[ϕ ∨ ψ]] ≥ [[ψ]] = 1.

For formulas of the form ϕ→ψ we also use the inductive hypothesis. Assume
that (ϕ→ψ) ∈ Γ∗. We shall show that [[ϕ→ψ]] = 1, which means that if [[ϕ]] = 1,
then [[ψ]] = 1. But if [[ϕ]] = 1, the inductive hypothesis gives us ϕ ∈ Γ∗, and
since Γ∗ is closed under derivations, it follows that [[ψ]] = 1, whereby, it follows
from the inductive hypothesis that [[ψ]] = 1. On the other hand, assume that
[[ϕ→ ψ]] = 1, we will show that (ϕ→ ψ) ∈ Γ∗. In the case [[ϕ]] = 1, we must
have [[ψ]] = 1, and by inductive hypothesis it follows that ψ ∈ Γ∗, whereby
Exercise 8.1.15 gives (ϕ→ ψ) ∈ Γ∗. In the case [[ϕ]] = 0 we have ϕ 6∈ Γ∗ and
hence by Exercise 8.1.16 we have (ϕ→ ψ) ∈ Γ∗

We are now ready to prove the converse of the soundness theorem.

8.2.3 Theorem (completeness). Γ � ϕ ⇒ Γ ` ϕ
Proof. Assume that Γ � ϕ and that Γ∪{¬ϕ} is consistent. Then by the model
existence lemma we have that Γ ∪ {¬ϕ} has a model. But it is a model of Γ,
and hence of ϕ, which contradicts that it is a model of ¬ϕ. Therefore, Γ∪{¬ϕ}
is inconsistent, so there must be a derivation of ⊥ from γ1, . . . , γn,¬ϕ. Then
there is a derivation of ϕ from Γ:

γ1 · · · γn [¬ϕ]

···
⊥

RAA
ϕ

8.2.4 Exercise. Formulate the completeness theorem 8.2.3 in words. Compare
to how Theorem 6.1.19 could be formulated in words in Theorem 6.1.5.

8.2.5 Exercise.

a) Show that a formula is derivable if and only if it is true in all interpre-
tations; that is to say, if and only if all interpretations are models of the
formula.

b) Show that a set is consistent if and only if its formulas are true in some
These are important and very
useful principles.

common interpretation; that is to say, if and only if some interpretation
is a model of the formulas in the set.

8.2.6 Exercise. Show that ϕ↔ ψ can be derived if and only if ϕ ≈ ψ.

8.2.7 Exercise (cf. exercises 5.6.6 and 6.1.29). Show that (ϕ ∨ ψ)→ (ϕ ∧ ψ)
is derivable if and only if ϕ ≈ ψ.

8.2.8 Exercise. Show that if one substitutes a, b, c with P1, P2, P3 in the
Boolean axioms (Figure 1.1) and = with ↔, then the axioms become formulas
which are derivable in natural deduction.

8.3 Summary

We have proved the converse of the soundness theorem. While the soundness
theorem says that everything that is derivable is true in every interpretation,
the completeness theorem says that everything which is true in every interpre-
tation can be derived. It is thereby clear that the rules we have introduced
in natural deduction are sufficient for our purposes: if something is not deriv-
able from these rules, we would not like to derive it, since it is false in some
interpretation. The most important thing to take with you for the rest of the
course is the understanding of what completeness means, and how it can be
used to show that a formula can be derived without actually constructing the
derivation.

62 c© 2017 Jesper Carlström

Part III

Predicate logic

c© 2017 Jesper Carlström 63

Chapter 9

The language of predicate logic

The logic we have studied so far is called propositional logic, since deals with
whole propositions and combine them to construct composite propositions.
But this will not get us very far if we want to do mathematics. The problem
is that one cannot express propositions such as “2 is even” in the language of
propositional logic. The best one can do is symbolize it using a propositional
variable. One then has to have another propositional variable symbolizing “3 is
even” and a third one for “4 is even”, and so on. However, it would be better to
have symbols in the language for 2, 3 and 4 and symbolize directly the predicate
“is even”. One should also need to handle mathematical objects such as 2, 3,

Presumably you recognize the
term predicate from grammar,
which borrowed it from logic.4 and propositions about such objects. We shall do this by studying predicate

logic.

9.1 Terms

To refer to mathematical objects one uses terms. These are built from variables
and function symbols. If, for instance, one would like to have terms to deal with
numbers, one would need variables x0, x1, x2, . . . and function symbols for +
and ·. One also need symbols for 0 and 1, but instead of introducing a separate
category of symbols for these, we consider them to be nullary function symbols,
that is, functions that do not take any argument (they are constants). Such
function symbols are therefore sometimes called constant symbols. As you can
see, we can have different arities for our function symbols. We use f1, . . . , fm
as function symbols and denote their arities by a1, . . . , am. If we would like a stands for arity.

f1, f2, f3, f4, f5 to be interpreted as 0, 1,+, ·,−, where − is a unary negation,
they should have the following arities:

a1 = 0 (9.1.1)

a2 = 0 (9.1.2)

a3 = 2 (9.1.3)

a4 = 2 (9.1.4)

a5 = 1 . (9.1.5)

9.1.6 Definition. Given an arity ai for every function symbol fi we define aI
set Term inductively by the following rules. Compare to Chapter 3 and

Definition 4.1.2.

i ∈ N
xi ∈ Term

t1 ∈ Term · · · tai
∈ Term

fi(t1, . . . , tai
) ∈ Term

where we have a rule of the second type for every function symbol.
Instead of fi() we write fi
(nullary function symbols).

c© 2017 Jesper Carlström 65

The language of predicate logic

In our case, with the arities we chose above, we get:

f1 ∈ Term
(9.1.7)

f2 ∈ Term
(9.1.8)

t1 ∈ Term t2 ∈ Term

f3(t1, t2) ∈ Term
(9.1.9)

t1 ∈ Term t2 ∈ Term

f4(t1, t2) ∈ Term
(9.1.10)

t1 ∈ Term

f5(t1) ∈ Term
(9.1.11)

The definition of Term depends on m and a1, . . . , am. It is, therefore, nec-
essary to fix an arity type before one can start. This means precisely that one
chooses m, a1, . . . , am ∈ N. In the arity type, some other things should also be

In practice, it is not necessary
to think too much about the
arity type, since it is given by
the context. On the other
hand, it is important that one
remembers that Term is not
uniquely determined, but that
it depends on the choice of
arity type

introduced, but we will wait a while before doing this. The final definition of
arity type can be found in 9.2.1.

9.1.12 Example. Give the tree which proves that f4(f5(f2), x1) is a term.

Solution.

f2 ∈ Term

f5(f2) ∈ Term

0 ∈ N
1 ∈ N

x1 ∈ Term

f4(f5(f2), x1) ∈ Term

9.1.13 Exercise. Construct a tree which shows that f5(f5(f3(x2, f4(f1, x0))))
is a term.

It turns out that it is important to use the notion of a variable occurring in
a term. It means precisely what it seems, i.e., that when one reads the term,
one finds the variable in it. The proper definition must be somewhat different,
since we must define it according to the principle of inductively defined sets. It
also has the advantage that limit cases become clearer. Would it, for instance,
be correct to say that the variable x1 occur in the term x1? The answer is yes,
as we choose it to be so. The definition splits, as usual, into cases given by the
rules we have to construct terms.

9.1.14 Definition. We define a variable as occurring in a term byI

xi occurs in xj
def
= (i = j)

xi occurs in fj(t1, . . . , taj
)

def
= xi occurs in some argument.

With “some argument”, we mean one of the terms t1, . . . , taj . A special case
is that of nullary function symbols: then xi does not occur in any argument,
and therefore no variable occurs in constant symbols. This fact is in acordance
to what we usually look at things.

9.1.15 Exercise. Solve these exercises directly by looking at the variables in
the terms and, more formally, by using the definition we just gave.

a) Does x2 occur in x23?
Note that, just by matching,
the answer is yes. What is the
correct answer?

b) Does x0 occur in f4(x0, x1)?

c) Does x0 occur in f4(x0, x0)?

66 c© 2017 Jesper Carlström

9.2 Formulas

d) Does x2 occur in f3(x0, f1)?

e) Does x2 occur in f4(f3(x0, x1), f3(x2, x3))?

We shall now define substitution. Substitution means that one “replaces
a variable with some expression”. For instance, we are used to “substituting”
numbers such as 2 and 4 in an expression like “x2”, so that we get the expression
“22”, respectively “42”. When substituting, it is always a variable that we
substitute for. This is in accordance with the usual use of language. For
instance, it is not usual “to substitute x for 2 in x2”. One can do substitutions

One can study substitution
for other things than
variables, in which case it is
called replacement instead of
substitution substitution. One
can handle this by means of
substitution, which we shall
do in a while.

in whole propositions, as when we are substituting to check the solution of an
equation, but we shall start by substituting terms for variables in terms.

9.1.16 Definition (substitution of terms in terms).I
Precedence rule: Substitution
binds to the left, so
t[s/x0][u/x1] means
(t[s/x0])[u/x1].

xi[t/xj]
def
=

{
t if j = i

xi if j 6= i

fi(t1, . . . , tai
)[t/xj]

def
= fi(t1[t/xj], . . . , tai

[t/xj]) .

9.1.17 Exercise. Compute

a) f3(x0, f1)[x1/x0]

b) f3(x0, x1)[x1/x0][x0/x1]

c) f3(x0, f1)[f4(f3(x0, x1), f3(x2, x3))/x2]

9.1.18 Exercise. Show that if s, t ∈ Term and xj does not occur in t, then
t[s/xj] = t.

9.1.19 Exercise. Show that t[xi/xj][xj/xi] = t does not always hold, but that
it is true if xi does not occur in t.

9.2 Formulas

We have already defined a set Form of formulas (Definition 4.1.2). We shall now
modify this definition so that we can also have formulas that contain terms.

First of all, we generalize the idea of propositional variables. We now al-
low P1, P2, P3 to take arguments, precisely as functions do. In the section
about terms, we saw constant symbols as nullary function symbols, and the
old propositional variables will now be seen as nullary relation symbols. We

There are many names for
relation symbols. Some prefer
to call them predicate
symbols.therefore need to have an arity for relation symbols. We denoted the arity for

function symbols by a1, . . . , am, and we will now denote the arity for relation
symbols by r1, . . . , rn.

9.2.1 Definition. By arity type we mean a listI Remember that n or m, or
both, could be 0.

〈r1, . . . , rn; a1, . . . , am〉 ,

where n,m, r1, . . . , rn, a1, . . . , am ∈ N.

Once an arity type is established, then also a language on that arity type is
defined. It consists of terms which we introduced in the previous section, and
of formulas, which we shall soon define. We need formulas to express equality ;

When the symbol
.
= is

contained in an expression, it
will remind that the
expression is an element of
Form. When the symbol = is
in an expression, it is an
informal assertion, if
anything. We can, for
instance, write ϕ = (x0

.
= x0)

to mean that ϕ is the formula
x0

.
= x0.

that is, propositions such as 1 ·x = x. Since we want formulas which are easy to
read, it is good to use a notation which ressembles =, but at the same time it
is good to see the difference between formulas and interpretation, so we modify
the notation a little and write

.
=. This means that

.
= shall be seen as a symbol

for =. We also need to express that something is true for all elements or for
some element. We will do this with the symbols ∀, respectively ∃. In general,
we imitate Definition 4.1.2.

c© 2017 Jesper Carlström 67

The language of predicate logic

9.2.2 Definition. Let 〈r1, . . . , rn; a1, . . . , am〉 be an arity type. We define theI
set of formulas inductively as follows:

Instead of Pi() we write Pi

(nullary relation symbols).

While ∧, ∨, →, >, ⊥ are
called connectives, one calls ∀
and ∃ quantifiers. The
symbols were invented at a
time when the easiest way to
find new symbols was to use
letters types already made,
upside down.

t1 ∈ Term t2 ∈ Term

t1
.
= t2 ∈ Form

t1 ∈ Term · · · tri ∈ Term

Pi(t1, . . . , tri) ∈ Form

> ∈ Form

⊥ ∈ Form

ϕ ∈ Form ψ ∈ Form

(ϕ ∧ ψ) ∈ Form

ϕ ∈ Form ψ ∈ Form

(ϕ ∨ ψ) ∈ Form

ϕ ∈ Form ψ ∈ Form

(ϕ→ ψ) ∈ Form

ϕ ∈ Form i ∈ N
∀xiϕ ∈ Form

ϕ ∈ Form i ∈ N
∃xiϕ ∈ Form

Note that the rule for
.
= has precisely the same form as the rule for binary

relation symbols. The only distinction will be that the interpretation of the
latter can vary, while the interpretation of

.
= will always be equality.

We keep Definition 4.1.3 for predicate logic as well: ¬ and ↔ are regarded
as defined operations.

Remind yourself of
Definition 4.1.3, page 30.

9.2.3 Exercise. Let the arity type be 〈2, 3; 0, 1〉. Construct the tree which
shows that P2(x0, f1, f2(x1))→¬P1(x1, x1) is a formula.

9.2.4 Exercise. Let the arity type be 〈0, 0, 0, 0; 〉.

a) Construct the tree which shows that P1 ∧ P2→ P2 ∧ P1 is a formula.

This exercise shows that
propositional logic can be
looked at as a special case of
predicate logic, but that we
have more formulas, even
without the symbols for ∀ and
∃. b) Explain why every formula in predicate logic is a formula, even with our

new definition of Form, if it does not contain any other predicate symbols
than P1, . . . , P4.

c) Give examples of two different terms (with their arity type).

d) Give examples of two different formulas (with their arity type) which
were not formulas according to Definition 4.1.2. Construct the tree which
shows that they are formulas according to Definition 9.2.2.

9.2.5 Definition. A formula is said to be propositional if it does not containI

68 c© 2017 Jesper Carlström

9.2 Formulas

anything which was not part of propositional logic. Formally we define:

(t1
.
= t2) propositional

def
= false

Pj(t1, . . . , trj) propositional
def
= (rj = 0)

> propositional
def
= true

⊥ propositional
def
= true

(ϕ ∧ ψ) propositional
def
= ϕ propositional and ψ propositional

(ϕ ∨ ψ) propositional
def
= ϕ propositional and ψ propositional

(ϕ→ ψ) propositional
def
= ϕ propositional and ψ propositional

(∀xjϕ) propositional
def
= false

(∃xjϕ) propositional
def
= false

9.2.6 Exercise.

a) Show that P1 ∧P2→P2 ∧P1 is propositional according to the definition.

b) Show that your examples from Exercise 9.2.4 d are not propositional
according to the definition.

9.2.7 Exercise. Define properly what “xi occurs in ϕ” should mean, where
ϕ ∈ Form.

Hint. Think about the fact that all definitions shall be divided
into cases according to the form of ϕ. Look at Definition 9.1.14 for
inspiration.

9.2.8 Exercise. Show that if ϕ is a propositional formula, it is false that xi
occurs in ϕ.

We now reach the definition of substitution of terms for variables in for-
mulas. Note particularly how the cases of ∀ and ∃ are handled. This may be
somewhat surprising.

9.2.9 Definition (substitution of terms in formulas).I

Precedence rule: ∀ and ∃ bind
strongly, so ∀x0ϕ→ ψ means
(∀x0ϕ)→ ψ. Substitution
binds even stronger, so
∀x0ϕ[t/x0] means
∀x0(ϕ[t/x0]).

(t1
.
= t2)[t/xj]

def
= (t1[t/xj]

.
= t2[t/xj])

Pi(t1, . . . , tri)[t/xj]
def
= Pi(t1[t/xj], . . . , tri [t/xj])

>[t/xj]
def
= >

⊥[t/xj]
def
= ⊥

(ϕ1 ∧ ϕ2)[t/xj]
def
= (ϕ1[t/xj] ∧ ϕ2[t/xj])

(ϕ1 ∨ ϕ2)[t/xj]
def
= (ϕ1[t/xj] ∨ ϕ2[t/xj])

(ϕ1→ ϕ2)[t/xj]
def
= (ϕ1[t/xj]→ ϕ2[t/xj])

(∀xiϕ)[t/xj]
def
=

{
∀xiϕ if j = i

∀xiϕ[t/xj] if j 6= i

(∃xiϕ)[t/xj]
def
=

{
∃xiϕ if j = i

∃xiϕ[t/xj] if j 6= i

9.2.10 Exercise. Compute

a) (x1
.
= x2 ∧ P1(f1(x1, x2)))[f2/x1]

b) (x1
.
= x2 ∧ ∀x1(x1

.
= x2))[f2/x1]

c) ∀x1∀x2(x1
.
= x2 ∧ x2

.
= x3)[x3/x2]

If you have solved the exercises correctly (check the solutions) you will note
that the variable one substitutes is not always replaced in every place it occurs.
One replaces it only when its occurrence is “free”. We shall sooon define what
this means, but let us first consider an example.

c© 2017 Jesper Carlström 69

The language of predicate logic

As you probably remember, it is true that:∫ 1

0

xdx = 1/2 . (9.2.11)

This also means that

x+

∫ 1

0

xdx = x+ 1/2 . (9.2.12)

This is a general formula, where we can substitute x for whatever we like. If
we substitute x by 3, we conclude that:

3 +

∫ 1

0

xdx = 3 + 1/2 . (9.2.13)

Note that we do not replace the x which is inside the integral. One says that
the integral binds this x. While the x outside the integral is used as a symbol
for an arbitrary number, the x inside the integral is used as an integration
variable. In the same way, ∀ and ∃ bind variables. The variables which are not
bound are called free. The exact definition is as follows:

9.2.14 Definition (free variables). We define “occurs freely in”, or, moreI
succinctly “free in” in the following way, where Definition 9.1.14 is used in
some cases.

xi free in (t1
.
= t2)

def
= xi occurs in either t1 or t2

xi free in Pj(t1, . . . , trj)
def
= xi occurs in some of t1, . . . , trj

xi free in > def
= false

xi free in ⊥ def
= false

xi free in (ϕ ∧ ψ)
def
= xi free in ϕ or xi free in ψ

xi free in (ϕ ∨ ψ)
def
= xi free in ϕ or xi free in ψ

xi free in (ϕ→ ψ)
def
= xi free in ϕ or xi free in ψ

xi free in (∀xjϕ)
def
= i 6= j and xi free in ϕ

xi free in (∃xjϕ)
def
= i 6= j and xi free in ϕDid you understand the

difference between a variable
occurring in ϕ and a variable
occurring freely in ϕ? 9.2.15 Exercise. That a variable occurs bound in a formula means that it is

bound by ∀ or ∃. Give a recursive definition in the same spirit as the previous
one.

9.2.16 Exercise.

a) Does x1 occur freely in x1
.
= x2?

b) Does x1 occur freely in x1
.
= x1?

c) Does x1 occur freely in (x1
.
= x2 ∧ P1(f1(x1, x2)))?

d) Does x1 occur freely in ∀x1(x1
.
= x2))?

e) Does x2 occur freely in ∀x1(x1
.
= x2))?

f) Does x1 occur freely in (x1
.
= x2 ∧ ∀x1(x1

.
= x2))?

g) Does x2 occur freely in ∀x1∀x2(x1
.
= x2 ∧ x2

.
= x3)?

h) Does x1 occur freely in ¬(x1
.
= x1)?

Sometimes we write xi ∈ FV(ϕ) instead of “xi occurs free in ϕ”. In other
words: FV(ϕ) is the set of free variables in ϕ.

9.2.17 Exercise.

a) Determine FV(x1
.
= x2).

70 c© 2017 Jesper Carlström

9.3 Summary

b) Determine FV(x1
.
= x2 ∧ P1(f1(x1, x2))).

c) Determine FV(∀x1∀x2(x1
.
= x2 ∧ x2

.
= x3)).

d) Determine FV(>).

e) Determine FV(ϕ ∧ ψ) if FV(ϕ) = {x1} and FV(ψ) = ∅.

f) Determine FV(ϕ ∨ ψ) if FV(ϕ) = {x1} and FV(ψ) = ∅.

9.2.18 Exercise. Show that if xj does not occur freely in ϕ then ϕ[t/xj] = ϕ.
Use an inductive proof (induction on the complexity of the formula).

9.2.19 Exercise (from the exam on 2003-01-09). Consider the following for-
mula:

∀x2(∀x1P1(x1, x2)→∃x2(f1(x1)
.
= f2(x2, x3))) ∨ ∀x3¬(x1

.
= x3) .

Call this formula ϕ.

a) Determine FV(ϕ).

b) Perform the substitutions ϕ[f1(x3)/x1], ϕ[x1/x2], ϕ[f2(x1, x3)/x3].

9.2.20 Exercise (from the exam on 2005-01-07). In this exercise, ϕ denotes
formulas in the language of arity type 〈1; 1, 0〉. That a formula is atomic means
that it does not contain connectives (>, ⊥, ∧, ∨, →) or quantifiers (∀, ∃).

a) Give examples of three different atomic formulas ϕ without any free vari-
ables.

b) Give examples of three different atomic formulas ϕ which satisfy FV(ϕ) =
{x0, x1}.

9.2.21 Exercise. Prove by induction that t[xi/xi] = t and ϕ[xi/xi] = ϕ.

9.2.22 Exercise. Show that ϕ[y/x][x/y] = ϕ if y does not occur in ϕ.

9.2.23 Exercise. Show that ϕ[y/x][x/y] 6= ϕ can be true even when y does
not occur freely in ϕ.

Hint. Take ϕ = ∀x0(x1
.
= x1), y = x0, x = x1.

9.3 Summary

We have introduced the language of predicate logic in a way that follows closely
the related development for propositional logic, but with the major difference
that we now have two ingredients: terms and formulas. The formulas that do
not contain any terms were now recognized as propositional formulas. Since we
have introduced terms, we also needed to introduce a machinery to manipulate
them: substitution. Predicate logic becomes much more complicated than
propositional logic precisely because of substitution, but it has also many more
applications. The most important thing to remember for the rest of the course
is the knowledge of what exactly the sets Term and Form contain and how
this depend on an arity type. It is also very important to know precisely how
substitution is done and to know what it means for a variable to occur freely
in a formula.

c© 2017 Jesper Carlström 71

The language of predicate logic

72 c© 2017 Jesper Carlström

Chapter 10

Semantics

In this chapter we will, to a large extent, repeat what we have already done for
propositional logic. However, we need to make some modifications to adjust to
the more advanced situation we now have.

10.1 Interpretation of terms and formulas

To define an interpretation A it is not sufficient to choose propositions as
interpretations for P1, P2, . . ., since these symbols are no necessarilly nullary
anymore, as they could now take arguments. Therefore, they shall be instead
interpreted as relations. For instance, P1 can be interpreted as ≤ if it takes
two arguments. An interpretation A consists, more precisely, of the following:

• A set |A| which is called domain (of individuals); we think about it as
the set of the elements about which the language speaks.

• For every relation symbol Pj , an rj-ary relation PAj on |A|. This means

that PAj (b1, . . . , brj) is a proposition, which is true or false for every choice
of b1, . . . , brj ∈ |A|.

• For every function symbol fj , an aj-ary function fAj on |A|. This means

that fAj (b1, . . . , baj
) is an element in |A| for every choice of b1, . . . , baj

∈
|A|.

• A valuation of the variables, which is a function v from the variables to

Notice that the set |A| will
always be non-empty, since
we require the existence of a
function from the non-empty
set of variables into |A|.

We will return to the
usefulness of valuations below.
For now you do not have to
care very much about them

|A|.

10.1.1 Exercise. What special cases do we get when we interpret a nullary
relation symbol or function symbol?

10.1.2 Example. Assume that we have a language of arity type 〈; 0, 1, 2, 2〉
and we would like to interpret it involving natural numbers. We let

|A| def
= N (10.1.3)

fA1
def
= 0 (10.1.4)

fA2
def
= s (10.1.5)

fA3
def
= + (10.1.6)

fA4
def
= · (10.1.7)

and define also a valuation of the variables. Often we wait to decide the valua-
tion until some concrete problem is solved. The reason for this is that most of
the things we do do not depend on the valuation, so it is often not necessary
to specify it.

c© 2017 Jesper Carlström 73

Semantics

The above definition of an interpretation is formulated more simply by
saying that we interpret in the structure:

〈N; ; 0, s,+, ·〉 . (10.1.8)

A structure is therefore nothing more than a set together with relations and
functions. The advantage of the notation (10.1.8) is that one can define the
whole interpretation in one row. The ordering in (10.1.8) is relevant to be able
to know what is the interpretation of symbols.

Notice that in the notation for
structure, there is a semicolon
more than in the notation for
arity type. To the left of the
first one writes the name of
the domain. There is nothing
corresponding to this in arity
types. To the right of this one
writes the relations one uses
in the interpretation. Finally,
in the last space one writes
the functions.

We assume in the sequel that we have a given arity type and a given in-
terpretation A of the language. Let us look closer at what we shall use our
valuations for.

Already in high school mathematics one states things as, for example, that
2x = x2 does not hold for all values of x. Thus, one speaks of giving values to
the variables. This is what the valuation does.

10.1.9 Example. An example of a valuation where the variables are the nat-
ural numbers is given by:

v(xi) = i ,

i.e. x0 is given the value 0, while x1 is given the value 1, and so on.

10.1.10 Example. A valuation can also be given by an infinite list. Let, for
example, v be defined by

x0 7→ 7

x1 7→ 3

x2 7→ 7

x3 7→ 3

x4 7→ 7

...

When we have a valuation of the variables we can recursively extend it to
Term precisely as we did with Form in propositional logic. In this way, all
terms are given a value in the domain.

10.1.11 Definition. LetI

[[xi]]
def
= v(xi)

[[fi(t1, . . . , tai)]]
def
= fAi ([[t1]], . . . , [[tai

]]) .

Note that this definition also depends on the interpretation A, so it becomes
necessary to write [[ϕ]]

A
when we need to specify that it is the interpretation

A we have in mind.

10.1.12 Example. Interpret the language of arity type 〈; 0, 1, 2, 2〉 in the struc-
ture

〈N; ; 0, s,+, ·〉 (10.1.13)

but leave the valuation of the variables unspecified. Compute the expression
[[f3(f4(f2(f1), x0), x1)]] as far as possible.

Solution.

[[f3(f4(f2(f1), x0), x1)]]
def
= fA3 (fA4 (fA2 (fA1), [[x0]]), [[x1]])
def
= s(0) · v(x0) + v(x1)

= v(x0) + v(x1).

74 c© 2017 Jesper Carlström

10.1 Interpretation of terms and formulas

The answer is thus a function of the valuation of x0 and x1. If we let
x = v(x0) and y = v(x1) we can answer that [[f2(f3(f2(f1), x0), x1)]] = x + y.
But we cannot calculate any further if we do not know the valuation of x0 and
x1, that is to say, if we do not know more about the valuation of the variables.

We shall also give values to formulas, but to do this we need a technical
detail. We will have to say things such as “the same interpretation as A, but
with x3 given the value 7 instead”. This interpretation we denote by A[x3 7→ 7].
The definition looks like this:

10.1.14 Definition (reevaluation). Let A be an interpretation whose valua-I
tion we denote by v. We then let

v[xi 7→ a](xj)
def
=

{
a if i = j

v(xj) otherwise

and A[xi 7→ a] is the interpretation A but with the valuation v replaced by
v[xi 7→ a].

10.1.15 Example. If v is like in Example 10.1.10, then v[x1 7→ 0] is the same
except in the case x1:

x0 7→ 7

x1 7→ 0

x2 7→ 7

x3 7→ 3

x4 7→ 7

...

10.1.16 Example. If a ∈ |A|, then
We do not have to know
anything about v to compute
this.

[[x0]]
A[x0 7→a]

= v[x0 7→ a](x0) = a.

10.1.17 Exercise. Simplify

a) A[xi 7→ a][xi 7→ b]

b) A[xi 7→ [[xi]]
A

]

c) A[xi 7→ [[xi]]
A[xi 7→b]

]

10.1.18 Exercise. Show that if i 6= j, then

A[xi 7→ a][xj 7→ b] = A[xj 7→ b][xi 7→ a]

, but that it is not necessarily the case if i = j. Show that in this case both
sides of the equation can be simplified.

We can now define the truth values on Form:

10.1.19 Definition. Let A be an interpretation. The truth values of formulasI

c© 2017 Jesper Carlström 75

Semantics

are given by:

[[t1
.
= t2]]

def
=

{
1 if [[t1]] = [[t2]] is true,

0 otherwise.

[[Pi(t1, . . . , tri)]]
def
=

{
1 if PAi ([[t1]], . . . , [[tri]]) is true,

0 otherwise.

[[>]]
def
= 1

[[⊥]]
def
= 0

[[ϕ ∧ ψ]]
def
= [[ϕ]] ∧ [[ψ]]

[[ϕ ∨ ψ]]
def
= [[ϕ]] ∨ [[ψ]]

[[ϕ→ ψ]]
def
= [[ϕ]]→ [[ψ]]

[[∀xiϕ]]
def
=

{
1 if [[ϕ]]

A[xi 7→a]
= 1 is true for all a ∈ |A|,

0 otherwise.

[[∃xiϕ]]
def
=

{
1 if [[ϕ]]

A[xi 7→a]
= 1 is true for some a ∈ |A|,

0 otherwise.

10.1.20 Example. Compute [[∀x0(x0
.
= x0)]].

Solution. According to the definition of [[∀xiϕ]] we shall compute [[x0
.
= x0]]

[x0 7→a]

When the interpretation A is
implicit, we write [xi 7→ a]
instead of A[xi 7→ a],
[xi 7→ a][xj 7→ b] instead of
A[xi 7→ a][xj 7→ b], etc.

for all a, and investigate if the answer is always 1. According to the definition

of [[x0
.
= x0]]

[x0 7→a]
, this is 1 if [[x0]]

[x0 7→a]
= [[x0]]

[x0 7→a]
is true. But it is, since

= is reflexive. Thus, the answer is 1.

10.1.21 Exercise. Compute [[∀x0(x0
.
= x1)]] and [[∃x0(x0

.
= x1)]] as far as

possible.

10.1.22 Exercise (from the exam on 2004-08-17). Decide if ∃x(P1(x)∨P2(x))→
(∃xP1(x) ∨ ∃xP2(x)) is true in all interpretations.

If [[ϕ]]
A

= 1 one says that ϕ is true in A and writes A � ϕ. If ϕ does not

contain any free variables, [[ϕ]]
A

does not depend at all on the valuation, which
explains that it is often unnecesasary to specify which valuation we are using.
This fact follows from the following two theorems:

10.1.23 Theorem. If x does not occur in t, then [[t]]
[x 7→a]

= [[t]].

Proof idea. Intuitively, as soon as one understands the symbolisms, this is an
obvious consequence of what reevaluation means. What it does is to change the
values of the variables. What the theorem says is just that if the variable whose

We use the symbols x, y, z, . . .
as metavariables for object
variables. This means that
these symbols stand for
arbitrary variables
x0, x1, x2, We can never
have x0 = x1, since these two
symbols are different in Term,
though we can have x = y,
which means that x and y
symbolize the same variable,
for instance x0.

value is changed does not occur in t, the value of t will not be changed.

Proof. The proof is done by induction on the structure of terms, since we will
show that something is true for all terms. The term t may either be of the form

The formal proof shows how
the machinery we have built
works.

xi or of the form fi(t1, . . . , tai). In the first case, we know, since x does not occur

in t, that x 6= xi. Therefore [[t]]
[x 7→a]

= [[xi]]
[x 7→a]

= [[xi]]. If t = fi(t1, . . . , tai
)

holds, since x does not occur in t, we know that x does not occur in any of

the arguments. The inductive hypothesis gives us [[tj]]
[x7→a]

= [[tj]], so it follows
that

[[t]]
[x 7→a]

= [[fi(t1, . . . , tai)]]
[x 7→a]

(10.1.24)

= fAi ([[t1]]
[x7→a]

, . . . , [[tai
]]
[x 7→a]

) (10.1.25)

= fAi ([[t1]], . . . , [[tai]]) (10.1.26)

= [[fi(t1, . . . , tai)]] = [[t]] . (10.1.27)

76 c© 2017 Jesper Carlström

10.2 Models and countermodels

10.1.28 Theorem. If x does not occur freely in ϕ then [[ϕ]]
[x 7→a]

= [[ϕ]].

Proof idea. Here we can also understand the theorem in an informal way. Since
reevaluation is defined in such a way that it only changes the values of the free
variables, it is clear that if x does not occur freely in ϕ, the value of ϕ will not
change if we change the value of x.

Proof. Also in this case we use an inductive proof, but there are many more

The task of the formal proof
is, in this case, to exhibit the
machinery, but also to
actually check that everything
works. It is a quite complex
definition the one we have
made, and it is not entirely
obvious to see that it does
exactly what we want to. The
proof consists of checking that
the definition works.

cases since formulas can be constructed in many ways. We will also strengthen
the theorem somewhat, to get a stronger inductive hypothesis: we will show

that if x does not occur freely in ϕ, then [[ϕ]]
A[x 7→a]

= [[ϕ]]
A

for all interpre-
tations A. This strengthening does not result in any differences in the use of
the theorem, but rather changes its logical form. It has the advantage that
we get as inductive hypothesis that the theorem holds for subformulas in all
interpretations.

If ϕ is of the form t1
.
= t2 or Pi(t1, . . . , tri), the result follows from the

previous theorem. In the other cases, except the quantifiers, the result follows
quite directly after using the inductive hypothesis. We show here the case of
∀-formulas (∃-formulas are handled similarly).

We shall show that if x does not occur freely in ∀xiψ, then

[[∀xiψ]]
[x7→a]

= [[∀xiψ]] . (10.1.29)

That x does not occur freely in ∀xiψ means that either x = xi or that x does not
occur freely in ψ (see Definition 9.2.14). We split the proof into these two cases.
It is sufficient to check that each of the sides in (10.1.29) are simultaneously 1

; that is, that [[ψ]]
[x 7→a][xi 7→b]

= 1 for all b ∈ |A| if and only if [[ψ]]
[xi 7→b]

= 1 for
all b ∈ |A|.

If x = xi then [[ψ]]
[x 7→a][xi 7→b]

is simplified to [[ψ]]
[xi 7→b]

(Exercise 10.1.17 a),
from which the result follows immmediately. If x does not occur freely in ψ

we have, after using the inductive hypothesis on A[xi 7→ b], that [[ψ]]
[xi 7→b]

=

[[ψ]]
[xi 7→b][x 7→a]

, and hence it is enough to prove that

[[ψ]]
[x7→a][xi 7→b]

= [[ψ]]
[xi 7→b][x 7→a]

. (10.1.30)

This is actually not true in general, but we have already handled the case where
x = xi above, so we can now assume that x 6= xi. Then, (10.1.30) follows from
Exercise 10.1.18.

10.1.31 Exercise (from the exam on 2005-01-07). An equivalence relation is
a binary relation ∼ which has the following properties for all a, b, c:

a ∼ a (reflexivity)

if a ∼ b, then b ∼ a (symmetry)

if a ∼ b and b ∼ c, then a ∼ c . (transitivity)

Formalize these rules; that is, give three formulas γr, γs, γt which represent
these three rules. Choose a suitable arity type. The formulas should not
contain free variables.

10.2 Models and countermodels

We shall introduce the notion of model also in predicate logic, as well as the
notion of countermodel. A model is an interpretation in which one or more
specified formulas are true, while a countermodel is an interpretation in which
not all of the specified formulas are true.

10.2.1 Definition.I

1. A model of ϕ is an interpretation A in which ϕ is true: [[ϕ]]
A

= 1.

c© 2017 Jesper Carlström 77

Semantics

2. A model of a set Γ of formulas is a model of all formulas in Γ.

3. We say that Γ gives ϕ (Γ � ϕ) if all models of Γ are models of ϕ.

4. We say that γ1, . . . , γn � ϕ if {γ1, . . . , γn} � ϕ.

5. A countermodel of ϕ is an interpretation A in which ϕ is false, i.e., where
[[ϕ]]
A

= 0.

6. A countermodel for a set Γ of formulas is a countermodel for at least one

Note that a countermodel for
a set does not necessarily has
to be a countermodel for
every formula in the set. If an
interpretation is not a model
for the set, it is a
countermodel.

formula in Γ.

Note the special case “� ϕ”. It can be conceived as having an empty list to
the left of �, so that it means the same as ∅ � ϕ, which is to say that all models
of ∅ are models of ϕ. Since every interpretation is a model of ∅ (since it is a
model of every formula in ∅), ∅ � ϕ means that every interpretation is a model
of ϕ. Thus, � ϕ is a way of expressing that ϕ is true in every interpretation.
We then say that ϕ is a tautology, precisely as in propositional logic.

10.2.2 Exercise. Show that ∀xϕ � ϕ.

10.2.3 Exercise. Show that ϕ � ∃xϕ.

10.2.4 Example. Show that 6� (x0
.
= x1).

Proof. We will find a countermodel. The naive argument is: “let x0 and x1

have different values!”. This works, but let us be more precise for the sake of
practice. Choose, then, a structure, say the natural numbers, and let v(xi) = i.
We then get that

[[x0
.
= x1]] = 1 ⇐⇒ [[x0]] = [[x1]] ⇐⇒ 0 = 1

and since the last equation is actually false, we know that [[x0
.
= x1]] = 0. We

have then a countermodel.

10.2.5 Example. Show that if t1, t2, t3 ∈ Term, then

1. � (t1
.
= t1),

2. (t1
.
= t2) � (t2

.
= t1),

3. (t1
.
= t2), (t2

.
= t3) � (t1

.
= t3).

Proof. 1. We will show that in all interpretations we have [[t1
.
= t1]] = 1.

In practice, it almost always
works to write [[ϕ]] instead of
[[ϕ]]A when computing, even if
we consider more than one
interpretation at the same
time. Indeed, when we often
work with an arbitrary
interpretation with a certain
property, one can just assume
that the interpretation in
question has that property
and then compute as usual.
Example 10.2.5 illustrates
this.

According to the definition, we need to show that we have [[t1]] = [[t1]] in
all interpretations, which we have, since = is reflexive.

2. We shall show that if [[t1
.
= t2]] = 1 then we also have [[t2

.
= t1]] = 1.

Assume therefore that [[t1
.
= t2]] = 1, which means that [[t1]] = [[t2]] is

true. Since = is symmetric, it follows that [[t2]] = [[t1]] is true. Hence,
[[t2

.
= t1]] = 1.

3. Similarly to the previous item, but use now that = is transitive.

10.2.6 Example. Show that there is ϕ ∈ Form such that ϕ 6� ∀x0ϕ.

Proof. Take for instance ϕ = (x0
.
= x1). Then [[ϕ]]

A
= 1 if [[x0]]

A
= [[x1]]

A
.

Let us therefore consider an interpretation A where this is the case. We have

[[∀x0ϕ]] = 1 only if [[ϕ]]
A[x0 7→a]

= 1 for all a. But [[ϕ]]
A[x0 7→a]

= 1 precisely when

a = [[x1]]
A

, which is not true for all a in structures with more than one element.
To sum up: if we consider a structure with at least two elements and give

x0 and x1 the same value, we have [[ϕ]] = 1, but [[∀x0ϕ]] = 0.

10.2.7 Exercise. Show that it is not necessarily true that ∀x0(ϕ∨ψ) � ∀x0ϕ∨
ψ. In other words, that it is false for some choice of ϕ,ψ ∈ Form.

78 c© 2017 Jesper Carlström

10.3 Bounded quantifiers

Hint. Let ψ = ¬ϕ and use the same idea as in the previous example.

10.2.8 Exercise. Show that it is not necessarily true that ∀x0ϕ∨ψ � ∀x0(ϕ∨
ψ).

Hint. Let ϕ = ⊥. Then use Example 10.2.6.

10.2.9 Exercise (from the exam on 2005-01-07). Interpret the formula ∀x0∃x1(f1(x1, x1)
.
=

x0) in the following structures and find its truth value in each one of them:

a) 〈R; ; +, 0〉

b) 〈R; ; ·, 1〉

c) 〈C; ; ·, 1〉

Here R are the real numbers and C are the complex numbers.

10.2.10 Exercise (from the exam on 2005-08-23). Interpret the formula ∀x0∃x1P1(x0, x1)
in the following structures and find its truth value in each one of them:

a) 〈(0, 1);<; 〉

b) 〈[0, 1];<; 〉

Here (0, 1) is the open (real) interval between 0 and 1, while [0, 1] is the closed
interval.

10.2.11 Exercise (from the exam on 2004-08-17). Interpret the formula ∀x0∀x1(P1(x0, x1)→
P1(f1(x0, f2), f1(x1, f2))) in the following structures and find its truth value in
each one of them:

a) 〈R;≤; +, 1〉

b) 〈R;≤; ·,−1〉

c) 〈R; 6=; ·, 0〉

Here R is the real numbers.

10.2.12 Exercise (from the exam on 2002-10-21). Decide for each of the
following formulas whether it is a tautology or not. A complete explanation is
required.

a) ∃x2∀x1(P1(x1)↔ P1(x2))

b) ∀x1∃x2(P1(x1)↔ P1(x2))

10.2.13 Exercise (from the exam on 2003-10-20). Interpret the formula ∀x0∀x1(f1(x0)
.
=

f1(x1)→ x0
.
= x1) in the following structures and find its truth value in each

one of them. Motivate!

a) 〈N;≤; s, 0〉, where s is the successor operation.

b) 〈R;≤; sin, 0〉

10.3 Bounded quantifiers

In some occasions we would like to say “all” without talking about all elements,
but rather all those with a given property. In the same way, we would like to
say “some” in the sense of some element with a given property. For example:
“Not all prime numbers are odd, some prime number is even”. If the domain
consists of the natural numbers and P1 is interpreted as “is prime”, while P2 is
interpreted as “is odd” and P3 as “is even”, we can express “all prime numbers
are odd” as:

∀x(P1(x)→ P2(x)) (10.3.1)

c© 2017 Jesper Carlström 79

Semantics

and “some prime numbers are odd” as

∃x(P1(x) ∧ P2(x)) . (10.3.2)

In the same way we express “some prime number is even” as

∃x(P1(x) ∧ P3(x)) . (10.3.3)

More generally formulated: we express “all those with the property PA1 have
the property PA2 ” as (10.3.1) and “some with the property PA1 has the property
PA2 ” as (10.3.2).

10.3.4 Exercise (from the exam on 2005-08-23). Formalize the proposition
below; that is to say, give three formulas γa, γb, γc that are interpreted as the
three propositions (a, b, c) in the structure 〈I;C,E, S; 〉, where I is the set of
all curves in a plane, C(x) is the predicate that aserts that x is a circle, E(x)
is the predicate that asserts that x is an ellipse, and S(x, y) is the relation that
asserts that x and y intersect. The formulas should not contain free variables.

a) All circles are ellipses.

b) Some ellipses are circles.

c) Every ellipse intersects some circle.

10.3.5 Exercise (from the exam on 2004-10-18). In this exercise we use the
arity type 〈; 2, 2, 0〉.

a) Formalize the following propositions:

No odd number is even

More precisely: Give a formula ϕ such that its interpretation in 〈N; ; +, ·, 1〉
is “for all odd x one has x is not even”.

To be odd is defined here as being equal to 2n+1 for some natural number
n.

To be even is defined here as being equal to 2n for some natural number
n.

b) Interpret the formula ϕ (from the previous item) in 〈R; ; +, ·, 1〉 and give
its truth value in this structure.

10.4 Summary

We have defined interpretation in predicate logic. An interpretation is given by
a structure together with a valuation for the variables. Given an interpretation,
every term gets a value, which is an element in the domain of the interpretation,
and every formula gets a truth value, which is an element in {0, 1}, decided by
the interpretation. If a formula has the truth value 1, one says that it is true
in the interpretation, otherwise one says that it is false in the interpretation.
One also says that a formula is interpreted as a proposition, which one gets by
substituting ∧ with and, ∨ with or, ∀ with for all, and so on. The linguistic
ambiguities that can arise with such an interpretation are compensated by the
fact that the truth value of a formula is precisely defined: for instance, it is
clear that or has to be interpreted as inclusive from the fact that its truth value
is computed in this way. In this chapter we have also introduced reevaluations.
The most important thing to bring with you for the rest of this course is the
ability to compute truth values of formulas in different interpretations and ma-
nipulate reevaluations, since these will be extensively used in many examples,
exercises and proofs in what follows.

80 c© 2017 Jesper Carlström

Chapter 11

Simplifications

11.1 Algebraic simplifications

In the same way as we do in propositional logic, we let ≈ mean that two
formulas have always the same truth value.

11.1.1 Definition (logical equivalence). By ϕ ≈ ψ (that ϕ and ψ are logicallyI
equivalent) we mean that [[ϕ]]

A
= [[ψ]]

A
in all interpretations A.

Since the truth value of formulas which are constructed by propositional
operations has been defined precisely as in propositional logic, we can compute
using Boolean algebra in predicate logic as well. However, we need new rules
to compute with ∀ and ∃. They are collected in Figure 11.1, and we will now
check that they are correct. Some of them are verified in the examples, and
others are left for you as exercises.

∀x(ϕ ∧ ψ) ≈ ∀xϕ ∧ ∀xψ
∃x(ϕ ∨ ψ) ≈ ∃xϕ ∨ ∃xψ

¬∀xϕ ≈ ∃x¬ϕ
¬∃xϕ ≈ ∀x¬ϕ

∀xϕ ≈ ϕ if x does not occur freely in ϕ

∃xϕ ≈ ϕ if x does not occur freely in ϕ

∀x(ϕ ∨ ψ) ≈ ∀xϕ ∨ ψ if x does not occur freely in ψ

∃x(ϕ ∧ ψ) ≈ ∃xϕ ∧ ψ if x does not occur freely in ψ

Figure 11.1: Some useful computation rules in algebraic predicate logic

11.1.2 Example. Show that ∀x¬ϕ ≈ ¬∃xϕ.

Proof. Assume first that [[∀x¬ϕ]] = 1. This means that [[¬ϕ]]
[x 7→a]

= 1 for all

a, which is the same as [[ϕ]]
[x 7→a]

= 0 for all a. But this says that [[∃xϕ]] = 0,
and hence [[¬∃xϕ]] = ¬[[∃xϕ]] = ¬0 = 1.

The argument can also be done backwards, proving that if [[¬∃xϕ]] = 1,
then [[∀x¬ϕ]] = 1.

11.1.3 Exercise. Show that ∃x¬ϕ ≈ ¬∀xϕ.

c© 2017 Jesper Carlström 81

Simplifications

11.1.4 Example. ∀x(ϕ ∧ ψ) ≈ ∀xϕ ∧ ∀xψ.

Solution. Assume first that [[∀x(ϕ∧ψ)]] = 1. This means that [[ϕ∧ψ]]
[x 7→a]

= 1

for all a in the domain. It follows that [[ϕ]]
[x7→a]

= 1 for all a in the domain,
and similarly for ψ. Thus, it follows that [[∀xϕ]] = 1 and [[∀xψ]] = 1. Therefore,
we have [[∀xϕ ∧ ∀xψ]] = [[∀xϕ]] ∧ [[∀xψ]] = 1 ∧ 1 = 1.

If, on the other hand, [[∀xϕ ∧ ∀xψ]] = 1 then we can, by following the
previous argument backwards, assert that [[∀x(ϕ ∧ ψ)]] = 1.

11.1.5 Example. ∃x(ϕ ∨ ψ) ≈ ∃xϕ ∨ ∃xψ.

Solution. Assume that [[∃x(ϕ ∨ ψ)]] = 1. This means that [[ϕ ∨ ψ]]
[x 7→a]

= 1

for some a. Then we have either [[ϕ]]
[x7→a]

= 1 or [[ψ]]
[x7→a]

= 1. We consider
the first case (the other one is completely analogous). We then have that
[[∃xϕ]] = 1, and it follows that [[∃xϕ ∨ ∃xψ]] = 1 ∨ [[∃xψ]] = 1.

By following the argument backwards we can show the other direction of
the equivalence.

11.1.6 Example. Show that if x does not occur free in ϕ, then we have
∀xϕ ≈ ϕ.

Solution. That ∀xϕ � ϕ holds follows from Exercise 10.2.2. To show the con-
verse we assume that [[ϕ]] = 1. We shall prove that [[∀xϕ]] = 1, which by

definition means we just need to check that [[ϕ]]
[x 7→a]

= 1 for all a in the do-
main. But according to Theorem 10.1.28 we have, since x does not occur free

in ϕ, that [[ϕ]]
[x7→a]

= [[ϕ]] = 1.

11.1.7 Exercise. Show that if x does not occur free in ϕ then we have ∃xϕ ≈
ϕ.

There is a complication which makes algebraic simplifications in predicate
logic not as slick as in propositional logic. If, for instance, ϕ is true, it would be
tempting to substitute ∀x0ϕ with ∀x0>, but this is sometimes not correct: it
can change the truth value. If, for example, ϕ = ¬(x0

.
= x1), then ∀x0ϕ is false

One cannot always replace a
formula with another that has
the same truth value. (even when ϕ is true) while ∀x0> is true. To replace a formula by another, it is

not sufficient that they have the same truth value in the interpretation we are
working with, but the truth values need to be the same in all interpretations.
Theorem 11.1.8 shows that it is sufficient.

11.1.8 Theorem. If ϕ ≈ ψ, then ϕ can be replaced with ψ in any formula
without changing its truth value.

Proof. Consider the definition of truth value (10.1.19). It is given by recursion,
so that the truth value is given by the truth value of the subformulas. Therefore,
if one replaces one subformula with another of the same truth value, the result
will not be affected. The only difficulty appears with the case of quantifiers,
where we do not use the same valuation for subformulas but use reevaluations
instead. Since we assume that ϕ and ψ have te same value in every valuation,
they are guaranteed to have the same value even in the reevaluations. Hence,
the result follows.

We now continue giving examples of logically equivalent formulas. The
following proof illustrates how one sometimes does not have enough hypothesis
to use the previous theorem.

In the case [[ψ]] = 0 it would
have been tempting to replace
∀x(ϕ ∨ ψ) with ∀x(ϕ ∨ ⊥),
but as we have shown above,
such replacements sometimes
give wrong results. We must
use that x does not occur
freely in ψ.

11.1.9 Example. ∀x(ϕ∨ψ) ≈ ∀xϕ∨ψ if x does not occur freely in ψ (compare
examples 10.2.7, 10.2.8).

Solution. We consider two cases: when [[ψ]] = 0, respectively [[ψ]] = 1.
In the first case we have [[∀xϕ ∨ ψ]] = [[∀xϕ]]. We shall prove that [[∀x(ϕ ∨

ψ)]] = [[∀xϕ]]. Assume therefore that [[∀x(ϕ ∨ ψ)]] = 1. This means that

[[ϕ ∨ ψ]]
[x 7→a]

= 1 for all a. Hence we have, for every a, either [[ϕ]]
[x7→a]

= 1 or

82 c© 2017 Jesper Carlström

11.2 Simplification by substitution

[[ψ]]
[x 7→a]

= 1; but the latter is impossible, since [[ψ]]
[x 7→a]

= [[ψ]] according to
Theorem 10.1.28 and the fact that [[ψ]] = 0 by assumption. We have, hence,

[[ϕ]]
[x 7→a]

= 1 for every a, and thus, [[∀xϕ]] = 1. Assume, on the other hand that

[[∀xϕ]] = 1. This means that [[ϕ]]
[x7→a]

= 1 for all a. Thus, [[ϕ ∨ ψ]]
[x 7→a]

= 1 for
all a, which gives [[∀x(ϕ ∨ ψ)]] = 1.

In the case when [[ψ]] = 1 we have to show that both sides have truth value
1. This follows by an argument which ressembles the one above but is simpler.
You can probably do it yourself, if you have understood the proof so far.

11.1.10 Exercise. Show that ∃x(ϕ ∧ ψ) ≈ ∃xϕ ∧ ψ if x does not occur freely
in ψ.

11.1.11 Exercise (from the exam on 2004-01-08). Show that ∀x(ϕ ∨ ψ) ≈
∀xϕ ∨ ∀xψ is not true in general. Show also that it does hold if x does not

Let this exercise be a warning
for sloppy simplifications!

occur freely in ψ.

11.1.12 Exercise (from the exam on 2004-08-17). Give a (preferably natural)
example from mathematics where the difference between ∀x0∃x1ϕ and ∃x1∀x0ϕ
is exhibited.

11.1.13 Exercise. Decide whether ∃x0(P1(x0) → ∀x0P1(x0)) is true in all
interpretations.

11.1.14 Exercise (from the exam on 2004-10-18). Decide whether (∀x0P1(x0)→
∀x0P2(x0))→∀x0(P1(x0)→ P2(x0)) is true in all interpretations.

11.1.15 Exercise. Show by using algebra that, for all formulas ϕ,ψ, it is true
in general that

a) ¬∀x(ϕ→ ψ) ≈ ∃x(ϕ ∧ ¬ψ)

Here one sees some of the
duality between ∧ and →
described by the Galois
connection (2.2.3).b) ¬∃x(ϕ ∧ ψ) ≈ ∀x(ϕ→¬ψ)

11.2 Simplification by substitution

It is important to have a complete understanding of how the interpretation of
This is used in the proof of
the soundness theorem
(Chapter 13).a term or a formula is affected by substitution. The following theorem clarifies

the situation in the case of terms. It says that, through substitution, the value
is changed in the same way as if we replaced the value of the variable by the
value of the inserted term.

11.2.1 Theorem. [[s[t/xj]]] = [[s]]
[xj 7→[[t]]]

Proof. As usual, we give a proof by induction. If s = xi, we have

[[s[t/xj]]] = [[xi[t/xj]]] (11.2.2)

=

{
[[t]] if j = i

[[xi]] otherwise
(11.2.3)

= [[xi]]
[xj 7→[[t]]]

(11.2.4)

= [[s]]
[xj 7→[[t]]]

. (11.2.5)

If s = fi(t1, . . . , tai), we have

[[s[t/xj]]] = [[fi(t1, . . . , tai
)[t/xj]]] (11.2.6)

= [[fi(t1[t/xj], . . . , tai
[t/xj])]] (11.2.7)

= fAi ([[t1[t/xj]]], . . . , [[tai [t/xj]]]) (11.2.8)

= fAi ([[t1]]
[xj 7→[[t]]]

, . . . , [[tai]]
[xj 7→[[t]]]

) (11.2.9)

= [[fi(t1, . . . , tai)]]
[xj 7→[[t]]]

(11.2.10)

= [[s]]
[xj 7→[[t]]]

. (11.2.11)

c© 2017 Jesper Carlström 83

Simplifications

It would have been good to have a similar theorem for the case when the
term s is replaced by a formula ϕ. Unfortunately, we do not have such a theorem
in general, but we have to add one more hypothesis concerning the substitution,
namely, that t is free for x in ϕ. This notion requires some motivation.

Consider, for example, the formula ∀x0∃x1P1(x0, x1), where we let the do-
main be the real numbers and interpret P1 as the relation <. It says that for
every real number there is a greater real number. Since x0 is interpreted as a
real number, then ∃x1P1(x0, x1) is true in the interpretation, no matter which
value [[x0]] has. But any term t can be interpreted as a real number, so one
might think that

(∃x1P1(x0, x1))[t/x0] (11.2.12)

should always be true. However, it is not true if t = x1.

11.2.13 Exercise. Simplify (11.2.12) and compute its truth value when t = x1.

Therefore, we cannot expect a theorem saying that

[[ϕ[t/xj]]] = [[ϕ]]
[xj 7→[[t]]]

(11.2.14)

holds in general, since there are exceptions.

11.2.15 Exercise. Give examples of ϕ, t and j such that (11.2.14) is false in
the interpretation we have used in the previous exercise and example.

You can compare the above with the claim that

∫ 1

0

xy dx = y/2 (11.2.16)

holds for all y. When one says such a thing, one does not think that one could
let x be y and conclude that

∫ 1

0

x2 dx = x/2 . (11.2.17)

This is however often done by high school students, and it is not so strange:
no one has told them that one has to be careful when doing substitutions, and
the values will only be reasonable if the inserted term is free for the variable
one inserted it for, which means that no variable in the term is bound by any
quantifier when doing the substitution. In ordinary mathematics, we avoid
completely substitution of terms which are not free for the variables we sub-
stitute, but we usually forget to teach that this is the case. In logic we specify
instead which substitutions give sensible results by defining free for formally.
We make it simpler by first defining bound for. The idea behind the definition
is that a term t is bound by a variable x in a formula if the substitution [t/x]
leads to some variable in t being bound by a quantifier. We state the definition
by recursion.

84 c© 2017 Jesper Carlström

11.2 Simplification by substitution

11.2.18 Definition. t is bound for xi in ...I

... (t1
.
= t2)

def
= false

... Pi(t1, . . . , tri)
def
= false

... > def
= false

... ⊥ def
= false

... ϕ ∧ ψ def
= t is bound for xi in at least one of ϕ,ψ

... ϕ ∨ ψ def
= t is bound for xi in at least one of ϕ,ψ

... ϕ→ ψ
def
= t is bound for xi in at least one of ϕ,ψ

... ∀xjϕ
def
= • i 6= j and

• xi occurs freely in ϕ and

• xj occurs in t, or t bound for xi in ϕ

... ∃xjϕ
def
= • i 6= j and

• xi occurs freely in ϕ and

• xj occurs in t, or t bound for xi in ϕ

11.2.19 Definition. t is free for xi in ϕ if t is not bound for xi in ϕ.I
Did you understand the
difference between free in and
free for?

11.2.20 Exercise.

a) Show that x1 is free for x0 in ∃x0P1(x0, x1).

b) Show that x0 is bound for x1 in the same formula.

c) Is x0 free for x1 in ∀x0P1(x0)?

11.2.21 Exercise (from the exam on 2003-01-09). In which of the substi-
tutions in Exercise 9.2.19 b are the inserted terms free for the variables one
substitutes?

11.2.22 Exercise. Show that x is free for x in ϕ.

11.2.23 Exercise. Show that if t is bound for x in ϕ, then some of the variables
in t are quantified in ϕ.

11.2.24 Exercise. Show that if none of the variables in t are quantified in ϕ,
then t is free for x in ϕ.

This gives in many cases an
efficient way to see if we have
the free for -property.

The condition in the following theorem is the reason why the notion free
for is so important. The theorem says that under this condition, substitution
works the way we would like regarding the truth values.

11.2.25 Theorem. If t is free for x in ϕ then we have [[ϕ[t/x]]] = [[ϕ]]
[x 7→[[t]]]

.

Proof. We give a proof by induction (induction on the structure of Form), and
therefore we go through all different forms that formulas can have.

If ϕ has some of the forms t1
.
= t2, Pi(t1, . . . , tri), > or ⊥, then it is always

true that t is free for x in ϕ according to the definition of free for and bound for.
In this case it is also easy to check that it holds by applying Theorem 11.2.1.

If ϕ is composed by using ∧, ∨ or→, the theorem follows immediately from
the inductive hypothesis.

We will consider the case when ϕ is of the form ∀xjψ. Say that x = xi;
then we will show that

[[(∀xjψ)[t/xi]]] = [[∀xjψ]]
[xi 7→[[t]]]

. (11.2.26)

Note first that if xi does not occur freely in ∀xjψ, then both sides of (11.2.26)
are simplified to [[∀xjψ]], from which the result follows immediately. We there-
fore assume in what follows that xi occurs freely in ∀xjψ; that is, that i 6= j and
xi occurs freely in ψ. The assumption that t is free for xi in ∀xjψ means that
t is not bound for xi, and since i 6= j and xi occurs freely in ψ, the following
must be false:

c© 2017 Jesper Carlström 85

Simplifications

• xj occurs in t, or t is bound for xi in ψ.

We draw the conclusion that

• xj does not occur in t,

• t is free for xi in ψ.

The left hand side of (11.2.26) may now, since i 6= j, be simplified to [[∀xjψ[t/xi]]].

Assume that its value is 1. This means that [[ψ[t/xi]]]
[xj 7→a]

= 1 for all a in the
domain. Because of the inductive hypothesis, we have that

The way of using the
inductive hypothesis has
similarities with the way it is
used in the proof of
Theorem 10.1.28. [[ψ]]

[xj 7→a][xi 7→[[t]][xj 7→a]]
= 1 . (11.2.27)

Since xj does not occur in t, we can simplify this to

[[ψ]]
[xj 7→a][xi 7→[[t]]]

= 1 (11.2.28)

and since i 6= j, we can change the ordering (Exercise 10.1.18):

[[ψ]]
[xi 7→[[t]]][xj 7→a]

= 1 . (11.2.29)

But this means precisely that the right side of (11.2.26) is 1. By following this
reasoning backwards, the other direction of the equivalence is shown.

The case of ∃ formulas is completely analogous.

11.2.30 Example. Show that ϕ[t/x] � ∃xϕ if t is free for x in ϕ.

Solution. Assume that t is free for x in ϕ and that [[ϕ[t/x]]] = 1. We will prove
that [[∃xϕ]] = 1. That [[ϕ[t/x]]] = 1 gives, according to the previous theorem,

that [[ϕ]]
[x 7→[[t]]]

= 1, but then we can take a = [[t]], so we have that [[ϕ]]
[x7→a]

= 1,

11.2.30 and 11.2.31 will be
later used in the proof of the
soundness theorem
(Theorem 13.1.1). which means that [[∃xϕ]] = 1.

11.2.31 Exercise. Show that ∀xϕ � ϕ[t/x] if t is free of x in ϕ.

11.2.32 Exercise. Show that ϕ[t/x] � ∃xϕ does not necessarily hold if t is
bound for x in ϕ.

Hint. Let x = x0, t = x1, ϕ = ∀x1(x0
.
= x1).

11.2.33 Exercise. Show that ∀xϕ � ϕ[t/x] does not necessarily hold if t is
bound for x in ϕ.

11.2.34 Example (cf. Exercise 10.1.17 a). Let fA1 = a and fA2 = b. Simplify
[[t[f2/xi][f1/xi]]].

Solution. We can do this in two ways. On one hand we can use that xi does not
occur in t[f2/xi] (which is shown by an inductive proof) and therefore conclude
that t[f2/xi][f1/xi] = t[f2/xi] (Exercise 9.1.18), so that

This example illustrates the
difference between
substitution and reevaluation:
by the simplification of
t[f2/xi][f1/xi], it is the
second square bracket which
is deleted, while by the
simplification of
A[xi 7→ a][xi 7→ b] it is the
first square bracket the one
that is deleted. The difference
is explained by the fact that
substitution changes terms,
while reevaluation changes
valuations.

[[t[f2/xi][f1/xi]]] = [[t[f2/xi]]] = [[t]]
[xi 7→b]

. (11.2.35)

On the other hand we can compute, with the help of Theorem 11.2.1,

[[t[f2/xi][f1/xi]]] = [[t[f2/xi]]]
[xi 7→a]

= [[t]]
[xi 7→a][xi 7→b]

(11.2.36)

and use Exercise 10.1.17 a to conclude that this is [[t]]
[xi 7→b]

.

11.2.37 Exercise (cf. Exercise 9.2.22). Simplify

a) [[t[y/x][x/y]]]

b) [[ϕ[y/x][x/y]]] if x is free for y in ϕ[y/x] and y is free for x in ϕ.

86 c© 2017 Jesper Carlström

11.3 Summary

11.2.38 Exercise (this is used in the proof of the completeness theorem,
Chapter 14). Show through an inductive proof that if y does not occur in ψ,
then x is free for y in ψ[y/x].

Hint. Here is a sketch of the proof; do the details by yourself. Use
induction on the complexity of the formula. The induction step
is easy in the case when ψ is of one of the forms ∀xjϕ and ∃xjϕ.
Consider one of the cases, the other one is completely analogous.
Assume that ψ = ∀xjϕ and that y does not occur in ψ. We shall
show that x is free for y in ψ[y/x], and the inductive hypothesis
we can use is that x is free for y in ϕ[y/x]. Consider two cases. If
x = xj , then ψ[y/x] = ψ, in which case y does not occur at all,
so we are done. If x 6= xj , then we have that ψ[y/x] = ∀xjϕ[y/x].
But here x is free for y since xj does not occur in x (which is clear
by the definition of “occurs in”), and since x is free for y in ϕ[y/x]
(inductive hypothesis).

11.3 Summary

We have seen how with the help of algebraic simplifications and substitution
simplification we can compute the truth value of formulas in a considerably
easier way. We have also seen that the notion free for is very important in
this context: simplification by substitution is not guaranteed to work when
terms are bound for variables. The most important thing to take with you
for the rest of this course is the skill to simplify the computation of truth
values by algebraic methods, as well as the ability to use theorems 11.2.1 and
11.2.25. This includes understanding what free for means and how we can
decide whether a term is free for a variable in a formula; otherwise, you would
not be able to use the theorems in the right way.

c© 2017 Jesper Carlström 87

Simplifications

88 c© 2017 Jesper Carlström

Chapter 12

Natural deduction

12.1 New rules

Natural deduction in predicate logic is done precisely in the same way as in
propositional logic, but with even more rules. These are collected in Figure 12.1
(page 90). The rule “refl” is called reflexivity and the rule “repl” is called the
replacement rule.

Note the various restrictions appearing in the rules. To be able to use some
of them, it is required that some terms are free for some variables, while for
some other rules it is required that variables do not occur freely in certain
formulas. These restriction are important – disregarding them can lead to
deriving false formulas.

The principles for derivations are otherwise the same as in propositional
natural deduction. This chapter, therefore, does not contain any theory; only
examples and exercises. We just have to modify some definitions.

12.1.1 Definition. By ϕ1, . . . , ϕn ` ϕ we mean that there is a derivation ofI
ϕ, with only the rules of figure 5.1 and 12.1 and without any undischarged
assumptions, except possibly ϕ1, . . . , ϕn. (Compare Definition 5.5.1.)

12.1.2 Example. Show that ` (x0
.
= x0).

Solution. Since x0 is a term, we can use the rule for reflexivity.

refl
x0

.
= x0

12.1.3 Example (symmetry). Show that t
.
= s ` s .

= t.

Solution. If we let ϕ = (x
.
= t), where we choose x so that it does not occur in

t, we get

ϕ[t/x] = (x[t/x]
.
= t[t/x]) = (t

.
= t) , (12.1.4)

ϕ[s/x] = (x[s/x]
.
= t[s/x]) = (s

.
= t) , (12.1.5)

and we can use the rule for replacement.

Note that the formula ϕ does
not occur in the derivation.
In fact, we cannot see which
variable x has been chosen
and therefore we cannot see
which formula ϕ was in the
replacement rule. However,
we can always decide whether
an application of the
replacement rule is correct by
noting how the formulas
above and under the line
differ. With that information,
one can see whether there
exists a formula ϕ which can
be used in the rule, but the
choice is not unique.

refl
t
.
= t t

.
= s

ers
s
.
= t

12.1.6 Exercise (transitivity). Show that u
.
= t, t

.
= s ` u .

= s.

Hint. Find the formula ϕ which could be used together with the
replacement rule.

c© 2017 Jesper Carlström 89

Natural deduction

ϕ, σ denote arbitrary formulas
t, s denote arbitrary terms

x denote an arbitrary variable

When substituting, it is assumed
that t (resp. s) are free for x.

refl
t
.
= t

ϕ[t/x] t
.
= s

ers
ϕ[s/x]

ϕ
∀I

∀xϕ

where x does not
occur freely in some

undischarged
assumption.

∀xϕ
∀E

ϕ[t/x]

ϕ[t/x]
∃I

∃xϕ
∃xϕ

[ϕ]
···
σ
∃E

σ

where x does not
occur freely in σ, nor
in any undischarged
assumption in the

right subtree, except
possibly in ϕ.

Figure 12.1: Additional rules for natural deduction in predicate logic

90 c© 2017 Jesper Carlström

12.1 New rules

12.1.7 Example. Construct a derivation of ∀x0∀x1(x0
.
= x1→ x1

.
= x0).

Solution.
refl

x0
.
= x0 [x0

.
= x1]1

ers
x1

.
= x0

→I1
x0

.
= x1→ x1

.
= x0

∀I
∀x1(x0

.
= x1→ x1

.
= x0)

∀I
∀x0∀x1(x0

.
= x1→ x1

.
= x0)

Here we have an implication introduction which discharges the assumption
x0

.
= x1. This is why the ∀-introductions are allowed.

Do you see that both uses of
∀I would be forbidden if the
assumption x0

.
= x1 was

undischarged? Otherwise,
check the rules in Figure 12.1.12.1.8 Exercise. Construct a derivation of

∀x0∀x1∀x2((x0
.
= x1) ∧ (x1

.
= x2)→ (x0

.
= x2)) .

A special case of ∀E is
∀xϕ

∀E
ϕ

(12.1.9)

which one gets by putting t = x, since ϕ[x/x] = ϕ (Exercise 9.2.21). It is the
most common way to use the rule. It occurs, for example, in the solution of
the following problem.

12.1.10 Example. Show that ∀x¬ϕ ` ¬∃xϕ.

Solution.

[∃xϕ]2

∀x¬ϕ
∀E

¬ϕ [ϕ]1
→E

⊥
∃E1⊥

→I2¬∃xϕ

We must check that the variable restrictions are satisfied. The only rule we
use which has such restrictions is ∃E. It requires, in the above case, that x
does not occur freely in ⊥ (which is not the case), and that x does not occur
freely in some undischarged assumption in the derivation of ⊥, except possibly

On the exam you do not need
to justify why the variable
restrictions are satisfied if you
are not explicitely instructed
to do so. Otherwise, a
derivation is considered to be
wrong if the restrictions are
not satisfied.

in ϕ. In our case, ∀x¬ϕ is the only undischarged assumption, except from ϕ,
and x does not occur freely in it (it occurs bound, however, but that is not a
problem).

In what follows, the fact that the variable restrictions need to be satisfied
will not be explicitly checked, but these checkings must always be done before
one can assert that the derivation is correct.

12.1.11 Example. Show that ¬∃xϕ ` ∀x¬ϕ.

Solution.

¬∃xϕ
[ϕ]1

∃I
∃xϕ

→E
⊥
→I1¬ϕ
∀I

∀x¬ϕ

12.1.12 Example. Show that ∃x¬ϕ ` ¬∀xϕ.

c© 2017 Jesper Carlström 91

Natural deduction

Solution.

∃x¬ϕ
[¬ϕ]1

[∀xϕ]2
∀E

ϕ
→E

⊥
∃E1⊥

→I2¬∀xϕ

12.1.13 Example. Show that ¬∀xϕ ` ∃x¬ϕ.

Solution. Here we must use RAA twice.

¬∀xϕ

[¬∃x¬ϕ]2
[¬ϕ]1

∃I
∃x¬ϕ

→E
⊥

RAA1

ϕ
∀I

∀xϕ
→E

⊥
RAA2∃x¬ϕ

12.1.14 Example. Show that ` ∀x(ϕ ∧ ψ)↔∀xϕ ∧ ∀xψ.

Solution.

[∀x(ϕ ∧ ψ)]1
∀E

ϕ ∧ ψ
∧E

ϕ
∀I

∀xϕ

[∀x(ϕ ∧ ψ)]1
∀E

ϕ ∧ ψ
∧E

ψ
∀I

∀xψ
∧I

∀xϕ ∧ ∀xψ
→I1∀x(ϕ ∧ ψ)→∀xϕ ∧ ∀xψ

[∀xϕ ∧ ∀xψ]2
∧E

∀xϕ
∀E

ϕ

[∀xϕ ∧ ∀xψ]2
∧E

∀xψ
∀E

ψ
∧I

ϕ ∧ ψ
∀I

∀x(ϕ ∧ ψ)
→I2∀xϕ ∧ ∀xψ→∀x(ϕ ∧ ψ)
∧I

∀x(ϕ ∧ ψ)↔∀xϕ ∧ ∀xψ

12.1.15 Example. Show that ` ∃x(ϕ ∨ ψ)↔∃xϕ ∨ ∃xψ.

The examples 12.1.14 and
12.1.15 show how the rules for
∀ and ∃ are used in more
complicated cases. Note that,
in Example 12.1.15, it is
important to use ∃E
sufficiently far down in the
derivation so that the variable
restrictions are satisfied.

You can try to construct a derivation by yourself.

Solution. See Figure 12.2 (page 93).

12.1.16 Example. a) What is wrong with the following derivation?

[∃x0(x0
.
= x1)]1

[x0
.
= x1]2

∃I
∃x1(x1

.
= x1)

∃E2∃x1(x1
.
= x1)

→I1∃x0(x0
.
= x1)→∃x1(x1

.
= x1) .

b) Can one derive ∃x0(x0
.
= x1)→∃x1(x1

.
= x1)?

Solution. a) By ∃I the formula under the line is ∃x1ϕ, where ϕ = (x1
.
= x1).

The formula above the line should be of the form ϕ[t/x1]; that is, t
.
= t for

some term t. But since x0 and x1 are different variables, this is not correct.
b) Sure, for instance:

refl
x1

.
= x1

∃I
∃x1(x1

.
= x1)

→I
∃x0(x0

.
= x1)→∃x1(x1

.
= x1) .

92 c© 2017 Jesper Carlström

12.1 New rules

[∃
x

(ϕ
∨
ψ

)]
3

[ϕ
∨
ψ

]2

[ϕ
]1

∃I
∃x
ϕ

∨
I

∃x
ϕ
∨
∃x
ψ

[ψ
]1

∃I
∃x
ψ

∨
I

∃x
ϕ
∨
∃x
ψ
∨
E

1

∃x
ϕ
∨
∃x
ψ
∃E

2

∃x
ϕ
∨
∃x
ψ

→
I
3

∃x
(ϕ
∨
ψ

)
→
∃x
ϕ
∨
∃x
ψ

[∃
x
ϕ
∨
∃x
ψ

]7

[∃
x
ϕ

]6

[ϕ
]4

∨
I

ϕ
∨
ψ

∃I
∃x

(ϕ
∨
ψ

)
∃E

4

∃x
(ϕ
∨
ψ

)

[∃
x
ψ

]6

[ψ
]5

∨
I

ϕ
∨
ψ

∃I
∃x

(ϕ
∨
ψ

)
∃E

5

∃x
(ϕ
∨
ψ

)
∨
E

6

∃x
(ϕ
∨
ψ

)
→

I
7

∃x
ϕ
∨
∃x
ψ
→
∃x

(ϕ
∨
ψ

)
∧
I

∃x
(ϕ
∨
ψ

)
↔
∃x
ϕ
∨
∃x
ψ

F
ig

u
re

1
2
.2

:
S

o
lu

ti
o
n

o
f

E
x
a
m

p
le

1
2
.1

.1
5
.

c© 2017 Jesper Carlström 93

Natural deduction

Remember that one does not have to discharge anything when introducing
implication.

12.2 Misc. exercises

12.2.1 Exercise. Show that ¬∃xϕ ` ¬∀xϕ.

12.2.2 Exercise. Show that ` ∀xϕ↔ ϕ if x does not occur freely in ϕ.

12.2.3 Exercise. Show that ` ∃xϕ↔ ϕ if x does not occur freely in ϕ.

12.2.4 Exercise. Show that ` ∀x(ϕ∨ψ)↔∀xϕ∨ψ if x does not occur freely
in ψ. Notice in which part of the derivation this assumption is used.

12.2.5 Exercise. Show that ` ∃x(ϕ∧ψ)↔∃xϕ∧ψ if x does not occur freely
in ψ. Notice in which part of the derivation this assumption is used.

12.2.6 Exercise (from the exam on 2005-08-23).

a) Construct a derivation of (∃xϕ→ ψ)→ (∀xϕ→ ψ).

b) Construct a derivation of (∀xϕ→ψ)→ (∃xϕ→ψ) that is correct if x does
not occur freely in ϕ.

c) An attempt to derive (∀xϕ→ψ)→ (∃xϕ→ψ) could be the following tree,
but if x occurs freely in ϕ or ψ, the derivation is not correct. Explain
what the error is and what is wrong. Point out the precise location of
errors!

[∃xϕ]2

[ϕ]1
∀I

∀xϕ [∀xϕ→ ψ]3
→E

ψ
∃E1

ψ
→I2∃xϕ→ ψ

→I3
(∀xϕ→ ψ)→ (∃xϕ→ ψ)

d) Show that, if ψ = (x
.
= x), there is a correct derivation of (∀xϕ→ ψ)→

(∃xϕ→ ψ).

12.2.7 Exercise (from the exam on 2003-01-09). Derive (∃xP1(x)→∀xP2(x))↔
∀x(∃xP1(x)→ P2(x)).

12.2.8 Exercise (from the exam on 2004-08-17). Derive ∀xϕ ∨ ∃x¬ϕ.

Hint. One has to use RAA several times.

12.2.9 Exercise (from the exam on 2004-08-17). Explain why the following
derivation is not correct if x0 occurs freely in ϕ (specify precisely which step
in the derivation is wrong and explain why).

[∀x0∃x1ϕ]2
∀E

∃x1ϕ

[ϕ]1
∀I

∀x0ϕ
∃I

∃x1∀x0ϕ
∃E1∃x1∀x0ϕ
→I2∀x0∃x1ϕ→∃x1∀x0ϕ

12.2.10 Exercise (from the exam on 2005-01-07). Derive ∀x(¬ϕ ∨ ¬ψ) ↔
¬∃x(ϕ ∧ ψ).

12.2.11 Exercise (from the exam on 2004-10-18).

94 c© 2017 Jesper Carlström

12.3 Summary

a) Explain why the following is not a correct derivation if ψ = (x0
.
= x0).

[∃x0(ϕ ∧ ψ)]2

[ϕ ∧ ψ]1
∧E

ϕ
∃I

∃x0ϕ

[ϕ ∧ ψ]1
∧E

ψ
∧I

(∃x0ϕ) ∧ ψ
∃E1

(∃x0ϕ) ∧ ψ
→I2∃x0(ϕ ∧ ψ)→ (∃x0ϕ) ∧ ψ

Specify precisely which step is wrong and explain why!

b) Show that there is a correct derivation of ∃x0(ϕ ∧ ψ)→ (∃x0ϕ) ∧ ψ if
ψ = (x0

.
= x0).

12.2.12 Exercise (from the exam on 2002-08-20). Derive ∃xϕ∨ψ↔∃x(ϕ∨ψ),
where x does not occur freely in ψ.

12.2.13 Exercise (from the exam on 2002-10-21). Derive (∃xP1(x)→∀xP2(x))↔
∀x(P1(x)→∀xP2(x)).

12.2.14 Exercise (from the exam on 2003-08-19). Derive (ψ→∃xϕ)↔∃x(ψ→
ϕ), where x does not occur freely in ψ.

12.2.15 Exercise (from the exam on 2003-10-20). Derive (∃xϕ→ψ)↔∀x(ϕ→
ψ), where x does not occur freely in ψ. Specify in which part of the derivation
these assumptions are used.

12.3 Summary

We have extended the formal system with new rules to cover the new ingredi-
ents in the language. The rules from propositional logic still hold. The most
important thing to remember from here is the ability to construct derivations
by using both the old and the new rules. You should also be able to decide
if yours or someone elses’s derivation is correct, for which you need to know
both the rules and the limitations that there are for the variables. For instance,
one rule (which?) is only allowed to be used when a certain variable does not
occur freely in any undischarged assumption, and another (which?) has a more
complicated set of limitations. Remember also that every rule that contains a
substitution in its formulation requires that the term is free for the variable in
the formula.

c© 2017 Jesper Carlström 95

Natural deduction

96 c© 2017 Jesper Carlström

Chapter 13

Soundness & Review exercises

13.1 Soundness

We have already put a great effort in understanding the semantics and how it
works together with substitution. This makes the work of proving the sound-
ness theorem very simple. We will go ahead as we did for propositional logic.

13.1.1 Theorem (the soundness theorem). Consider a derivation in natural
deduction. Then the conclusion is true in all interpretations where the undis-
charged assumptions are true.

Proof. Remind yourself how the proof of the soundness theorem in proposi-
tional logic (6.1.5, page 45) went through. We will do a proof by induction
according to exactly the same principles. We go through further cases now,
depending on which rule is the last in the derivation D. For the rules which
already were present in Figure 5.1 (page 40), the treatment is exactly as in the
proof of Theorem 6.1.5. We study the rules that were added in Figure 12.1
(page 90).

Case 10: D is of the form
refl

t
.
= t

(13.1.2)

We have [[t
.
= t]] = 1, since [[t]] = [[t]].

Case 11: D is of the form

···
ϕ[t/x]

···
t
.
= s

ers
ϕ[s/x] .

(13.1.3)

By the inductive hypothesis, it follows that [[ϕ[t/x]]] = 1 and [[t
.
= s]] = 1 in all

interpretations where the undischarged assumptions are true. The first means,

according to 11.2.25, that [[ϕ]]
[x 7→[[t]]]

= 1, and the second means that [[t]] = [[s]].
Note that the usage of
Theorem 11.2.25 requires that
t and s are free for x in ϕ.Hence, we conclude that [[ϕ]]

[x 7→[[s]]]
= 1, which gives [[ϕ[s/x]]] = 1.

Case 12: D is of the form

γ1 · · · γn···
ϕ
∀I

∀xϕ

(13.1.4)

where x does not occur freely in any undischarged assumption γi. We will
show that in all interpretations with [[γi]] = 1 for i = 1, . . . , n, we have that

[[∀xϕ]] = 1, which means that [[ϕ]]
[x 7→a]

= 1 for every a in the domain. We can

use the inductive hypothesis: it says that [[ϕ]]
[x 7→a]

= 1 holds if [[γi]]
[x 7→a]

= 1
holds for all i = 1, . . . , n. But since x does not occur freely in γi, we have

[[γi]]
[x7→a]

= [[γi]] = 1 (Theorem 10.1.28).

c© 2017 Jesper Carlström 97

Soundness & Review exercises

Case 13: D is of the form

···
∀xϕ

∀E
ϕ[t/x]

(13.1.5)

By the inductive hypothesis, it follows that ∀xϕ is true in all interpretations
in which the undischarged assumptions are true. Exercise 11.2.31 gives us,Here we use that t is free for

x.
therefore, that ϕ[t/x] is true as well in all such interpretations.

Case 14: D is fo the form

···
ϕ[t/x]

∃I
∃xϕ

(13.1.6)

By the inductive hypothesis, it follows that ϕ[t/x] is true in all interpretations
in which the undischarged assumptions are true. Exercise 11.2.30 gives us,Here we use that t is free for

x.
therefore, that ∃xϕ is true as well in all such interpretations.

Case 15: D is of the form

γ1 · · · γn···
∃xϕ

γn+1 · · · γm [ϕ]
···
σ
∃E

σ

(13.1.7)

where x does not occur freely in γn+1, . . . , γm nor in σ.
Take now an arbitrary interpretation A in which γ1, . . . , γm is true. We will

show that [[σ]]
A

= 1. By the inductive hypothesis it follows that [[∃xϕ]] = 1,

which means that [[ϕ]]
[x 7→a]

= 1 for some a in the domain. Since x does not occur

Note that we use both that x
does not occur freely in
γn+1, . . . , γm and that x does
not occur freely in σ. freely in γn+1, . . . , γm, then, according to Theorem 10.1.28, we have [[γi]]

[x 7→a]
=

1 for i = n + 1, . . . ,m. It follows by the inductive hypothesis, applied to the

right subtree and to the interpretation A[x 7→ a], that [[σ]]
[x 7→a]

= 1. But since

x does not occur freely in σ, we have [[σ]] = [[σ]]
[x 7→a]

= 1.

13.1.8 Example. In the example 12.1.16 we first gave a wrong derivation
of the formula ∃x0(x0

.
= x1)→ ∃x1(x1

.
= x1) and a correct one afterwards,

where a special rule for equality occurs. Now we are able to show that in fact
one must use some of the special rules for equality, since these are the only
rules which distinguish equality from other relations. In fact, it is imposible
to derive ∃x0P1(x0, x1)→ ∃x1P1(x1, x1), as we can realize through the help
of the soundness theorem. Assume, indeed, that we had such a derivation
without undischarged assumptions. This formula would also, according to the
soundness theorem, be true in all interpretations. But if we proceed to interpret
in the structure 〈N;>; 〉, then ∃x0P1(x0, x1) is interpreted as the proposition
saying that there is a natural number greater than v(x1), which is true, while
∃x1P1(x1, x1) is interpreted as the proposition saying that there is a natural
number greater than itself, which is false. Thus, the implication is false.

One can formulate the soundness theorem in the alternative way, also for
predicate logic.

13.1.9 Definition (cf. 6.1.16). If Γ ⊆ Form, then Γ � ϕ means that everyI
model of Γ is a model of ϕ.

13.1.10 Definition (cf. 6.1.17). If Γ ⊆ Form, then Γ ` ϕ means that ϕ canI
be derived without any rules except those in figure 5.1 and 12.1, and without
any undischarged assumptions except possible formulas in Γ.

The special case of the
soundness theorem:
` ϕ ⇒ � ϕ says that only
tautologies can be derived
without undischarged
assumptions.

13.1.11 Theorem (the soundness theorem in an alternative form). Γ ` ϕ ⇒
Γ � ϕ

98 c© 2017 Jesper Carlström

13.1 Soundness

Proof. Assume that Γ ` ϕ; that is to say, there is a derivation of ϕ where the
undischarged assumptions γ1, . . . , γn are all in Γ. All models of Γ are models of
γ1, . . . , γn, and hence it follows from Theorem 13.1.1 that they are also models
of ϕ, which was what we needed to show.

The soundness theorem can also, among other things, be used to show that
we cannot derive any new propositional formulas by use of the rules introduced
in Figure 12.1.

13.1.12 Theorem (conservativity). If Γ ` ϕ, and the formulas in Γ as well as
ϕ are propositional, then there is a derivation that only uses the propositional
rules (Figure 5.1).

Proof. Assume that Γ ` ϕ. The soundness theorem gives us Γ � ϕ. But
it follows that Γ � ϕ holds even propositionally (since the interpretations of
propositional formulas are the same as in propositional logic), and hence, ac-
cording to the completeness theorem for propositional logic 8.2.3, we have that
Γ ` ϕ holds propositionally.

Further definitions from propositional logic can be transferred directly to
predicate logic

13.1.13 Definition. By “Γ is inconsistent”, we mean that Γ ` ⊥. By “Γ isI
consistent”, we mean that Γ 6` ⊥.

13.1.14 Example. Show that {x0
.
= x1, x1

.
= x2, x2

.
= x3, x3

.
= x4} is consis-

tent.

Solution. Assume that {x0
.
= x1, x1

.
= x2, x2

.
= x3, x3

.
= x4} is inconsistent;

that is to say

Conservativity is a very
important notion in
mathematical foundations.
The mathematician David
Hilbert (1862–1943), who was
so important that occupied
more than two columns in the
Swedish National
Encyclopedia, thought that it
should be the foundation of
all justifications of advanced
methods. What matters in
the end, he said, is that
specific theorems about
simple computations were
correct. To make it easier to
reach such results, we could
introduce “ideal elements”
such as infinitely large
numbers or other things to
which mathematicians have
gotten used. Reasoning about
those ideal elements does not
have to be “correct” in any
other sense besides the fact
that we should know that
mathematics with such
notions is conservative over
mathematics without them.
This became the foundation
of what has been called
Hilbert’s program. Hilbert set
as his goal to prove the
conservativity of mathematics
over the simpler “finitary”
mathematics. Unfortunately
mathematicians have not
succeded. Today it is clear
that we cannot complete
Hilbert’s program in the way
Hilbert had in mind, and it is
an open question whether the
program can be modified in
some reasonable way and be
thereafter completed.

x0
.
= x1, x1

.
= x2, x2

.
= x3, x3

.
= x4 ` ⊥ .

Then, according to the soundness theorem, we should have x0
.
= x1, x1

.
=

x2, x2
.
= x3, x3

.
= x4 � ⊥. But with a valuation giving the same value to all

variables we get a model of x0
.
= x1, x1

.
= x2, x2

.
= x3, x3

.
= x4 which is not a

model of ⊥ (no interpretation is), which shows that it is impossible for the set
in question to be inconsistent.

13.1.15 Exercise (from the exam on 2005-08-23, cf. Exercise 12.2.6). Show
that in fact it is impossible to derive (∀xϕ→ψ)→(∃xϕ→ψ), for certain choices
of ϕ and ψ.

Hint. Consider the case ψ = ⊥.

13.1.16 Exercise (from the exam on 2004-08-17, cf. Exercise 12.2.9). Is there
any correct way to derive ∀x0∃x1ϕ→∃x1∀x0ϕ for all formulas ϕ?

13.1.17 Exercise. Show that ϕ ` ∀xϕ is not generally true.

13.1.18 Exercise (from the exam on 2004-10-18). We have that ϕ[y/x] ` ∃xϕ
with the help of a single instance of ∃I if y is free for x in ϕ. Show that
ϕ ` ∃yϕ[y/x] does not hold in general, but only if y is free for x in ϕ.

Hint. One can choose ϕ without quantifiers.

13.1.19 Exercise. Show that {∃x0¬(x0
.
= x1)} ∪ {x0

.
= x1, x1

.
= x2, x2

.
=

x3, . . .} is consistent.

13.1.20 Exercise (from the exam on 2002-08-20). Let

Γ = {∀x1∃x2P1(x1, x2),∃x1∀x2P1(x1, x2)}

and ϕ = ∃x2∀x1P1(x1, x2). Show that ϕ is independent of Γ, which means that
Γ 6` ϕ and Γ 6` ¬ϕ.

c© 2017 Jesper Carlström 99

Soundness & Review exercises

13.1.21 Exercise (from the exam on 2003-10-20). Decide whether or not the
following formula is derivable in natural deduction.

∀x0∃x1¬(x0
.
= x1)

13.1.22 Exercise (from the exam on 2003-10-20). Show that we must use the
assumption that x does not occur freely in ψ to be able to do Exercise 12.2.15.

Hint. Let, for instance, both ϕ and ψ be x0
.
= x1.

13.1.23 Exercise (from the exam on 2004-10-18, cf. Exercise 12.2.11). Is
there, for every pair of formulas ϕ,ψ, a correct derivation of ∃x0(ϕ ∧ ψ)→
(∃x0ϕ) ∧ ψ?

13.1.24 Exercise (from the exam on 2004-01-08). Peano’s axioms for natural
numbers are as follows. The language is assumed to contain a unary function
symbol f1 and a nullary function symbol f2.

Originally, Peano used nine
axioms for the natural
numbers, and they looked
somewhat different. He
considered 1 as the least
natural number, but in the
beginning of the 20th century
it became more usual to
include 0, and after some
influential article in 1923, it
became the dominant
convention, at least within
logic. Many of Peano’s
axioms are not needed in our
presentation, since they can
be derived through the rules
of natural deduction.

A1. ¬∃x0(f1(x0)
.
= f2)

A2. ∀x0∀x1(f1(x0)
.
= f1(x1)→ x0

.
= x1)

A3. ϕ[f2/x0] ∧ ∀x0(ϕ→ ϕ[f1(x0)/x0])→∀x0ϕ

where A3 represents in fact infinitely many axioms, namely, one for every
ϕ ∈ Form.

Show that one cannot derive A1 from A2 and A3; that is, that there is no
derivation of A1 where the undischarged assumptions are of the form A2 or
A3.

13.2 Summary

We extended the proof of the soundness theorem to include the new rules, so
that it is now proved for predicate logic. It turned out that the limitations
on the variables which certain rules have is precisely what we need to apply
the simplification rules for substitution in a way that helped to complete the
proof of the soundness theorem. The most important thing to bring with you
for the rest of the course is the ability to use the soundness theorem to detect
when some ideas for constructing derivations are not fruitful, as well as showing
whether a certain set of formulas is consistent.

13.3 Review exercises

13.3.1 Exercise (from the exam on 2003-01-09). Let ϕ be the formula

∀x2(∀x1P1(x1, x2)→∃x2(f1(x1)
.
= f2(x2, x3))) ∨ ∀x3¬(x1

.
= x3) .

a) Compute FV(ϕ)

b) Perform the substitutions ϕ[f1(x3)/x1], ϕ[x1/x2], ϕ[f2(x1, x3)/x3].

c) Specify, for each of the substitutions above, all of which are of the form
ϕ[t/x], whether t is free for x in ϕ.

13.3.2 Exercise (change of bound variables in ∀).

a) Show that if y does not occur free in ϕ and y is free for x in ϕ, then:

∀xϕ ` ∀yϕ[y/x] . (13.3.3)

b) Give an example where y does not occur freely in ϕ but (13.3.3) does not
hold.

100 c© 2017 Jesper Carlström

13.3 Review exercises

c) Give an example where y is free for x in ϕ but (13.3.3) does not hold.

13.3.4 Exercise (change of bound variables in ∃).

a) Show that if y does not occur freely in ϕ and y is free for x in ϕ, then:

∃yϕ[y/x] ` ∃xϕ . (13.3.5)

b) Give an example where y does not occur freely in ϕ but (13.3.5) does not
hold.

c) Give an example where y is free for x in ϕ but (13.3.5) does not hold.

13.3.6 Exercise (from the exam on 2003-10-20). In the Swedish National
Encyclopedia1 one can read the following under “Boolean algebra” (names and
notation are changed to match those of this course):

A Boolean algebra is defined as consisting of elements a, b, c, . . ., which
can be connected by Boolean operations ∨, ∧ and ¬, so that a ∨ b, a ∧ b
and ¬a are elements of the algebra whenever a and b are. It is required
that the following rules of computations (axioms) are fulfilled:

1) a ∨ b = b ∨ a and a ∧ b = b ∧ a;

2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
3) There are elements 0 and 1 such that a ∨ 0 = a ∧ 1 = a for all a;

4) a ∨ ¬a = 1 and a ∧ ¬a = 0.

(. . .) From these axioms one can derive more rules of computation, such
as (. . .) the idempotence laws a ∨ a = a and a ∧ a = a.

Your task is to prove that the last claim is wrong. Do this in three steps:

a) Formalize axioms 1–4 in the language with arity type 〈; 2, 2, 1, 0, 0〉, as
formulas without free variables. Call them ϕ1, ϕ2, ϕ3, ϕ4.

b) Formalize the proposition: a ∨ a = a holds for all a. Call the resulting
formula ϕ.

c) Show that ϕ1, ϕ2, ϕ3, ϕ4 6` ϕ.

Hint. Consider congruence modulo 2, i.e., define + and · on {0, 1}
by the tables

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

and define also an 1-ary operation ’ by: 0′ = 1 and 1′ = 0.

13.3.7 Exercise (from the exam on 2004-08-17). A structure 〈A; ; ◦, e〉 of arity
type 〈; 2, 0〉 is called a monoid if for all elements a, b, c ∈ A we have:

a ◦ e = a

e ◦ a = a

a ◦ (b ◦ c) = (a ◦ b) ◦ c .

Examples of infinite monoids are 〈N; ; +, 0〉 and 〈N; ; ·, 1〉, where N are the
natural numbers. Examples of finite monoids (with n elements) can be obtained
from the previous one if we compute “modulo n”: we consider numbers as equal
if their difference is divisible by n.

1Nationalencyklopedin - A standard Swedish encyclopedia published during the period
1986-1996.

c© 2017 Jesper Carlström 101

Soundness & Review exercises

a) Formalize the definition; that is to say, give γ1, γ2, γ3 ∈ Form such that
a structure is a monoid if and only if it is a model of γ1, γ2, γ3.

b) Give a formula τ1 ∈ Form which expresses that a monoid has only one
element; that is to say, such that τ1 is true in all such monoids, but false
in all others.

c) Give a formula τ2 ∈ Form which expresses that a monoid has exactly two
elements.

13.3.8 Exercise (from the exam on 2004-01-08). Decide, using the method
of your preference, whether or not each of the following formulas is derivable
through natural deduction. The language is assumed to contain 1-ary function
symbols f1 and f2.

a) ∀x0∀x1¬(x0
.
= x1)

b) ∀x0(⊥→ f1(x0)
.
= f2(x0)).

13.3.9 Exercise (from the exam on 2004-08-17, cf. Exercises 12.2.9, 13.1.16).
Is there a correct way to derive ∃x1∀x0ϕ→∀x0∃x1ϕ for all ϕ ∈ Form? Justify
carefully!

13.3.10 Exercise (from the exam on 2004-01-08). Interpret the formula:

∀x0∃x1(f1(x0, x1)
.
= f2)

in the following structure, and give its truth value in each one of them. Justify!

a) 〈N; ; +, 0〉

b) 〈Z; ; +, 0〉

c) 〈R; ; ·, 1〉

Here N are the natural numbers, Z the integers and R the real numbers.

13.3.11 Exercise. Show that if y is free for x in ∀yψ then ψ[y/x] = ψ.

13.3.12 Exercise (cf. Exercises 9.2.22, 11.2.37). Show that ϕ[y/x][x/y] = ϕ
if y does not occur freely in ϕ and y is free for x in ϕ.

13.3.13 Exercise (similar to the exam problem from 2007-10-18). Let ψ =
∀x0ϕ→∀x1ϕ[x1/x0].

a) Show that if x1 is free for x0 in ϕ and x1 does not occur freely in ϕ, then
ψ is a tautology.

b) Give an example of ϕ in which x1 is free for x0 such that ψ is not a
tautology.

c) Give an example of ϕ in which x1 does not occur freely such that ψ is
not a tautology.

d) Give an example of ϕ in which x1 is bound for x0 and x1 occurs freely
such that ψ is a tautology.

13.3.14 Exercise.

a) What is wrong in the following derivation?

[∃x0(x0
.
= x1)]1

[x0
.
= x1]2

∃I
∃x1(x1

.
= x1)

∃E2∃x1(x1
.
= x1)

→I1∃x0(x0
.
= x1)→∃x1(x1

.
= x1)

b) Can we derive ∃x0(x0
.
= x1)→∃x1(x1

.
= x1)?

c) Can we derive ∃x0P1(x0, x1)→∃x1P1(x1, x1)?

102 c© 2017 Jesper Carlström

Chapter 14

Completeness

We will now prove the completeness theorem for predicate logic. The setup for
this will be like that for propositional logic, but with more intricate details. It
is often said that this was first proved by Gödel in 1930 in his PhD thesis, but
the Norwegian mathematician Skolem already proved it in 1922.

14.1 Maximal consistency and the existence property

Several definitions and theorems about maximal consistency for propositional
logic can be transferred directly to predicate logic.

14.1.1 Definition (cf. Definition 8.1.1). Γ is maximally consistent providedI
it is maximal amongst consistent subsets of Form with respect to inclusion. In
other words, it means that:

1. Γ is consistent,

2. If Γ ⊆ U ⊆ Form and U is consistent, then U = Γ.

14.1.2 Theorem. If Γ is maximally consistent and Γ ` ϕ, then ϕ ∈ Γ.

Proof. Same proof as Theorem 8.1.2.
It is good if you make sure to
practice these results, e.g., by
trying to prove it by yourself.

14.1.3 Theorem. Γ is maximally consistent if and only if it is consistent and
whenever Γ ∪ {ϕ} is consistent, then ϕ ∈ Γ.

Proof. Same proof as Theorem 8.1.4.

14.1.4 Exercise (from the exam on 2005-01-07). Assume that Γ is a maximally
consistent set of formulas.

a) Give an example of a formula that has to be in Γ. Motivate!

b) Show that if ∃x1P1(x1) ∈ Γ, then ∃x2P1(x2) ∈ Γ.

14.1.5 Exercise (from the exam on 2003-10-20). Let Γ = {P1(x0), P1(x1), P1(x2), . . .}.

a) Show that Γ is consistent but not maximally consistent.

b) Is Γ complete? I.e., is it true that for every formula ϕ without free
variables Γ ` ϕ or Γ ` ¬ϕ?

c) Let Γ∗ be maximally consistent and Γ ⊆ Γ∗. Show that ∃x0P1(x0) ∈ Γ∗.

14.1.6 Exercise (cf. Theorem 8.1.11). If Γ is maximally consistent and ϕ 6∈ Γ,
then ¬ϕ ∈ Γ.

c© 2017 Jesper Carlström 103

Completeness

For propositional logic, we showed how to extend consistent sets to max-
imally consistent sets. This was used later to prove that consistent sets have
models. Also in predicate logic such an extension can be made with exactly the
same method, though it is not enough to have that for the proof of the model
existence lemma; you also need the extension to satisfy the existence property.
This means that if ∃xψ is in the set, then ψ[t/x] is also in the set for some term
t free for x in ψ. Therefore, we need to modify the construction of Γ∗ some-
what. We will need infinitely many variables not occurring freely in Γ. Those
will always exists if Γ is finite, but if we had {x0

.
= x1, x1

.
= x2, x2

.
= x3, . . .}

then all variables would occur freely. We first treat the case where there are
enough variables to work with; the other case will be handled later.

14.1.7 Lemma (Maximal consistent extension with the existence property).
Let Γ be consistent and suppose there are infinitely many variables that do not
occur freely in Γ. Then there is a maximal consistent extension Γ∗ which has
the following existence property: if a formula of the form ∃xψ belongs to the
extension, then also ψ[t/x] belongs to the extension, for some term t free for x
in ψ.You call t a witness for the

existential formula

Proof. Let {ϕ0, ϕ1, ϕ2, . . .} be an enumeration of Form. We will, as in proposi-
tional logic, go through this list and for each formula we will decide whether it
will belong to Γ∗. We therefore construct a growing sequence {Γn} of subsets
of Form, where Γ0 = Γ and the union of all of them is Γ∗. We define it as
follows:

Γ0
def
= Γ

Γs(n)
def
=

{
Γn ∪ Γ′n if Γn ∪ {ϕn} consistent

Γn otherwise.

Here, Γ′n = {ϕn} always except when ϕn is of the form ∃xψ. In that case we
let Γ′n = {∃xψ, ψ[y/x]}, where y is a variable chosen in a way that it does not
occur freely in any formula in Γn and does not occur at all in ψ.

To be able to chose such a y
is the reason why we asked
for infinitely many variables. Now let

Γ∗
def
=

∞⋃
n=0

Γn . (14.1.8)

We shall check that Γ∗ has the required property. To check that Γ∗ is consistent,
as in predicate logic, we just make sure that every Γn is consistent (look at the
proof of Theorem 8.1.10), which is done inductively. That Γ0 is consistent
follows from the fact that Γ0 = Γ. As the induction step, we will show that
Γs(n) is consistent if Γn is consistent. If ϕn is not of the form ∃xψ, it is obvious
that Γs(n) is consistent, since Γs(n) is chosen to be a consistent set. We must
handle the case where ϕn is of the form ∃xψ. We shall prove that if Γn∪{∃xψ}
is consistent, then Γn∪Γ′n is also consistent. Assume therefore that Γn∪{∃xψ}
was consistent but that we had a derivation of ⊥ from Γn ∪ {∃xψ, ψ[y/x]}.
Then the derivation could be modified in the following way:

∃xψ
[ψ]

∃I
∃yψ[y/x]

∃E
∃yψ[y/x]

Γn ∃xψ [ψ[y/x]]

···
⊥
∃E

⊥

(14.1.9)

and we would therefore also have a derivation of ⊥ from Γn ∪ {∃xψ}, which is
impossible by assumption. We must however check that the derivation is cor-
rect. The application of the ∃I is correct since ψ[y/x][x/y] = ψ, because y does
not occur in ψ (Exercise 9.2.22) and x is free for y in ψ[y/x] (Exercise 11.2.38).
The application of ∃E in the row underneath is correct, since x does not occur
freely in ∃yψ[y/x]. Finally, the last application of ∃E is correct, since y was
chosen so that it does not occur freely in any formula in Γn, nor in ψ.

104 c© 2017 Jesper Carlström

14.2 Completeness

We know that Γ∗ is consistent, but we need to know that it is maximally
consistent and that satisfies the existence property. But it follows from Theo-
rem 14.1.3 that if Γ∗ ∪ {ϕn} is consistent, so is Γn ∪ {ϕn}, and hence Γ′n ⊆ Γ∗

(since Γ′n ⊆ Γn ∪ Γ′n = Γs(n) ⊆ Γ∗). This gives us both maximal consistency
and the existence property, because Γ′n has been constructed to meet two needs:
it always contains ϕn when Γ∗ ∪ {ϕn} is consistent, but also ψ[y/x] when ϕn

is of the form ∃xψ.

14.1.10 Exercise. Let Γ consist of the formulas (in the language of arity type
〈; 2, 0〉) which are true in the structure 〈Z; ; +, 0〉 if we use the interpretation
v(xi)

def
= i.

a) Give an example of a formula of Γ containing two different variables but
no quantifiers.

b) Show that Γ is maximally consistent.

c) Does Γ have the existence property?

Hint. Use that all terms are non-negative values in the current
interpretation.

14.2 Completeness

We will construct a model A of Γ∗. The idea is to interpret the language
as referring to their own terms. We shall thus interpret ∃-formulas as saying
that there is a term with a particular property, and so on. The formula t

.
= s

shall therefore say that the terms t and s are alike. This does not really work,
because we should not consider each Term individually, but divide the set of
terms in equivalence classes given by the equivalence relation

t ∼ s def
=
(
(t
.
= s) ∈ Γ∗

)
. (14.2.1)

14.2.2 Exercise. Show that ∼ is an equivalence relation.

Let |A| be the set of equivalence classes. We will try to have each term inter-
preted by its own equivalence class, and we will note v(xi) for the equivalence
class containing xi. We will interpret, furthermore, each function symbol fi,
by the function fAi from the equivalence classes of t1, . . . , tai to the equivalence
classes of the terms fi(t1, . . . , tai). If for a term t we denote its equivalence
class as t̃, we can define the interpretation as follows:

v(xi) = x̃i

fAi (t̃1, . . . , ˜tai
) = ˜fi(t1, . . . , tai

)

14.2.3 Exercise. Show that the functions fAi are well defined ; that is, that
their values do not depend on the choice of representatives of each equivalence
class: if tj ∼ sj for j = 1, . . . , ai, then fi(t1, . . . , tai

) ∼ fi(s1, . . . , sai
).

Hint. Use that Γ∗ is closed under derivations, and that the replace-
ment rule can be used to derive fi(t1, . . . , tai

)
.
= fi(s1, . . . , sai

) from
the formulas tj

.
= sj .

14.2.4 Exercise. Show that [[t]] = t̃ for each term t.

For this reason, we will not
use the notation t̃ in what
follows, but will instead use
[[t]].Hint. We know that [[t]] is an equivalence class, since individuals

are interpreted as equivalence classes. What we need to show is
that it is the “right” equivalence class. If t is the variable xi, this
follows easily, since [[xi]] = v(xi), but what is [[t]] when t is not a
variable? To show that this holds for all cases use, induction in the
construction of the terms.

14.2.5 Exercise. Show that t ∈ [[t]] for each term t.

The next lemma shows that each individual can be represented in our in-
terpretation by a particularly useful term.

c© 2017 Jesper Carlström 105

Completeness

14.2.6 Lemma. For each individual a and each choice of ϕ and x, there exists
a term t such that a = [[t]] and t is free for x in ϕ.

Proof. Take s ∈ a. Then a = [[s]], according to the previous exercise. There are
See Exercise 14.2.17 for an
alternate proof.

an infinite number of variables z that do not occur in s, and for each of these,
the formula ∃z(z .

= s) is derivable, so Γ∗ contains infinitely many such formulas.
For each one of them, there exists a variable y, chosen in the construction of
Γ∗, such that (y

.
= s) ∈ Γ∗. Since these variables are all different, there must

be one amongst them that is free for x in ϕ. Take t as such a variable.

We now define the interpretation of the formulas as follows:

PAi ([[t1]], . . . , [[tri]])
def
=
(
Pi(t1, . . . , tri) ∈ Γ∗

)
. (14.2.7)

We need to check that these interpretations are well defined in a similar sense as
in Exercise 14.2.3: that they do not depend on the choice of the representative
of each equivalence class. We will skip the details since those are similar to the
ones in the mentioned exercise.

We will now verify that we have really constructed a model.

14.2.8 Lemma. [[∀xϕ]] = 1 is equivalent to having [[ϕ[t/x]]] = 1 for all terms
t that are free for x in ϕ.

Proof. ∀xϕ � ϕ[t/x] has been shown in Exercise 11.2.31. We shall prove the

Lemma 14.2.8 and the
exercise that follows show
that we have managed to
interpreted formulas that only
involve terms. An ∀-formula
is interpreted as true precisely
when all terms satisfy a
corresponding property, while
an ∃-formula is interpreted as
true precisely when at least
one term satisfies the
property. Funnily enough,
since these results do not rely
on how we chose to interpret
relation symbols!

other implication. Assume, therefore, that [[ϕ[t/x]]] = 1 for all terms t that are
free for x in ϕ. For such terms, we also have [[ϕ]]

[x 7→[[t]]]
= 1. But according to

the previous lemma, each individual is of the form [[t]] for that kind of terms,
so we have [[∀xϕ]] = 1.

14.2.9 Exercise. Show that [[∃xϕ]] = 1 is equivalent to [[ϕ[t/x]]] = 1 for some
term t that is free for x in ϕ.

Hint. Use the previous lemma.

14.2.10 Lemma. For any formula ϕ we have: [[ϕ]] = 1 ⇐⇒ ϕ ∈ Γ∗.

Proof. We will prove this by induction, though now the induction will be done
in the number of logical operations in the formula (we defined the number of
logical operations in Exercise 6.3.3, but now we will also take into account ∀
and ∃ as logical operations). We therefore consider the following statement:

For each natural number n and all formulas ϕ containing n logical
Note the informal restricted
quantifier!

operations, we have [[ϕ]] = 1 ⇐⇒ ϕ ∈ Γ∗.

To carry on the proof, we simply have to go through the various forms a
formula can have, and use, in each step, the inductive hypothesis, which is:

For each formula ϕ′ with fewer logical operations than ϕ we have
[[ϕ′]] = 1 ⇐⇒ ϕ′ ∈ Γ∗.

In the case of equalities of terms it is easy to prove the statement, and we
do not need to consider the inductive hypothesis:

[[t1
.
= t2]] = 1 ⇐⇒ [[t1]] = [[t2]] ⇐⇒ t1 ∼ t2 ⇐⇒ (t1

.
= t2) ∈ Γ∗. (14.2.11)

In the case of relation symbols, the proof is just as easy:

[[Pi(t1, . . . , tri)]] = 1 ⇐⇒ PAi ([[t1]], . . . , [[tri]]) ⇐⇒ Pi(t1, . . . , tri) ∈ Γ∗.
(14.2.12)

The connectives are handled in the same way as in predicate logic (proof
of Lemma 8.2.2). For formulas of the form ∀xψ, note that, according to the

106 c© 2017 Jesper Carlström

14.2 Completeness

previous lemma, [[∀xψ]] = 1 is equivalent to [[ψ[t/x]]] = 1 for all terms t which
are free for x in ψ. By the inductive hypothesis, this happens to be equivalent
to ψ[t/x] ∈ Γ∗ for all terms t that are free for x in ψ. This is, in turn,
equivalent to having ∀xψ ∈ Γ∗. Indeed, to see one implication we note that
∀xψ ` ψ[t/x] and that Γ∗ is closed under derivations. To check the other
implication, we reason as follows: we cannot have ∃x¬ψ ∈ Γ∗, since then the
existence property would give us ¬ψ[t/x] ∈ Γ∗ for a term t which is free for x

Here we use the existence
property.

in ψ, and this is not possible since then ψ[t/x] ∈ Γ∗ for such terms, while Γ∗ is
consistent. Therefore, it follows from Exercise 14.1.6 that ¬∃x¬ψ ∈ Γ∗. Since
Γ∗ is closed under derivations, we have ∀xψ ∈ Γ∗.

Finally, let us consider the case of the formula ∃xψ. According to the
previous exercise, [[∃xψ]] = 1 is equivalent to having [[ψ[t/x]]] = 1 for any term
t that is free for x in ψ. But ψ[t/x] has one less logical operation than ∃xψ,
so we can apply the inductive hypothesis and conclude that [[ψ[t/x]]] = 1 is
equivalent to ψ[t/x] ∈ Γ∗. This, in turn, is easily seen to be equivalent to
∃xψ ∈ Γ∗. Indeed, one implication follows from the fact that Γ∗ is closed
under derivations and ψ[t/x] ` ∃xψ, while the other direction follows from the
existence property.

14.2.13 Lemma (Model existence). Every consistent subset of Form has a
model.

Proof. Suppose that Γ is a consistent set of Form. According to the previous
lemma, it is enough to extend that set to Γ∗, since then we can find a model for
Γ∗, which will also be a model for Γ. However, if Γ is infinite and has infinitely
many free variables, the construction of Γ∗ cannot always be performed, and
we must solve this issue.

Construct a different set Γ′ by replacing in each formula of Γ the variable
xi by x2i. Since no variables with odd index occur in Γ′, the construction
of Γ′

∗
works, and hence Γ′ has a model. The same interpretation is also a

model of Γ provided we change the valuations to match the change of variables
we performed. More specifically, if v′ is the valuation corresponding to the
constructed model of Γ′, we can therefore put v(xi) = v′(x2i) and obtain a
model of Γ.

14.2.14 Theorem (completeness theorem). If Γ � ϕ, then Γ ` ϕ.

Proof. Is similar to the proof of 8.2.3.

14.2.15 Exercise. We can derive the completeness theorem relatively easily
from the model existence lemma. Conversely, it is possible to derive that lemma
from the completeness theorem. Find out how.

14.2.16 Exercise (from the exam on 2003-10-20). Determine whether the
following formula is derivable through natural deduction:

∀x0∃x1∀x2(x0
.
= x1→ x1

.
= x2)

14.2.17 Exercise (optional). The given proof of lemma 14.2.6 uses the con-
struction of Γ∗. Changing the construction would therefore force us to modify
this proof. It is then of interest to find a proof that only relies on the assump-
tions that Γ∗ is maximally consistent and has the existence property. Here we
outline such a proof. The exercise consists of carrying it out in detail.

Take s ∈ a and let y1, . . . , yn the variables bound by any quantifier in ϕ.
We will show that there is a term t such that (t

.
= s) ∈ Γ∗ and the variables

y1, . . . , yn do not appear in t (why is this enough?). Take, therefore, a variable
y different from y1, . . . , yn and that does not appear in s. The formula:

∃y(y
.
= s ∧ ∀y1 · · · ∀yn(y

.
= y)) (14.2.18)

c© 2017 Jesper Carlström 107

Completeness

is then derivable (how?) and hence it is in Γ∗ (why?). By the existence property,
it follows that there is a term t that is free for y in (y

.
= s∧∀y1 · · · ∀yn(y

.
= y))

and such that

(y
.
= s ∧ ∀y1 · · · ∀yn(y

.
= y))[t/y] ∈ Γ∗ . (14.2.19)

It follows that y1, . . . , yn do not appear in t (why?) and that (t
.
= s) ∈ Γ∗

(why?).

14.3 Compactness

Another application of the existence lemma is the following remarkable theo-
rem.

The compactness theorem has
a topological meaning.
Consider two interpretations
as similar when the same set
of formulas is true in both of
them. This divides the set of
interpretations in equivalence
classes, which can be
considered as points of a
topological space. Let each
formula represent the set of
interpretations (up to
equivalence) that satisfy it.
Then Form is a base of closed
sets of a topology. The
theorem then says that a
family of closed sets has
nonempty intersection
provided each finite subfamily
has nonempty intersection.
Thus, the space is compact in
a topological sense.

14.3.1 Theorem (Compactness theorem). Γ has a model if and only if every
finite subset of Γ has a model.

Proof. (⇒) If A is a model of Γ, then A is also a model of every finite subset
of Γ.

(⇐) Suppose that every finite subset of Γ has a model. Then every finite
subset is consistent, by the soundness theorem. Hence, Γ is itself consistent.
By the model existence lemma it follows now that Γ has a model.

14.3.2 Example (non-standard numbers). We can show that there is a model
of Peano’s axioms in which there are “infinite” numbers.

Peano’s axioms for natural numbers are the following:

A1. ¬∃x0(f1(x0)
.
= f2)

A2. ∀x0∀x1(f1(x0)
.
= f1(x1)→ x0

.
= x1)

A3. ϕ[f2/x0] ∧ ∀x0(ϕ→ ϕ[f1(x0)/x0])→∀x0ϕ

where A3 actually represents an infinite number of formulas, one for each ϕ ∈
Form.

Let Γ consist of Peano’s axioms together with the following formulas:

ϕ0 = ¬(x0
.
= f2)

ϕ1 = ¬(x0
.
= f1(f2))

ϕ2 = ¬(x0
.
= f1(f1(f2)))

ϕ3 = ¬(x0
.
= f1(f1(f1(f2))))

...

(infinitely many). It is clear that the natural numbers are not a model of Γ
(if f1 is interpreted as s and f2 as 0) since x0 cannot be valued in a way that
all formulas are true: the formula ϕv(x0) will be false. However, there exists
another model. It can be shown as follows:

According to the compactness theorem, it suffices to show that every finite
subset of Γ has a model. Take therefore a finite subset Γ0 of Γ. Choose n ∈ N
as the largest number such that ϕn ∈ Γ0. Interpret this theory in the natural
numbers and let v(x0) > n. With this interpretation, we have [[ϕi]] = 1 for
every i ≤ n, and hence it is a model of Γ0. But Γ0 was an arbitrary finite
subset of Γ, so every finite subset of Γ has a model. Therefore, Γ has a model.

14.3.3 Exercise (from the exam on 2004-01-08). Let Γ consists of Peano’s

108 c© 2017 Jesper Carlström

14.4 Summary

axioms together with the formulas:

P1(f2)

P1(f1(f2))

P1(f1(f1(f2)))

...

P1(f1(f1(· · ·︸ ︷︷ ︸
n stycken f1

f2 · · ·)))

...

(one formula for each natural number n).
Does Γ ∪ {∃x0¬P1(x0)} have a model?

14.3.4 Exercise (from the exam on 2004-08-17).

a) Suppose that γ1, γ2, γ3 solve exercise 13.3.7 a. Assume also that ϕ ∈ Form
is true in all monoids. Is it safe to say that γ1, γ2, γ3 ` ϕ?

b) Recall Exercises 13.3.7 b and 13.3.7 c. Is there any formula τ ∈ Form

There is a part of logic called
model theory. It studies the
properties of models of
different theories, as well as
the theories whose models
have specific characteristics.
One typical question is to find
what type of theories have
finite models, countable
models, etc.

expressing that a monoid is finite (that is, such that τ is true in all finite
monoids but false in all infinite ones)? Explain carefully!

14.4 Summary

We have gone through the concept of maximal consistency in predicate logic
and proved that every consistent set can be extended to a maximally consistent
set. This was still not good enough to construct a model of a consistent set,
so we have also introduced the concept of the existence property. We saw that
all consistent sets may be extended to maximally consistent sets that have the
existence property, and showed how this, in turn, can be used to prove that all
consistent sets have models (not just those that can be extended as explained).
This allowed us to prove the completeness theorem for predicate logic. The
theorem shows that the system contains all the rules necessary to derive valid
formulas. If a formula cannot be derived in our system, then it is false in some
interpretation. Finally we also studied the compactness. Using this concept
we were able to construct models for infinite sets of formulas by looking at the
models for finite subsets of them, which is usually considerably easier.

It is important that you understand what the completeness theorem says,
and how it can be used to show that some formula can be derived without
actually constructing the explicit derivation.

We hope you have enjoyed the course!

c© 2017 Jesper Carlström 109

Completeness

110 c© 2017 Jesper Carlström

Part IV

Appendix and index

c© 2017 Jesper Carlström 111

Normalization proofs

Proof of Glivenko’s theorem (7.2.3)

We shall proof that if we use RAA further up in a derivation than the last step,
one can change the derivation so that the usage of RAA is pushed down. By

The proof is taken from
Seldina, with small
adjustments to fit our system.

aSeldin, J. Normalization and
Excluded Middle I, in Studia
Logica 48, pp. 193-217, 1989.

doing this repeatedly one will get in the end a derivation where RAA is not
used except, possible, at the last step.

Assume therefore that RAA is used a little further up in the derivation.
Call the following rule R, so that the derivation has the following form:

[¬ϕ]1
···
⊥

RAA1

ϕ

···
R

ψ

(A.1)

The vertical dots to the right, next to R, denote other possible subderivations
which exist aboveR. IfR is a rule with only one premise, no such subderivations
exists, so the dots can be taken out, but if R has more premises (one or two
more), the derivations of these will be placed where the dots are. If now R
is any rule which does not discharge an assumption in the derivation of ϕ, we
transform the derivation in the following way:

[¬ψ]1
[ϕ]2

···
R

ψ
→E

⊥
→I2¬ϕ

···
⊥

RAA1

ψ

(A.2)

Note that the usage of RAA is pushed downwards. If on the other hand R
discharges an assumption in the derivation of ϕ, then we cannot transform in
this way, since R can no longer do the discharge. We must therefore handle
these cases one by one. Only three rules discharge assumptions:

Case ∨E:

···
ϕ ∨ ψ

[¬σ]1 [ϕ]2
···
⊥

RAA1

σ

[ψ]2
···
σ
∨E2

σ

(A.3)

A derivation of this kind can be transformed in the following way: one replaces

c© 2017 Jesper Carlström 113

Normalization proofs

RAA with ⊥E and then concludes by using RAA:

[¬σ]1

···
ϕ ∨ ψ

[¬σ]1 [ϕ]2
···
⊥
⊥E

σ

[ψ]2
···
σ
∨E2

σ
→E

⊥
RAA1

σ

(A.4)

One proceeds similarly if RAA occurs as the last rule in the right subderivation
or in both subderivations.

Case →I:
[¬ψ]1 [ϕ]2

···
⊥

RAA1

ψ
→I2

ϕ→ ψ

(A.5)

We transform this to:

[¬(ϕ→ ψ)]1

[¬(ϕ→ ψ)]1
[ψ]3

→I
ϕ→ ψ

→E
⊥
→I3¬ψ [ϕ]2
···
⊥
⊥E

ψ
→I2

ϕ→ ψ
→E

⊥
RAA1

ϕ→ ψ

(A.6)

Case RAA: This is quite strange. No one that is somewhat experienced will
derive in the following way, but for the sake of completeness we must cover also
this case. Assume, then, that we have a derivation of the following form:

[¬σ]2 [¬⊥]1
···
⊥

RAA1⊥
RAA2

σ

(A.7)

Even if such a derivation is not constructed manually, this sort of derivation
can in fact occur when one uses the transformations we have gone through
above. In such situations, we transform by replacing the assumption of ¬⊥
with derivations of such formulas, so that the first RAA step can be completely
removed. The same technique can be used in any case where the conclusion in
RAA is ⊥:

[¬⊥]
···
⊥

RAA
⊥

(A.8)

transforms into
[⊥]

→I
¬⊥···
⊥

(A.9)

114 c© 2017 Jesper Carlström

By using the transfromations we have mentioned above, one can move the usage
of RAA further and further down in the derivation, so that in the end there
is at most one usage: as the bottom most rule. We must however check that
this process really comes to an end. It might very well happen that we get
more applications of RAA when we make transformations from (A.1) to (A.2),
namely, if the dotted subderivation by the rule R is copied several times and
contains RAA.

We therefore do a proof by induction over the structure of derivations. The
inductive hypothesis is hence that the the theorem is true for all subderivations
in the last rule, and we shall now prove the theorem for the whole derivation.We
then have to consider the cases for which we formulated the transformation
principles above. All these cases are simple to handle, except the first one:
from (A.1) to (A.2). We go over this case. The inductive hypothesis is then
that the subderivations in (A.1) above the rule R do not contain RAA except
possibly as the last rule. After the transformation we know, therefore, that the
derivation looks like (A.2), and in addition to the shown occurrence of RAA,
it can only occur as the last rule in the uppermost dotted part. Consider now
the subderivation which contains this dotted part and extends a couple of steps
further down, with ⊥ as its conclusion. This subderivation contains at most
one occurrence of RAA, and can therefore be transformed in the way stipulated
by the theorem. But then one can get rid of RAA from this part, since RAA,
whose conclusion is ⊥, can be removed by one of the transformation principles.
The conclusion is that, one after one, the usages of RAA are removed, until
only the bottom most is left.

Proof of weak normalization (7.2.6)

We will show how, by a number of transformation rules, we can transform
a derivation into a normal derivation. We first present the various transfor-
mations. Later, we will check that we can do the transformation process in
such a way that we are certain that we will eventually reach a normal deriva-
tion. While you read the transformation principles, you should note that no
derivation rules are added. Sometimes subderivations are copied several times
(namely, when more assumptions of the same formula are replaced by sub-
derivations), so the number of usages of a certain derivation rule can increase,
but a derivation rule which is not used in the original derivation cannot occur
in the resulting derivation either.

If we have the form

···
ϕ

···
ψ
∧I

ϕ ∧ ψ
∧E

ϕ

(A.10)

we reduce to the left subderivation:

Linguistic expressions such as
“taking out detours” can give
the impression that the result
is “better” in some sense. It
is true that awkwardly
constructed derivations can
often be simplified through
normalization, but it is also
often the case that
normalization increases the
length of derivations. It is in
this sense that they can
become “worse”. In the
beginning, it can however be
good to think of
normalization as
simplification.

···
ϕ

(A.11)

and by using the other and-elimination rule we reduce to the right subderiva-
tion.

If we have the form:

···
ϕ

∨I
ϕ ∨ ψ

[ϕ]
···
σ

[ψ]
···
σ
∨E

σ

(A.12)

c© 2017 Jesper Carlström 115

Normalization proofs

we reduce to: ···
ϕ
···
σ

(A.13)

and similarly for the other or-introduction rule. In the figure, it looks as if we
were simplifying. In fact, the derivation can grow explosively by such reduction.
The reason for this is that every occurrence of the discharged assumption [ϕ]
is replaced by a derivation of ϕ. Since there may be many such occurrences
and the derivation we insert may be very long, we can get very big derivations
as the result of the reduction. What we gain is that the derivation will become
one step closer to being normal.

If we have the form:

[ϕ]
···
ψ

→I
ϕ→ ψ

···
ϕ
→E

ψ

(A.14)

we reduce to: ···
ϕ
···
ψ.

(A.15)

When none of these reductions can be applied anymore, we have a deriva-
tion where no main premise in the elimination rule is the conclusion of an
introduction rule. It can, for instance, look like this:

ϕ ∨ ϕ
[ϕ] [ϕ]

∧I
ϕ ∧ ϕ

[ϕ] [ϕ]
∧I

ϕ ∧ ϕ
∨E

ϕ ∧ ϕ
∧E

ϕ

(A.16)

In this example, the conclusion of the or-elimination is still the main premise
in the and-elimination. The derivation is thus still not normal according to our
definition. The way we fix this does not diminish the derivation, but makes
it bigger. We simply move the and-elimination up to the side premise in the
or-elimination. This is called a permutation. In this way, we get the derivation:

ϕ ∨ ϕ

[ϕ] [ϕ]
∧I

ϕ ∧ ϕ
∧E

ϕ

[ϕ] [ϕ]
∧I

ϕ ∧ ϕ
∧E

ϕ
∨E

ϕ

(A.17)

which in turn can be reduced to:

ϕ ∨ ϕ [ϕ] [ϕ]
∨E

ϕ
(A.18)

More generally, when the conclusion in an ∨E is the main premise in an elimi-
nation rule, we always move up the elimination rule (in two copies) to the side
premise.

For our nullary disjunction ⊥ we can do similar permutations. In ⊥E, how-
ever, we have 0 side premises, so the permutation means that the elimination
below is copied 0 times – that is, it disappears. For instance, we transform:

···
⊥

⊥E
ϕ ∧ ψ

∧E
ϕ

(A.19)

116 c© 2017 Jesper Carlström

into
···
⊥
⊥E

ϕ

(A.20)

When ⊥E is followed by an elimination rule, we will always use such permu-
tation.

We have now showed how every deviation from normality can be straight-
ened. Since some of the transformations give smaller derivations, while some
give larger ones, it is however not obvious that the process ends with a normal
derivation. We shall not prove that every process ends in this way, but only
that it is possible to get a normal derivation by applying the transformations
above in a certain ordering. This is called weak normalization. A stronger
result, strong normalization asserts that we would eventually get a normal
derivation independently of the order in which we apply the transformations.
This is more difficult to show, and it is not something we will need.

Since the difficulty in seeing immediately that the process ends is that the
size of the derivations is not a measure which always decreases, we replace that
by a better measure. We therefore need some notions.

A.21 Definition. A main premise in an elimination rule is a cut if it is theI
conclusion in some rule which is not ∧E or→E. A side premise in the rule ∨E

Our definition is somewhat
simplified compared to the
usual one. It works well in
this context and it is easier to
remember

is a cut if the conclusion of the rule is a cut.

A derivation is thus normal precisely when it does not contain any cuts. A
derivation which is not normal is called non-normal.

A.22 Definition. A maximal cut is a cut in the derivation such that no otherI
cut in it contains more logical operations (we defined the number of operations
in Exercise 6.3.3).

We shall now check that we can go through the normalization process so
that it is guaranteed to finish and reach the promised result. It is sufficient
to study RAA-free derivations. According to Glivenko’s theorem, one can do
without RAA except possibly in the last step, but in that the rest is an RAA-
free derivation.

We need two measures for the proof: the number a of logical operations in
maximal cuts and the number n of maximal cuts in the derivations. In fact,
we will prove the theorem:

For all natural numbers a, n it is true that if a derivation has n max-
imal cuts with a logical operations in each of them, the derivation
can be normalized.

We will prove the theorem by a double induction on the natural numbers. In
the proof, we therefore have access to the following two inductive hypothesis:

1. If a derivation has a maximal cut with less than a logical operations, it
can be normalized.

2. If a derivation has less than n maximal cuts with a logical operations, it
can be normalized.

Consider thus an RAA-free normal derivation with n maximal cuts and a logical
operations in each. We will show that it can be normalized. We will do this
by finding a suitable maximal cut in the derivation and remove it according to
the transformations we have gone through. Afterwards, we will show that the
resulting derivation can be normalized according to the inductive hypothesis.
For this idea to succeed, we consider a maximal cut which does not have any
other maximal cut underneath it in the derivation. We shall see that if such a
cut is removed, the inductive hypothesis can be applied.

c© 2017 Jesper Carlström 117

Normalization proofs

Such a cut cannot be a side premise in ∨E, because then the conclusion
in the same rule is also a maximal cut, and we have just assumed that we
are working with a maximal cut that does not have any other maximal cut
underneath. The cut must, therefore, be a main premise in an elimination
rule. That it is a cut means that it is the conclusion in an introduction rule,
or in ∨E or in ⊥E. If it is a conclusion in an introduction rule, we can use
the transformation rules (A.10)–(A.15). Since these eliminate a maximal cut,
and no cut with the same or greater number of logical operations is created,
the inductive hypothesis implies that the resulting derivation can be normalized
(one may need to reduce the side derivations first to guarantee that the number
of maximal cuts has not increased).

We are only left with the task of handling the cases in which the maximal
cut is the conclusion in ∨E or ⊥E. The last case is as trivial as the one we just
considered, so we are only left with considering ∨E. We assume, thus, that we
have a derivation that looks as follows, where R denotes an elimination rule of
which σ is the main premise and that has, possibly, side derivations:

···
ϕ ∨ ψ

[ϕ]
···
σ

[ψ]
···
σ
∨E

σ

···
R

τ

(A.23)

According to the inductive hypotheses, possible side derivations of R can be
normalized, so we can assume they are normal and that the derivation contains,
in all, n maximal cuts with a logical operations each. We transform according
to the permutation rule and get the derivation:

···
ϕ ∨ ψ

[ϕ]
···
σ

···
R

τ

[ψ]
···
σ

···
R

τ
∨E

τ

(A.24)

We must now show that this derivation can be normalized. If τ contains a
smaller number of logical operations than σ then the new derivation has less
than n cuts with a logical operations each. Every such cut must in fact come
from a corresponding cut in the old derivation, and at least one has disappeared
in the transformation. If, on the other hand, τ contains at least as many logical
operations as σ, then τ could not have been a cut in the original derivation
(since σ did not have a maximal cut underneath). Then, τ cannot be either a
cut in the new derivation.

We have now gone through all possible ways a formula can be a cut and
shown how these can be handled. Therefore we know that we can normalize
every possible derivation. In addition, we have seen that in the part of the
proof dealing with RAA-free derivations, we only used transformations which
never added a rule that was not used previously. Hence, we know that when
we normalize RAA-free derivations, we will never use any new rules.

A.25 Example. Normalize

ϕ ∨ ψ
[ϕ] [ϕ]

∧I
ϕ ∧ ϕ

¬ψ [ψ]
→E

⊥
⊥E

ϕ ∧ ϕ
∨E

ϕ ∧ ϕ
∧E

ϕ

118 c© 2017 Jesper Carlström

Solution. We use the transformation rules we have introduced and get:

ϕ ∨ ψ [ϕ]

¬ψ [ψ]
→E

⊥
⊥E

ϕ
∨E

ϕ

A.26 Exercise. Normalize

Reminder: by normalize we
mean transform only by using
the transformation rules we
have introduced, in such a
way that the end result is a
normal derivation.

⊥
∨I

ϕ ∨ ⊥
¬ϕ [ϕ]

→E
⊥ [⊥]

∨E
⊥

⊥E
ϕ ∧ ϕ

∧E
ϕ

We can start in three different ways. Try all three!

Hint. Whatever we do, we end with a derivation with only one rule:
⊥E.

A.27 Exercise. Normalize

···
ϕ ∨ ¬ϕ

ϕ→ ψ [ϕ]
→E

ψ

¬ϕ→ ψ [¬ϕ]
→E

ψ
∨E

ψ

(A.28)

where the dotted part is as in Example 5.4.3 (page 41).

Hint. The result should be as in Exercise 7.3.25.

c© 2017 Jesper Carlström 119

Normalization proofs

120 c© 2017 Jesper Carlström

Solutions to the exercises

Solutions to old exams can be found at http://www.math.su.se/.

1.1.5 The axioms (comm), (ass), (id). Additionally, the right (abs), (distr)
and left (inv).

1.1.6 a ∧ a (id)
= (a ∨ 0) ∧ (a ∨ 0)

(distr)
= a ∨ (0 ∧ 0)

(abs)
= a ∨ 0

(id)
= a

1.1.7 ¬¬a (id)
= ¬¬a ∨ 0

(inv)
= ¬¬a ∨ (a ∧ ¬a)

(distr)
= (¬¬a ∨ a) ∧ (¬¬a ∨ ¬a)

(comm)
=

(¬¬a ∨ a) ∧ (¬a ∨ ¬¬a)
(inv)
= (¬¬a ∨ a) ∧ 1

(id)
= ¬¬a ∨ a

In the same way, one later shows that a = a ∨ ¬¬a: a
(id)
= a ∨ 0

(inv)
= a ∨ (¬a ∧

¬¬a)
(distr)

= (a∨¬a)∧ (a∨¬¬a)
(inv)
= 1∧ (a∨¬¬a)

(comm)
= (a∨¬¬a)∧1

(id)
= a∨¬¬a

1.2.5 Because of (id) and (abs), it is clear how the table entries under ∧ and
∨ should be. Because of this and (inv), the table entries under ¬ is determined
as well.

1.3.2 ¬1
(id)
= ¬1 ∧ 1

(comm)
= 1 ∧ ¬1

(inv)
= 0

1.3.4 a∧(a∨b) (id)
= (a∨0)∧(a∨b) (distr)

= a∨(0∧b) (comm)
= a∨(b∧0)

(abs)
= a∨0

(id)
= a

1.3.6 b
(id)
= b∧1

(1.3.1)
= b∧¬0 = b∧¬(a∨b) (dM)

= b∧(¬a∧¬b) (comm)
= b∧(¬b∧¬a)

(ass)
=

(b ∧ ¬b) ∧ ¬a (inv)
= 0 ∧ ¬a (comm)

= ¬a ∧ 0
(abs)
= 0

1.3.8 Assume that a ∧ b = 0. In the Boolean algebra with two elements we
have either b = 0 or b = 1. If b = 0 then we are done. Otherwise we have b = 1,
and then a = a ∧ 1 = a ∧ b = 0.

In algebras with more than two elements we cannot argue in that way. We
have seen in Example 1.2.6 that we can have s ∧ t = 0 without having s = 0
nor t = 0.

1.3.10 In a Boolean algebra. 0 ≤ 1 means that 0 ∧ 1 = 0, according to
Definition 1.3.9. This is true because of axiom (id).

1.3.11 By a∧ b ≤ b it is meant (a∧ b)∧ b = a∧ b, according to Definition 1.3.9.
This is shown using (ass) and (idemp).

1.3.12 Reflexivity: a ≤ a means that a ∧ a = a, which is an axiom (idemp).

Transitivity: suppose a ≤ b and b ≤ c; that is, a ∧ b = a and b ∧ c = b. Show

that a ≤ c; that is, a ∧ c = a. a ∧ c = (a ∧ b) ∧ c (ass)
= a ∧ (b ∧ c) = a ∧ b = a.

Antisymmetry: suppose a∧ b = a and b∧a = b. Then a = a∧ b (comm)
= b∧a = b.

1.3.13 a ≤ (a ∨ b) means that a ∧ (a ∨ b) = a, which is an absorption rule.

b ≤ (a ∨ b) means that b ∧ (a ∨ b) = b. To prove this, we first apply (comm),

and then an absorption rule: b ∧ (a ∨ b) (comm)
= b ∧ (b ∨ a)

(abs)
= b.

c© 2017 Jesper Carlström 121

http://www.math.su.se/

Solutions to the exercises

Suppose now that a ≤ c and b ≤ c; that is, a ∧ c = a and b ∧ c = b. We then
have (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) = a ∨ b.

1.3.14 This means that (a ∧ b) ≤ a, (a ∧ b) ≤ b, and: if c ≤ a and c ≤ b,
then c ≤ (a ∧ b). This is proven in a completely analogous way to the previous
exercise.

1.3.15 In the Boolean algebra with two elements, 1 is an atom, since 1 6= 0
and if c ≤ 1 for some c 6= 0, then c = 1, since it is the only element which is
not 0.

In the algebra of subsets of {1, 2, 3} we have the atoms {1}, {2}, {3}. To show
that {1} is an atom, we assert that {1} 6= ∅ and that if M ⊆ {1} and M 6= ∅
then M has to contain at least one element; hence 1 ∈M , and thus M = {1}.
Similarly we show that {2} and {3} are atoms.

1.3.16 Assume that a ≤ b; that is, a∧b = a. We will show that (a ∨ c) ≤ (b ∨ c);
that is, (a ∨ c) ∧ (b ∨ c) = (a ∨ c). The left term can be rewritten using (distr)
as (a ∧ b) ∨ c, which is equal to a ∨ c.

1.3.17 Assume that a ≤ b; that is, a∧ b = a. We will show that ¬b ≤ ¬a; that
is, ¬b ∧ ¬a = ¬b:

¬b ∧ ¬a = ¬b ∧ ¬(a ∧ b) (dM)
= ¬b ∧ (¬a ∨ ¬b) (abs)

= ¬b.

1.4.4 x ∨ y ∧ y ∨ ¬x = x ∨ (y ∧ y) ∨ ¬x = 1.

x ∧ y ∨ y ∧ ¬x = (x ∧ y) ∨ (y ∧ ¬x) = y ∧ (x ∨ ¬x) = y ∧ 1 = y.

¬(¬(x ∧ y) ∨ x) ∨ y = (x ∧ y ∧ ¬x) ∨ y = 0 ∨ y = y.

1.5.8 Expressions 0, x ∧ y ∧ z, x, x ∨ ¬x are in disjunctive normal form.

Expressions 0, (x ∨ y) ∧ z, x ∧ y ∧ z, x are in conjunctive normal form.

It is not possible to decide in which form a ∨ b is. If a and b denote Boolean
expressions, it depends on these expresions whether a ∨ b is in disjunctive or
conjunctive normal form.

1.5.9 x ∧ y ∨ x ∧ z, x ∧ ¬y ∧ z, ¬y ∧ ¬z.

1.6.6 Write the left hand side in disjunctive normal form. One gets then the
equation x ∧ ¬y ∧ z = 0. We do not get any further than this.

1.6.7 Write the left hand side in disjunctive normal form. One gets then the
equation ¬y ∧ ¬z = 0. We do not get any further than this.

2.1.35 Replace by the equivalent equation x ∧ y ∧ ¬z = 0. Better than that
one cannot answer, in general. In the two elements algebra one can pick out
the solution explicitly: all the values of x, y, z except for (x, y, z) = (1, 1, 0)
are solutions.

2.1.36 We first simplify the left hand side to x ∧ ¬y ∧ z = ¬y ∧ ¬z. It splits
into the equalities x ∧ ¬y ∧ z ≤ ¬y ∧ ¬z respectively ¬y ∧ ¬z ≤ x ∧ ¬y ∧ z.
Consider the second one. It can be split into three different equalities (with
the right hand sides x, ¬y, z). The inequality which has z on the right hand
side (¬y ∧ ¬z ≤ z) can be rewritten as the equation ¬y ∧ ¬z ∧ ¬z = 0, that
is ¬y ∧ ¬z = 0. This tells us nothing about the right hand side in the original
equation! The original equation is thus equivalent to x∧¬y∧z = 0, ¬y∧¬z = 0.

2.1.37 Look first at the solution of the previous exercise to see how to change
the first equation into the equivalent equation system: x∧¬y∧z = 0, ¬y∧¬z =
0. The original system can thus (as the inequality can be rewritten as an

122 c© 2017 Jesper Carlström

equation) be written as x∧¬y∧z = 0, ¬y∧¬z = 0, x∧y∧¬z = 0, y∧z = 0. If one
colours the corresponding areas in a Venn diagram, one sees that the whole area
corresponding to x is coloured, so one can wonder whether x = 0 is possible to
be derived from the first four equations. This is in fact possible, but you can be
satisfied if you have come this far. If you want to derive x = 0 you can observe
that x = (x∧y∧z)∨(x∧y∧¬z)∨(x∧¬y∧z)∨(x∧¬y∧¬z) = 0∨0∨0∨0 = 0.
Hence, the given system is equivalent to x = 0, ¬y ∧ ¬z = 0, y ∧ z = 0. The
last two equations can be written as ¬z ≤ y respectively y ≤ ¬z, so together
they give y = ¬z. The given equation system is thus equivalent to the system
x = 0, y = ¬z.

If while doing the previous work one notices that one has both ¬y ∧ ¬z = 0
and y∧ z = 0, and that together this gives y = ¬z, then one can replace, in the
original system, all occurrences of y with ¬z, and simplify. Then we get the
system x ∧ z = 0, x ∧ ¬z = 0, y = ¬z. From this one gets x = x ∧ (z ∨ ¬z) =
x∧z∨x∧¬z = 0∨0 = 0. Afterwards, we arrive at the solution x = 0, y = ¬z.
But, as we said, this requires to pay close attention. The first solution was
more routine.

2.2.4 We will have (1 ∧ b) ≤ c ⇐⇒ 1 ≤ (b→ c); that is, b→ c should be 1
precisely when b ≤ c, i.e., in every case except when b = 1 and c = 0.

2.2.12 a→ 0 = ¬a ∨ 0 = ¬a.

2.2.15 In the rows where a = b we get 1, while in the rows where a 6= b we get
0.

2.2.17 (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (x ∧ y ∧ z)

2.2.18 x ∧ (x→ y) = x ∧ (¬x ∨ y) = x ∧ ¬x ∨ x ∧ y = x ∧ y.

¬x→ x = ¬¬x ∨ x = x.

(x ∧ ¬x)→ y = 0→ y = 1.

x∨y→¬x∧y = ¬(x∨y)∨(¬x∧y) = (¬x∧¬y)∨(¬x∧y) = ¬x∧(¬y∨y) = ¬x.

2.2.19 The equation y = ¬x is equivalent to the two inequalities y ≤ ¬x and
¬x ≤ y, which are in turn equivalent to the two equations y ∧ x = 0 and
¬x ∧ ¬y = 0. If the second of these equations is negated, we get x ∨ y = 1.

2.2.22 If the right hand side is written in disjunctive normal form, it becomes
¬x∨¬y∨(x∧z). Since ¬x ≤ HL = V L ≤ x we have ¬x ≤ x, thus ¬x∧¬x = 0,
so that x = 1. When we put this into the original equation, it simplifies to
y→z = y→z, which is true for all replacements. The solutions of the equation
are then x = 1, while y and z are arbitrary. We can come to the same conclusion
using the standard methods, though it can take a little bit longer.

3.2.28 1 + 2 = 1 + s(1) = s(1 + 1) = s(1 + s(0)) + s(s(1 + 0)) = s(s(1)).

1·2 = s(0)·2 = 0·2+2 = 0+s(1) = s(0+1) = s(0+s(0)) = s(s(0+0)) = s(s(0))

1−2 = 1−s(1) = p(1−1) = p(1−s(0)) = p(p(1−0)) = p(p(1)) = p(p(s(0))) =
p(0) = 0

3.2.29 f(a, b) = max(a, b).

3.3.3 a→ 0 = ¬a ∨ 0 = ¬a.

a→ 1 = ¬a ∨ 1 = 1.

4.2.8 [[¬ϕ]] = [[ϕ→⊥]] = [[ϕ]]→ [[⊥]] = [[ϕ]]→ 0 = ¬[[ϕ]]

[[ϕ↔ψ]] = [[(ϕ→ψ)∧(ψ→ϕ)]] = [[ϕ→ψ]]∧[[ψ→ϕ]] = ([[ϕ]]→[[ψ]])∧([[ψ]]→[[ϕ]]) =

c© 2017 Jesper Carlström 123

Solutions to the exercises

[[ϕ]]↔ [[ψ]]

4.2.17 [[¬(P2→¬P3)∧(P1→P5)]] = [[¬(P2→¬P3)]]∧[[(P1→P5)]] = ¬[[P2→¬P3]]∧
([[P1]]→[[P5]]) = ¬([[P2]]→[[¬P3]])∧(0→1) = ¬(0→¬[[P3]])∧(0→1) = ¬1∧1 = 0.

4.2.31 Assume that ϕ↔ ψ is a tautology; that is, its truth value is 1 in every
interpretation. If one considers the truth table for ↔ one sees that ϕ and ψ
have the same truth values in all interpretations. The converse is also evident
from the truth table.

4.2.32 ¬(P1 ∧ P2)↔ (P1 → ¬P2) is a tautology if and only if ¬(P1 ∧ P2) ≈
(P1→¬P2). Since P1→¬P2 ≈ ¬P1 ∨ ¬P2 the answer is yes according to de
Morgan’s laws.

(P1→ P2) ∨ (P2→ P3) ≈ ¬P1 ∨ P2 ∨ ¬P2 ∨ P3 ≈ >. This is a tautology.

(P1→(P2→P3))↔((P1∧P2)→P3) is a tautology if and only if (P1→(P2→P3)) ≈
((P1 ∧ P2)→ P3). The left hand side simplifies to (P1→ (P2→ P3)) ≈ ¬P1 ∨
¬P2∨P3 and the right hand side simplifies to (P1∧P2)→P3 ≈ ¬(P1∧P2)∨P3 ≈
¬P1 ∨ ¬P2 ∨ P3. Since these terms simplify to the same expression, this is a
tautology.

((P1 ∧ P4)→ (P2 ∨ P3))↔ (¬P1 ∨ P2 ∨ P3 ∨ P4) is a tautology if and only if
((P1 ∧P4)→ (P2 ∨P3)) ≈ (¬P1 ∨P2 ∨P3 ∨P4). We simplify the left hand side
as: (P1 ∧P4)→ (P2 ∨P3) ≈ ¬(P1 ∧P4)∨P2 ∨P3 ≈ ¬P1 ∨¬P4 ∨P2 ∨P3. This
is different from the right hand side: if P1 is interpreted as a true proposition
while the rest of the variables are interpreted as false propositions, then the
left hand side is true while the right hand side is false. Answer: this formula
is not a tautology.

4.2.41 In the case n = 1 one gets that ϕ1 � ϕ means that ϕ is true in every
interpretation where ϕ1 is true.

In the case n = 0 one gets that � ϕ means that ϕ is true in every interpreta-
tion; that is, ϕ is tautology. Indeed, one should check that ϕ is true in every
interpretation in which all the formulas on the left hand side of � are true, but
since there are no formulas there, every interpretation satisfies this criteria. In
conclusion: � ϕ is a way of writing that ϕ is a tautology.

5.3.6 It is enough to apply one rule: ∨I.

5.3.7 End the derivation by using ∨E. Above this line put ϕ∨ψ and derivations
from ϕ respectively ψ to ψ ∨ ϕ (use ∨I).

5.3.8 End by using ∨E. Above the line put ϕ ∨ ⊥ and two derivations: from
ϕ, respectively ⊥, to ϕ. The first consists of the formula ϕ itself. The other
consist of a single application of ⊥E.

5.3.9 End with →I. Above it, use ∨E.

5.3.10 End with →I. Above it, use ∨E.

5.4.4 A formula of the form ¬ψ. If every assumption is discharged, the last
rule has to discharge ψ. Thus, one derives ¬¬(ϕ ∨ ¬ϕ).

6.1.18 As (6.1.1), respectively (6.1.2).

6.1.22 The formula can be derived using →I twice. Thus, it is a tautology
according to the soundness theorem.

6.1.25 If one could derive it, according to the soundness theorem it would be a
tautology. But it is false in the interpretation where P1 is false and P2 is true.

124 c© 2017 Jesper Carlström

6.1.28 The first subset is consistent since there is a model of it. If one could
derive ⊥ from it, then, according to the soundness theorem, ⊥ should be true in
all interpretations for which the formulas in the set are true, but in the model
of the subset, ⊥ is still false.

The other is inconsistent. This is more easily seen by constructing a derivation
of ⊥ from it. Start by showing that P4 → P2, P2 → P3, P3 → ¬P4 ` ¬P4

and that P1 → P2, P2 → P3, P3 → ¬P1,¬P4 → P1 ` P4. Then join together
the two derivations into one derivation of ⊥ and check that all undischarged
assumptions are in the set {P1→P2, P2→P3, P3→¬P1, P4→P2, P3→¬P4,¬P4→
P1}.

6.1.29 Let, for instance, ϕ = > and ψ = ⊥. Then the formula is false, and
cannot, according to the soundness theorem, be derived.

6.1.31 In that case the last but one formula in the derivation would either be
P1 or P2 ∨ P3, but none of these can be derived from (P1 ∨ P2) ∨ P3. Indeed,
if one could derive P1 from (P1 ∨ P2) ∨ P3 then, according to the soundness
theorem, P1 would be true in all interpretations in which (P1∨P2)∨P3 is true.
But if P2 is true, then (P1 ∨ P2) ∨ P3 is true even when P1 is false. If, instead,
P2 ∨P3 could be derived from (P1 ∨P2)∨P3 then, according to the soundness
theorem, P2 ∨ P3 should be true in all interpretations in which (P1 ∨ P2) ∨ P3

is tue. But if P1 is true, then (P1 ∨ P2) ∨ P3 is true even if P2 ∨ P3 is not.

6.1.32 It is not possible to have this for every choice, as we have seen in
Exercise 6.1.31. But it is possible if ϕ = >, in which case we could end with
∨I from >.

6.1.33 In this case we should have a derivation of ⊥ by removing the last
step of the given derivation. But then, according to the soundness theorem, ⊥
should be a tautology, which is not the case.

6.1.34 Otherwise, if one removes the last step of such a derivation, one should
have a derivation from ϕ ∨ ψ to either ϕ or ψ. But since ϕ and ψ stand for
arbitrary formulas, we could, for instance, insert P1 forϕ and P2 for ψ and get
thus a derivation of either P1 or P2 from P1 ∨ P2. None of these is possible,
according to the soundness theorem, as neither P1 nor P2 should necessarily
be true just because P1 ∨ P2 is (though at least one of them should be true).

6.1.35 Assume that we had a derivation of the formula ending in two introduc-
tion rules. Then the last one should be a →I and the last but one a ∨I. But
then we should have the task of deriving either P1 or P2 (depending on which of
the ∨I-rules we chose) from P1 ∨P2. We have seen in the solutions of previous
exercises that this is impossible. But one can derive (P1∨P2)→(P1∨P2) using
only one →I-rule.

6.1.36 Assume that one can end with an introduction rule. Then we would
have, above that point, the task of deriving P1 from P1. It is impossible, accord-
ing to the soundness theorem, to derive P1 without any discharged assumption,
so P1 must indeed be used as an assumption. But if we do not discharge any
assumptions in the whole derivation, P1 would be left as an undischarged as-
sumption. This contradicts the fact that we have “derived P1 → P1”, since
by that we mean that we have created a derivation without any undischarged
assumptions.

6.1.37 That ϕ1, . . . , ϕn � ϕmeans that in every interpretation where ϕ1, . . . , ϕn

are true, ϕ is also true. But ϕ1, . . . , ϕn are true if and only if [[ϕ1]]∧· · ·∧ [[ϕn]] =
1. Thus it follows from ϕ1, . . . , ϕn � ϕ that if [[ϕ1]]∧· · ·∧[[ϕn]] = 1 then [[ϕ]] = 1;
that is, [[ϕ1]] ∧ · · · ∧ [[ϕn]] ≤ [[ϕ]]. The converse is shown by following this argu-
ment backwards.

c© 2017 Jesper Carlström 125

Solutions to the exercises

Then we can show that ϕ1, . . . , ϕn, ϕ � ψ ⇐⇒ ϕ1, . . . , ϕn � ϕ→ ψ is clearly
equivalent to having the following condition: [[ϕ1]] ∧ · · · ∧ [[ϕn]] ∧ [[ϕ]] ≤ [[ψ]]
is true in every interpretation if and only if [[ϕ1]] ∧ · · · ∧ [[ϕn]] ≤ [[ϕ]]→ [[ψ]] is
true in every interpretation. But this condition follows directly from the Galois
connection. (This shows that → really is what in the “language” corresponds
to �, which is a relation we do not have in our set of formulas.)

6.3.1 We have 1 ∧ a ≤ b if and only if 1 ≤ a→ b, according to the Galois
connection.

6.3.2 f(a, b) = a+ b.

6.3.3 a(>↔¬P1) = a((>→ (P1→⊥)) ∧ ((P1→⊥)→>)) = 9.

6.3.4 (⊥ ∧ ⊥) 6= ⊥, since they are different formulas. However they have the
same truth values, so (⊥ ∧ ⊥) ≈ ⊥. (P1 ↔ ⊥) = (¬P1 ∧ (⊥ → P1)) is true,
because of how ¬ and ↔ are defined. Therefore, we also have (P1 ↔ ⊥) ≈
(¬P1 ∧ (⊥→ P1)).

6.3.5 ϕ = P1 ∧ (P2 ∨ P3) ∧ ¬(P2 ∧ P3).

7.1.4 All formulas which are on a line are premises. In ∨E the two premises to
the right are side premises. In →E the premise on the right is a side premise.

7.3.2 The main premise in the last rule is ⊥. According to the theorem above,
this is a subformula of some undischarged assumption.

7.3.3 Normalize a given derivation of ϕ. According to the previous theorem,
this cannot end in an elimination rule. If it did, its main premise would be a
subformula of some undischarged assumption, but no such thing exists.

7.3.4 No. If one had such a derivation, one could normalize it and get a
normal derivation without undischarged assumptions in which only the rules
∨I,→I,→E and ∧E are used. Such a thing cannot end in an elimination rule,
and because of the form of the formula (it is an implication formula, i.e., the
outmost connective is an implication) the last rule has to be→I. The question
is now whether one can derive ¬P1∨¬P2 from ¬(P1∧P2). The last step in this
derivation cannot be ∨I (according to the soundness theorem), nor →I (since
¬P1 ∨ ¬P2 is not an implication formula), nor →E (since the main premise
must contain ¬P1 ∨¬P2 as subformula, and in turn, according to the previous
theorem, has to be also a subformula in ¬(P1 ∧P2)) and nor ∧E (for the same
reason). Hence we cannot continue using only these four rules.

7.3.7 Assume ` P1. In this case there is a normal derivation of P1 without
any undischarged assumptions. Assume first that it does not contain RAA.
Then it can only contain subformulas of P1, which is impossible, as no rules
can be applied to these. That is, a possible derivation has to use RAA. But
then there is, according to Glivenko’s theorem, a derivation which uses RAA
in the last step, and above this last step there is a normal derivation from ¬P1

to ⊥. The only subformula of these, other than the formulas themselves, is P1,
but then the only rules we can use are →I, →E and ⊥E. One is then forced
to go around in circles when seeking a normal derivation with only these rules.

7.3.8 Assume that ` ¬P1. In this case there exists a normal derivation of ¬P1

without any undischarged assumptions. Assume first that it does not contain
RAA. Then it can only contain subformulas of ¬P1. It cannot end with an
elimination rule, so it has to end with →I. Above it there should be a normal
derivation from P1 to ⊥, but the only subformulas of these are the formulas
themselves, so no rules except ⊥E are possible. Not even this one can be used,
acording to Exercise 7.3.2. Therefore, every derivation of ¬P1 must contain
RAA, but according to Glivenko’s theorem, there would exist, in this case, a

126 c© 2017 Jesper Carlström

derivation which ends in RAA and does not have RAA anywhere else. Above
RAA we must have a normal derivation from ¬¬P1 to ⊥. For the same reasons
as in the previous exercise, one can see that this is not possible.

7.3.9 Assume that you have a derivation without RAA. By normalizing it, one
could get a normal derivation without RAA. According to Theorem 7.3.1 it
cannot end with an elimination rule, so the last rule must be ∨I. Above it,
we have a normal derivation of P1 or of ¬P1, but you have shown in the last
couple of exercises that this is impossible.

7.3.10 No. If one had such a derivation, one should be able to normalize it to
get a RAA-free normal derivation without undischarged assumptions. Let us
consider such a derivation. It cannot end in an elimination rule, so it has to
end with →I. The step above it cannot be an introduction rule, since ∨I is
the only candidate, but its premises cannot be derived from ¬(P1 ∧P2) (which
can be shown using both the soundness theorem and the subformula property).
Thus, it has to be an elimination rule, which is our next step. Then the main
premise has to be a subformula of ¬(P1 ∧ P2), which excludes the possibility
of having ∨E. For the same reason ∧E and →E are excluded, since the main
premise in such cases should also contain ¬P1 ∨ ¬P2 as a subformula, which
is impossible. We are only left with ⊥E. But it is impossible to derive ⊥
from ¬(P1 ∧ P2), which can be shown by using the soundness theorem or the
subformula property.

7.3.11 Because of the subformula property, one can only use rules which con-
tain the operation ∨.

7.3.25 We first try to find a normal derivation without RAA. Since every for-
mula in the derivation must be, in this case, a subformula of some undischarged
assumption or of the conclusion P2, it is only the formulas ¬P1 and ⊥ the ones
we have to work with, in addition to the ones occurring in the exercise. In par-
ticular, it follows that we just need to investigate the rules →I, →E and ⊥E.
We cannot end with an introduction rule, so we must end with an elimination
rule, whose main premise is a subformula of some undischarged assumption;
that is, of P1 → P2 or ¬P1 → P2 or ¬P1 or ⊥. If →E is the rule, the main
premise has to be P1→P2 or ¬P1→P2, since it should contain the conclusion
P2. Then we must have P1 respectively ¬P1 as side premises, but these are
not derivable. Therefore, this is not a viable path to take. In the same way,
it is not viable to end with ⊥E. We have therefore excluded the possibility of
doing this derivation without RAA. According to Glivenko’s theorem, we know
that there is a derivation which concludes with RAA. We therefore go on with
the problem of deriving ⊥ from P1→P2, ¬P1→P2, ¬P2, without using RAA.
We look for a normal derivation. The last rule must therefore be →E with
¬P2 as main premise. It remains to derive the side premise P2. With the same
reasoning as above, we conclude that the last rule should be→E with ¬P1→P2

as the main premise. The side premise ¬P1 is derived from the assumption P1

together with P1→ P2 and ¬P2.

8.1.3 If Γ = {γ1, . . . , γn} was closed under derivations, γ1∧ · · · ∧γn ∈ Γ, which
is impossible, since it contains more logical operations than γ1, . . . , γn. (Note
that in the case Γ = ∅ then the conjunction in this argument is >.)

We can also show the result by noting that all of the following formulas are
derivable, and hence necessarily included in any set closed under derivations:
>,> ∧>, (> ∧>) ∧ >,

8.1.13 It is sufficient to show that Γ∗ ∪ {ϕ} is consistent. Assume therefore
that it was inconsistent. Consider a derivation of ⊥, without any undischarged
assumptions, except, possibly, formulas in Γ∗ ∪ {ϕ}. Continue the derivation
downwards with a →I and discharge all assumptions of ϕ. One then gets a

c© 2017 Jesper Carlström 127

Solutions to the exercises

derivation showing that Γ∗ ` ¬ϕ. But this contradicts ¬ϕ 6∈ Γ∗ since Γ∗ is
closed under derivations.

8.1.14 Construct a derivation of ϕ from ¬ψ and ϕ ∨ ψ by ending with ∨E
where ϕ∨ψ is the main premise. In the derivation on the right, one can apply
that ¬ψ together with ψ gives ⊥ and concludes that ϕ with the help of ⊥E.

8.1.15 Show ψ ` ϕ→ ψ using →I and the fact that Γ∗ is closed under deriva-
tions.

8.1.16 Use the fact that if ϕ 6∈ Γ∗, then ¬ϕ ∈ Γ∗ and that ¬ϕ ` ϕ→ ψ, along
with the fact that Γ∗ is closed under derivations.

8.1.17 That {P1, P2, P3,¬P1∨¬P2} is inconsistent is most easily shown by con-
structing a derivation. The set of all propositional variables is not maximally
consistent, since it is not closed under derivations.

8.2.1 Assume that Γ ` ⊥. It follows from the soundness theorem that Γ � ⊥.
But then every model of Γ would be a model of ⊥, which is impossible if there
is a model of Γ, since nothing is a model of ⊥.

8.2.4 Consider a formula which is true in all interpretation in which a certain
set of formulas is true. Then there is a derivation of the formula in natural
deduction, without any undischarged assumptions, except, possibly, those in
the given set.

8.2.5 The first part of the exercise is to prove that ` ϕ ⇐⇒ � ϕ. This is just
a special case of the soundness theorem and the completeness theorem. The
second part is to prove that Γ 6` ⊥ ⇐⇒ Γ 6� ⊥. It also follows immediately
from the soundness theorem and the completeness theorem.

8.2.6 According to the previous exercise, we have ` ϕ↔ψ if and only if ϕ↔ψ
is a tautology. The rest follows as in the previous exercise.

8.2.7 According to the previous exercise, it is enough to show that ` (ϕ∨ψ)→
(ϕ ∧ ψ) if and only if ` ϕ↔ ψ. This is most easily shown by explaining how a
derivation of one could be used to construct a derivation of the other.

8.2.8 The resulting formulas are of the form ϕ↔ψ. These are, according to the
previous exercise, derivable if and only if ϕ ≈ ψ. We need therefore to prove
the latter. But that ϕ and ψ have the same value in every interpretation is
guaranteed by the fact that they are in the left, respectively right hand side of
the Boolean axioms, since the truth values are computed in Boolean algebras.

9.1.15 “x2 occurs in x23” means that 2 = 23, which is not true; thus, the
answer is no. On the other hand, the answer to the other questions are yes,
with the only exception that x2 does not occur in f3(x0, f1).

9.1.17 f3(x0, f1)[x1/x0] = f3(x1, f1)

f3(x0, x1)[x1/x0][x0/x1] = f3(x0, x0)

f3(x0, f1)[f4(f3(x0, x1), f3(x2, x3))/x2] = f3(x0, f1)

9.1.18 Give a proof by induction. Split t into the two possible cases: t can be
a variable or a function symbol with arguments.

9.1.19 If t = xi 6= xj , then t[xi/xj][xj/xi] = xj 6= t. To show that if xi does
not occur in t then t[xi/xj][xj/xi] = t, we use a proof by induction. If t = xk,
we consider two cases. If k = j then we have t[xi/xj][xj/xi] = xj = t. If k 6= j
then we have i 6= k, and thus t[xi/xj][xj/xi] = xk[xi/xj][xj/xi] = xk[xj/xi]. If
xi does not occur in t then we have i 6= k, so that xk[xj/xi] = xk = t.

128 c© 2017 Jesper Carlström

If t = f(. . .) then the results follows immediately from the inductive hypothesis,
since the substitution is done by substituting in every argument.

9.2.4 a) The tree looks precisely as in predicate logic.

b) Every rule from the definition of Form in propositional logic is also a rule
in the new definition of Form.

c) x0 and x1, for instance.

d) x0
.
= x1 is an example; another one is ∀x0>.

9.2.6 a) According to the definition, it is propositional if P1 and P2 are propo-
sitional, which is the case by definition.

b) (With my examples:) “x0
.
= x1 propositional” is false according to the first

row of the definition. “∀x0> propositional” is false according to the last row
of the definition.

9.2.7 “xi occurs in t1
.
= t2” is defined as xi occurs in t1 or in t2.

“xi occurs in >” is defined as false, and in the same way one deals with ⊥.

“xi occurs in ϕ ∧ ψ is defined as xi occurs in ϕ or in ψ – and in the same way
it is defined for ∨ and →.

“xi occurs in ∀xjϕ” is defined as i = j or xi occurs in ϕ – and in the same way
for ∃.

9.2.8 Induction over Form. For many sorts of formulas it is vacuously true
that “if ϕ is a propositional formula, it is false that xi occurs in ϕ”. For the
other cases it follows immediately from the induction step.

9.2.10 (x1
.
= x2 ∧ P1(f1(x1, x2)))[f2/x1] = (f2

.
= x2 ∧ P1(f1(f2, x2)))

(x1
.
= x2 ∧ ∀x1(x1

.
= x2))[f2/x1] = (f2

.
= x2 ∧ ∀x1(x1

.
= x2))

∀x1∀x2(x1
.
= x2 ∧ x2

.
= x3)[x3/x2] = ∀x1∀x2(x1

.
= x3 ∧ x3

.
= x3) (precedence

rule: substitution binds stronger than quantifiers).

9.2.15 In atomic formulas, it is false that xi occurs bound, and the same for
> and ⊥. In ϕ ∧ ψ, ϕ ∨ ψ and ϕ→ ψ bound means that the variable occurs
bound in ϕ or in ψ. In ∀xjϕ, xi occurs bound if i = j or xi occurs bound in
ϕ. Similarly for the case of ∃.

9.2.16 a) Yes. b) Yes. c) Yes. d) No. e) Yes. f) Yes. g) No. h) Yes (¬ is
defined as →⊥).

9.2.17 a) {x1, x2}.

b) {x1, x2}.

c) {x3}.

d) ∅.

e) FV(ϕ ∧ ψ) = FV(ϕ) ∪ FV(ψ) = {x1}.

f) FV(ϕ ∨ ψ) = FV(ϕ) ∪ FV(ψ) = {x1}.

9.2.18 If ϕ = (t1
.
= t2) the result follows from Exercise 9.1.18. If ϕ = > or

ϕ = ⊥ the substitution does not change anything. In the cases ϕ = (ϕ1 ∧
ϕ2), ϕ = (ϕ1 ∨ ϕ2) and ϕ = (ϕ1 → ϕ2) the result follows immediately from
the inductive hypothesis, since substitution in such expressions are done by
substituting in every place, and the inductive hypothesis says that the result

c© 2017 Jesper Carlström 129

Solutions to the exercises

holds in such cases. If ϕ = ∀xiψ and xj does not occur freely in ϕ, then
i = j or xi does not occur freely in ψ. In the first case, this is clear since
substitution does not change anything. In the second case, the result follows
from the inductive hypothesis. Finally, in the case of ∃ one does the same as
with ∀.

9.2.19 FV(ϕ) = {x1, x3}.

ϕ[f1(x3)/x1] =
∀x2(∀x1P1(x1, x2)→∃x2(f1(f1(x3))

.
= f2(x2, x3))) ∨ ∀x3¬(f1(x3)

.
= x3).

ϕ[x1/x2] = ϕ.

ϕ[f2(x1, x3)/x3] =
∀x2(∀x1P1(x1, x2)→∃x2(f1(x1)

.
= f2(x2, f2(x1, x3)))) ∨ ∀x3¬(x1

.
= x3).

9.2.20 a) f1
.
= f1, P1(f1(f2)), P1(f2).

b) x0
.
= x1, x1

.
= x0, P1(f1(x0))

.
= x1.

9.2.21 We start by showing that t[xi/xi] = t holds for all terms t and variables
xi. If t = xj there are two cases to check. When i = j we get xj [xi/xi] = xi,
and when i 6= j we get xj [xi/xi] = xj . In both cases, the result is equal to t.
If t = fj(. . .), the result follows immediately from the induction step.

We now show that ϕ[xi/xi] = ϕ is true for all formulas ϕ and variables xi. For
atomic formulas, it follows from the fact that the corresponding property holds
for terms, as we just proved. For composite formulas, it follows immediately
from the inductive hypothesis, except for the case in which ϕ is of the form ∀xjψ
or ∃xjψ. We consider the first of these cases, as the other one is completely
analogous. When i = j we get, by definition of substitution, that ϕ[xi/xi] = ϕ.
When i 6= j, we get ϕ[xi/xi] = ∀xj(ψ[xi/xi]). Since the inductive hypothesis
gives ψ[xi/xi] = ψ, the result follows.

9.2.22 Induction again. For atomic formulas, this reduces to Exercise 9.1.19.
If ϕ = > or ϕ = ⊥ the result is obvious since substituting does not change
anything. If ϕ = (ϕ1 ∧ ϕ2) the result follows immediately from the inductive
hypothesis, as well as in the case of ∨ and→. Consider now the case ϕ = ∀xiψ.
Assume that y does not occur in ϕ; then we have y 6= xi. We consider two
cases, depending on whether x = xi or not. In the case x = xi we have
ϕ[y/x][x/y] = (∀xiψ)[x/y] = ϕ[x/y] = ϕ, where the last step uses that y does
not occur in ϕ. Consider now the case x 6= xi. The previous exercise handled
the case where y = x, so we assume now that we have y 6= x. We then have
ϕ[y/x][x/y] = (∀xiψ[y/x])[x/y] = ∀xiψ[y/x][x/y] = ∀xiψ, where the last step
uses the inductive hypothesis. In the same way one handles the case ∃.

9.2.23 With f = ∀x0(x1
.
= x1), y = x0, x = x1 we have ϕ[y/x][x/y] =

∀x0(x1
.
= x1)[x0/x1][x1/x0] = ∀x0(x0

.
= x0)[x1/x0] = ∀x0(x0

.
= x0).

10.1.1 If Pj is nullary, then its interpretation will be a proposition which is
either true or false. If fj is nullary, its interpretation will be an element of the
domain (a constant).

10.1.17 a) A[xi 7→ a][xi 7→ b] = A[xi 7→ b]

b) A[xi 7→ [[xi]]
A

] = A

c) A[xi 7→ [[xi]]
A[xi 7→b]

] = A[xi 7→ b]]

10.1.18 Assume that i 6= j. It is sufficient to check that v[xi 7→ a][xj 7→
b](xk) = v[xj 7→ b][xi 7→ a](xk) holds for all variables xk. If k = i we get
v[xi 7→ a][xj 7→ b](xk) = v[xi 7→ a](xi) = a and v[xj 7→ b][xi 7→ a](xk) = a.

130 c© 2017 Jesper Carlström

If k = j we get v[xi 7→ a][xj 7→ b](xk) = b and v[xj 7→ b][xi 7→ a](xk) =
v[xj 7→ b](xj) = b. For every other k we get v[xi 7→ a][xj 7→ b](xk) = v(xk)
and v[xj 7→ b][xi 7→ a](xk) = v(xk).

If, on the other hand, i = j, the terms are simplified, according to previous
exercise, to A[xj 7→ b], respectively A[xi 7→ a]. Thus, xi is given the value b,
respectively a by these valuations, so if a 6= b then the valuations are not equal.

10.1.21 [[∀x0(x0
.
= x1)]] = 1 if and only if the domain has precisely one indi-

vidual.

[[∃x0(x0
.
= x1)]] = 1 always holds.

10.2.2 We will show that if [[∀xϕ]] = 1, then [[ϕ]] = 1. The former means,

by definition, that [[ϕ]]
[x 7→a]

= 1 holds for every element a in the domain, in

particular, for a = [[x]]. But then [[ϕ]] = [[ϕ]]
[x7→[[x]]]

= 1.

10.2.3 We will show that if [[ϕ]] = 1, then [[∃xϕ]] = 1, i.e., that [[ϕ]]
[x 7→a]

= 1
for some choice of a. But if we let a = [[x]], then that follows immediately,

since [[ϕ]]
[x7→[[x]]]

= [[ϕ]] = 1. (Note that this argument is completely dual to the
solution of the previous exercise.)

10.2.7 With ψ = ¬ϕ we get the following proposition to consider: ∀x0(ϕ ∨
¬ϕ) � ∀x0ϕ ∨ ¬ϕ. But [[∀x0(ϕ ∨ ¬ϕ)]] = 1, while [[∀x0ϕ ∨ ¬ϕ]] does not have
to be 1. If ϕ = (x0

.
= x1) and the domain consists of at least two elements, it

becomes, for instance [[∀x0ϕ ∨ ¬ϕ]] = ¬[[ϕ]], which is 0 if x0 and x1 are given
the same value.

10.2.8 By taking ϕ = ⊥ we get the following propositions to consider: ∀x0⊥∨
ψ � ∀x0(⊥∨ψ). We will investigate how the truth values differ, so that we can
simplify the formula to some other with the same truth value: ∀x0⊥ ∨ ψ has
the same truth value as ψ and ∀x0(⊥ ∨ ψ) has the same truth value as ∀x0ψ.
We therefore have the following proposition to consider: ψ � ∀x0ψ. But this
has been studied in Example 10.2.6.

11.1.3 Assume that [[∃x¬ϕ]] = 1. This means that [[¬ϕ]]
[x 7→a]

= 1 for some a.

Hence, for this a, [[ϕ]]
[x 7→a]

= 0, so that it does not hold [[ϕ]]
[x 7→a]

= 1 for every
a, which means that [[∀xϕ]] = 0, and hence [[¬∀xϕ]] = 1. We can show the other
direction by following the argument backwards.

11.1.7 It has been previously shown that ϕ � ∃xϕ (Example 11.2.30). We
shall prove the converse. Assume therefore that [[∃xϕ]] = 1; that is to say,

[[ϕ]]
[x7→a]

= 1 for some a. If x does not occur free in ϕ, then [[ϕ]] = [[ϕ]]
[x 7→a]

= 1.

11.1.10 Assume that [[∃x(ϕ ∧ ψ)]] = 1, which means that [[ϕ ∧ ψ]]
[x7→a]

= 1 for

some a. Then, for this a, [[ϕ]]
[x 7→a]

= 1 and [[ψ]]
[x 7→a]

= 1. But if x does not

occur freely in ψ, we have [[ψ]]
[x 7→a]

= [[ψ]]. Furthermore, since [[ϕ]]
[x 7→a]

= 1,
[[∃xϕ]] = 1. It follows that [[∃xϕ ∧ ψ]] = [[∃xϕ]] ∧ [[ψ]] = 1 ∧ 1 = 1. The other
direction is proven by following the previous argument backwards.

11.1.13 Yes, the formula is a tautology. Take an arbitrary interpretation A.
We consider two cases. Assume first that PA1 (a) is false for a certain a in

the domain. Then [[P1(x0)→ ∀x0P1(x0)]]
[x0 7→a]

= 1, and thus [[∃x0(P1(x0)→
∀x0P1(x0))]] = 1. Assume, on the other hand, that PA1 (a) is true for all a. Then
[[∀x0P1(x0)]] = 1, so that [[P1(x0)→∀x0P1(x0)]] = 1 and hence [[∃x0(P1(x0)→
∀x0P1(x0))]] = 1.

11.1.15 ¬∀x(ϕ→ ψ) ≈ ∃x¬(ϕ→ ψ) ≈ ∃x¬(¬ϕ ∨ ψ) ≈ ∃x(ϕ ∧ ¬ψ).

¬∃x(ϕ ∧ ψ) ≈ ∀x¬(ϕ ∧ ψ) ≈ ∀x(¬ϕ ∨ ¬ψ) ≈ ∀x(ϕ→¬ψ).

c© 2017 Jesper Carlström 131

Solutions to the exercises

11.2.13 (∃x1P1(x0, x1))[x1/x0] = (∃x1P1(x1, x1)). Its truth value is 1 if and
only if PA1 (a, a) = 1 for some a in the domain. If A is the interpretation that
is used in the example, this means that a < a should be true for some real
number. But it is not, so (11.2.12) is false in that interpretation.

11.2.15 Let ϕ = ∃x1P1(x0, x1), t = x1, j = 0. Then the left hand side of
(11.2.14) is the truth value of (11.2.12), which is 0 according to the previous
exercise.
The right hand side is, on the other hand,

[[∃x1P1(x0, x1)]]
[x0 7→[[x1]]]

,

which is 1 since [[P1(x0, x1)]]
[x0 7→[[x1]]][x1 7→[[x1]]+1]

= 1, that means the same as
[[x1]] < [[x1]] + 1, which is in turn true.

11.2.20 x1 is free for x0 in ∃x0P1(x0, x1) since x0 is bound by ∃. This means
that the condition i 6= j in Definition 11.2.18 is not satisfied.

x0 is bound for x1 in the same formulas, since the variable x0 is bound by the
quantifier if one inserts it in the place of x1. More formally, it holds that 1 6= 0,
that x0 occurs freely in P1(x0, x1) and that x0 occurs in x0. Therefore, the
conditions in Definition 11.2.18 are satisfied.

x0 is free for x1 in ∀x0P1(x0), since the formula does not contain x1.

11.2.22 The substitution of x for x does not change anything, so it is clear
that if the notion free for is defined in the right way, x should be free for x in
ϕ. Checking this is done by induction. This is clear for atommic formulas, and
for formulas composed by connectives it follows immediately by the inductive
hypothesis. For formulas formed with ∀ and ∃ it follows immediately from the
inductive hypothesis and the fact that the conditions “i 6= j” and “xj occurs
in xi” in the definition of bound for cannot be satisfied simultaneously.

11.2.23 This is proved by induction. It is vacuously true for atomic formulas,
since t cannot be bound for x in those. For formulas composed by connectives
it follows from the inductive hypothesis. For quantified formulas it follows from
the condition saying that xj should occur in t.

11.2.24 It follows immediately from the previous exercise: if t was bound for
x in ϕ, then some of the variables in t would be quantified in ϕ.

11.2.31 Assume that [[∀xϕ]] = 1; that is, [[ϕ]]
[x 7→a]

= 1 for all a. If t is free for

x in ϕ, we have therefore [[ϕ[t/x]]] = [[ϕ]]
[x 7→[[t]]]

= 1.

11.2.32 With x = x0, t = x1, ϕ = ∀x1(x0
.
= x1) we get the following proposi-

tion to consider: ∀x1(x1
.
= x1) � ∃x0∀x1(x0

.
= x1). The first formula is true in

all interpretations, but the other formula is only true if there is precisely one
individual.

11.2.33 With x = x0, t = x1, ϕ = ∃x1¬(x0
.
= x1) we get the following

proposition to consider: ∀x0∃x1¬(x0
.
= x1) � ∃x1¬(x1

.
= x1). The first formula

is true if there are at least two individuals; the other one, on the other hand,
is always false.

11.2.37 [[t[y/x][x/y]]] = [[t[y/x]]]
[y 7→[[x]]]

= [[t]]
[y 7→[[x]]][x 7→[[y]][y 7→[[x]]]]

. But since

[[y]]
[y 7→[[x]]]

= [[x]], so we can continue: = [[t]]
[y 7→[[x]]][x 7→[[x]]]

= [[t]]
[y 7→[[x]]]

.

One computes similarly for ϕ, but in the first equality, the condition that x is
free for y in ϕ[y/x] is needed, and in the second equality one uses that y is free

for x in ϕ. We get the answer [[ϕ]]
[y 7→[[x]]]

.

12.1.6 Let ϕ = (u
.
= x), where x is a variable which does not occur in u. Then

132 c© 2017 Jesper Carlström

ϕ[t/x] = (u
.
= t) and ϕ[s/x] = (u

.
= s). We can, hence, use the replacement

rule.

12.1.8 End the derivation by using →I and three ∀I. To derive x0
.
= x2, the

replacement rule is used, and above it ∧E.

12.2.1 End with →I. To derive ⊥, we use that from ∀xϕ we can derive ϕ by
∀E, and later ∃xϕ by ∃I. This gives a contradiction.

12.2.2 End with ∧I, and above it use →I. For ∀xϕ ` ϕ only one instance of
∀E is needed. For ϕ ` ∀xϕ use ∀I, which is possible because x does not occur
freely in ϕ.

12.2.3 Conclude as in the previous exercise. For ∃xϕ ` ϕ, one instance of ∃E
is used, which is allowed because x does not occur freely in ϕ. For the other
direction we use ∃I.

12.2.4 End with ∧I and thereafter →I. For ∀x(ϕ∨ψ) ` ∀xϕ∨ψ RAA is used
as the last step. To get to ⊥ we use→E with ¬(∀xϕ∨ψ) as the main premise.
The side premise is derived from ϕ, by ∀I (this step requires that x does not
occur freely in any undischarged assumption, but this condition is satisfied,
since x does not occur freely in ψ) followed by ∨I. Finally, the formula ϕ is
derived from ∀x(ϕ ∨ ψ) and ¬(∀xϕ ∨ ψ).

For ∀xϕ ∨ ψ ` ∀x(ϕ ∨ ψ) one discharges ∀I (which requires that x does not
occur freely in ψ). Thereafter, an instance of ∨E.

12.2.5 For ∃x(ϕ ∧ ψ) ` ∃xϕ ∧ ψ one discharges by ∃E, which is possible since
x does not occur freely in ψ. The side derivation ends with ∧I.

To derive ∃x(ϕ ∧ ψ) from ∃xϕ ∧ ψ one ends with ∃E applied to ∃xϕ, which is
possible since x does not occurs freely in ψ. The formula ∃xϕ is derived, in
turn, using ∧E from ∃xϕ∧ψ. To derive ∃x(ϕ∧ψ) from ϕ and ∃xϕ∧ψ one ends
with ∃I and above it ∧I. The formula ψ is derived through ∧E from ∃xϕ∧ψ.

13.1.17 If ϕ ` ∀xϕ, then, according to the soundness theorem, we would have
ϕ � ∀xϕ, but if one takes ϕ = (x0

.
= x1) and gives the same value to both x0

and x1, then [[ϕ]] = 1, while [[∀xϕ]] = 0 if there are at least two individuals.

13.1.19 Assume that this set was inconsistent. Then, according to the sound-
ness theorem, it could not have a model. But the following is a model of it: let
the domain consist of two elements and let all variables have the same value.

13.3.2 a) From ∀xϕ one derives ϕ[y/x] in one step if y is free for x in ϕ. One
then concludes through ∀I and asserts that ∀yϕ[y/x], which is correct if y does
not occur freely in ϕ.

b) Let ϕ = ∃y¬(x
.
= y), where x, y are different variables. If we had (13.3.3) in

this case, then according to the soundness theorem we should have ∀x∃y¬(x
.
=

y) � ∀y∃y¬(y
.
= y). But the left hand side is true if the domain has at least

two elements, while the right hand side is always false.

c) Let ϕ = (y
.
= z), where x, y, z are different variables. If we had (13.3.3) in

this case, then according to the soundness theorem we should have ∀x(y
.
= z) �

∀y(y
.
= z). But if one lets y and z have the same value and there are at least

two elements in the domain, the left hand side is true while the right hand side
is false.

13.3.4 a) From ϕ[y/x] we derive ∃xϕ in one step, as long as y is free for x in
ϕ. Therefore we can, by ∃E, conclude that ∃xϕ and discharge the assumption
ϕ[y/x], assuming that y does not occur freely in ϕ.

c© 2017 Jesper Carlström 133

Solutions to the exercises

b) Let ϕ = ∀y(x
.
= y), where x, y are different variables. If (13.3.5) was

true, then according to the soundness theorem we would have ∃y∀y(y
.
= y) �

∃x∀y(x
.
= y). But the left hand side is always true, while the right hand side

is true only if there is precisely one element in the domain.

c) Let ϕ = (y
.
= z), where x, y, z are different variables. If (13.3.5) was true,

then according to the soundness theorem we would have ∃y(y
.
= z) � ∃x(y

.
= z).

But the left hand side is a tautology, while the right hand side is false if y and
z have different values.

13.3.11 That y is free for x in ∀yψ means that x does not occur freely in ∀yψ.
This, in turn, means that x = y or that x does not occur freely in ψ. In the
first case, the result follows from Exercise 9.2.21. In the second case, the result
follows from Exercise 9.2.18.

13.3.12 The case y = x is already considered in Exercise 9.2.21, so we assume
therefore that y 6= x. We prove the claim by induction. For atomic formulas,
it reduces to Exercise 9.1.19. If ϕ = > or ϕ = ⊥, the claim is obvious,
since substitution does not change anything. If ϕ = (ϕ1 ∧ ϕ2), the result
follows immediately from the inductive hypothesis, as in the cases of ∨ and→.
Consider now the case ϕ = ∀xiψ. That y is free for x in ϕ means that x does
not occur freely in ϕ or that both of the following assertions are true: xi 6= y
and y is free for x in ψ. That y does not occur freely in ϕ means that y = xi
or that y does not occur freely in ψ. Together, these two assumptions lead us
to the following possible four situations:

a) x does not occur freely in ϕ and y = xi.

b) x does not occur freely in ϕ and y does not occur freely in ψ.

c) xi 6= y, y is free for x in ψ and y = xi.

d) xi 6= y, y is free for x in ψ and y does not occur freely in ψ.

Consider first case a. Then ϕ[y/x][x/y] = ϕ[x/y] = ϕ.

Consider now case b. Then ϕ[y/x][x/y] = ϕ[x/y]. If y = xi the result follows
immediately, since substitution does not change anything. If y 6= xi, then
ϕ[x/y] = ∀xiψ[x/y] = ∀xiψ = ϕ.

In case c we have ϕ[y/x][x/y] = (∀yψ[y/x])[x/y] = ∀yψ[y/x] = ϕ, where the
last step is justified by the previous exercise.

In case d we split into two cases. If x = xi we have ϕ[y/x][x/y] = ∀xiψ[x/y] =
∀xiψ = ϕ. If x 6= xi, we have ϕ[y/x][x/y] = (∀xiψ[y/x])[x/y] = ∀xiψ[y/x][x/y] =
∀xiψ, where the last step follows by the inductive hypothesis.

13.3.13 a. Under these assumptions ψ can be derived by going from ∀x0ϕ with
∀E to ϕ[x1/x0] and then using ∀I till ∀x1ϕ[x1/x0], ending afterwards with→I.
Then the soundness theorem gives that ψ is a tautology.
b. Take ϕ = (x1

.
= x2).

c. Take ϕ = ∃x1¬(x0
.
= x1).

d. Take ϕ = ∀x1(x0
.
= x1) ∧ (x1

.
= x1).

13.3.14 a) The application of ∃I is not correct, since the formula in the row
above must be of the form (x1

.
= x1)[t/x1] for some term t, but then it is t

.
= t

which is incorrect, since it should be x0 to the left and x1 to the right.

b) Yes. Use “refl”, followed in the next row by ∃I, and finally →I (which does
not discharge any assumptions).

c) No. According to the soundness theorem, it would then be true in all inter-

134 c© 2017 Jesper Carlström

pretations, while it is false in 〈N;>; 〉.

14.1.6 It suffices to check that Γ∪{¬ϕ} is consistent. But if it was inconsistent,
we could end with RAA and then deduce ϕ from Γ, which is impossible since
Γ is closed under derivation and ϕ 6∈ Γ.

14.1.10 a) f1(x0, x1)
.
= x1. It belongs to Γ since [[f1(x0, x1)

.
= x1]] = 1 ⇐⇒

[[f1(x0, x1)]] = [[x1]] ⇐⇒ 0 + 1 = 1.

b) Γ is consistent by the soundness theorem since it has a model, namely
〈Z; ; +, 0〉. To check that it is maximally consistent, it is enough to check that
Γ∪{ϕ} is consistent, so ϕ ∈ Γ. Assume therefore that Γ∪{ϕ} is consistent. If
ϕ 6∈ Γ, then ϕ would be false in the interpretation, and hence we would have
¬ϕ ∈ Γ, which is not possible (refer to the Exercise 8.1.13).

c) No; we have ∃x0(f1(x0, x1)
.
= f2) ∈ Γ, but (f1(t, x1)

.
= f2) 6∈ Γ for every

term t. To see that this is the case, note that [[f1(x0, x1)
.
= f2]]

[x0 7→a]
= 1 ⇐⇒

a+1 = 0. With a = −1 the formula is true, and hence the existential formula is
true in the model. But f1(t, x1)

.
= f2 has truth value 1 only if [[t]]+1 = 0, which

is impossible since no term has negative value in the model. This can be checked
through an inductive proof: for terms that are variables, we have [[xi]] = i, which
is non negative. For terms of the form f1(t, s), we have [[f1(t, s)]] = [[t]] + [[s]],
which is non negative since both [[t]] and [[s]] are non negative, by inductive
hypothesis. For terms of the form f2 the value is 0.

14.2.2 Because of theorem 14.1.2 it is enough to show that the needed formulas
are derivable from Γ∗, since then they must be in Γ∗. That ∼ is reflexive follows
from the fact that t

.
= t can be derived by the rule “refl”. That ∼ is symmetric

follows since t
.
= s ` s .

= t (Example 12.1.3) and that it is transitive follows
from Exercise 12.1.6.

14.2.3 As indicated, it suffices to derive fi(t1, . . . , tai
)
.
= fi(s1, . . . , sai

) from
tj

.
= sj , for j = 1, . . . , ai, since the latter formulas are by assumption in Γ∗. Use

first the reflexivity rule to derive fi(t1, . . . , tai
)
.
= fi(t1, . . . , tai

). Use then the
replacement rule, with t1

.
= s1, to change the first argument on the right hand

side of s1. Continue then with the substitution rule, a total number of ai times,
until all the arguments have been changed. The result is a derivation, all of
whose unfinished assumptions are in Γ∗, and being Γ∗ closed under derivations,
it contains the final formula as well.

14.2.4 We will show by induction that [[t]] = t̃. For variables it follows by
definition, since v(xi) is defined as the equivalence class of xi. Let us now
carry on the induction step. Assume that t = fi(t1, . . . , tai). We have [[t]] =
fAi ([[t1]], . . . , [[tai

]]). According to the inductive hypothesis, the arguments are
equal to t̃1, . . . , ˜tai

, so the definition of fAi gives that [[t]] is the equivalence class
of fi(t1, . . . , tai

).

14.2.5 t ∈ [[t]] is, according to the previous exercise, equivalent to t ∼ t, which
is true since ∼ is refexive. (Exercise 14.2.2).

14.2.9 [[∃xϕ]] = 1 is equivalent to [[∀x¬ϕ]] = 0, which according to the previous
lemma is equivalent to [[¬ϕ[t/x]]] = 0 for any term t which is free for x in ϕ.
But [[¬ϕ[t/x]]] = 0 is equivalent to [[ϕ[t/x]]] = 1.

14.2.15 Assume that Γ is consistent; we must show that it has a model. Sup-
pose that it does not have any model. This would make Γ � ⊥ hold, since
every model of Γ would be a model of ⊥ (since there are no such models). But
because of the completeness theorem, we would then have Γ ` ⊥, and so Γ
would be inconsistent, a contradiction.

c© 2017 Jesper Carlström 135

Index

absorption, 4
absorption rules, 6
addition, 23
algebra of two elements

inductive definition, 25
argument, 67
arity, 65

for function symbols, 65
arity type, 67
associativity, 4
assumption, 36
atom, 7
atomic formula, 50, 71

Boole, George, 3, 4
Boolean algebra, 4

axioms for, 4, 101
definition, 6
in predicate logic, 81
initial, 5
of subsets, 5
ordering in, 7
trivial, 5
with two elements, 5

Boolean ring, 3
bound for, 84

closedness under derivation, 59
commutativity, 4
Compactness theorem, 108
complement, 4
conclusion, 51
congruence, 101
conjunction

empty, 9
in propositional logic, 35–36
nullary, 36

conjunctive normal form, 8
connective, 30, 68
consequence

in predicate logic, 78, 98
in propositional logic, 34, 47

consistency, 48
maximal, see maximal consistency

constant symbols, 65
countermodel

in predicate logic, 78
counting principle, 22
cut

in derivation, 117
maximal, 117

de Morgan’s rules, 4
deduction rules, 37
definition

inductive, 21, 29
recursive, 23

derivability
in predicate logic, 98
in propositional logic, 41, 47

derivation, 41
in predicate logic, 89
normal, 52

derivation rules
in predicate logic, 40, 90
in propositional logic, 40

discharged assumption, 37
disjunction

empty, 9
in propositional logic, 38–39
nullary, 39

disjunctive normal form, 8
distributivity, 4
domain, 73
duality, 4

between ∧ and ∨, 4

elimination rules, 35
equations

in Boolean algebra, 13–17
equivalence, 19

in Boolean algebra, 19
in predicate logic, 68, 81
in propositional logic, 30, 33, 41
logical, 81

equivalence relation, 77
Euler, Leonhard, 5
existence property, 104, 105

Form
in predicate logic, 68

formulas, 29
in predicate logic, 67–71
in propositional logic, 29–31

Form
in propositional logic, 30

free for, 84–87
free in, 70

136 c© 2017 Jesper Carlström

INDEX

free occurrence of, see free in
free variable, 70
function symbols, 65

nullary, 65

Galois connection, 17, 49
Glivenko’s theorem, 52, 113–115
greatest lower bound, 7

hypothesis, 36

idempotence, 4
identity element, 4
implication

in Boolean algebra, 17–19
in propositional logic, 36–38

inconsistency, 48, 99
induction, 25–26
inductive data types, 21
inductive hypothesis, 25
inductively generated, 22
inequality

in boolean algebras, 7
inference rules, 37
infimum, see greatest lower bound
integral, 70
integration variable, 70
interpretation of formulas

in predicate logic, 73
in propositional logic, 31

intersection
of subsets, 5

introduction rule, 35
inverse element, 4

Klein, Felix, 34

language
of predicate logic, 67

least upper bound, 7

main premise, 51
maximal consistency

in predicate logic, 103
in propositional logic, 59

maximal consistency extension
in predicate logic, 104

maximally consistent extension
in propositional logic, 60–61

metavariables, 29
model

in predicate logic, 77
in propositional logic, 34

model existence
in propositional logic, 61

model existence in predicate logic, 107
monoid, 101
multiplication, 24

natural numbers, 21–24

negation
in predicate logic, 68
in propositional logic, 30, 41

non-standard numbers, 108
normal derivation, 52
normal form, 8–10

conjunctive, 8
disjunctive, 8

normalization
strong, 117
weak, 53, 117

number of operations, 50

object variables, 29
OCaml, 22, 23
occurrence of a variable, see variable,

occurrence of
or

exclusive, 3
inclusive, 4

ordering
in Boolean algebras, 7

origin, 22

parentheses, 30
partial ordering, 7
Peano’s axioms, 100, 108
permutation, 116
Precedence rules, 18
precedence rules

in Boolean algebras, 8
predecessor, 23
predicate, see also relation, 65
premise, 51
propositional (properties of a formula),

68
propositional variables, 29, 67
propositions, 29

quantifier, 68

RAA, 41
recursion, 25–26
recursive definition, 23
reevaluation, 75
relation, 73
relation symbols, 67

nullary, 67
removed assumptions, 37
ring, 3

semantics
for predicate logic, 73–80
for propositional logic, 31–34

side premise, 51
soundness theorem

alternative formulation, 48, 98
for predicate logic, 97, 98
for propositional logic, 45, 48

c© 2017 Jesper Carlström 137

INDEX

structure, 74
subformula property, 54
substitution, 67

of terms in formulas, 69
of terms in terms, 67

substraction, 24
supremum, see least upper bound

tautology, 32
Term, 65
true in interpretations, 34
truth table, 5, 10, 18, 19, 32, 33
truth value

of a formula, 31, 76
truth values

in Boolean algebras, 18
two-elements-algebra, 5

union, 6

vacuously true, 46
valuation

change of, 75
of formulas, see truth value
of terms, 74
of variables, 73

variable
occurrence of, 66

variable restrictions, 89
variables

change of, 100, 101
Venn diagram, 5
Venn, John, 5

well defined, 105
witness, 104

XOR, 3

138 c© 2017 Jesper Carlström

	Contents
	To the students
	To the teacher
	I Introduction
	1 Boolean algebra – Introduction
	1.1 Boole's idea
	1.2 Examples of Boolean algebras
	1.3 Some properties of Boolean algebras
	1.4 Precedence rules
	1.5 Normal forms
	1.6 Simple equations
	1.7 Summary

	2 Boolean equations and implications
	2.1 Equations, inequalities and equation systems
	2.2 Implication
	2.3 Summary

	3 Inductively defined sets
	3.1 Need for a simple set theory
	3.2 Natural numbers
	3.3 The algebra of two elements
	3.4 Induction and recursion
	3.5 Summary

	II Propositional logic
	4 The language and semantics of propositional logic
	4.1 Logical formulas
	4.2 Semantics
	4.3 Summary

	5 Natural deduction
	5.1 Conjunction
	5.2 Implication
	5.3 Disjunction
	5.4 Negation and equivalence
	5.5 The formal point of view
	5.6 Miscellaneous exercises
	5.7 Summary

	6 Soundness & Review exercises
	6.1 Soundness
	6.2 Summary
	6.3 Review exercises

	7 Normal deductions
	7.1 Introduction
	7.2 Glivenko's theorem and normalization
	7.3 Applications
	7.4 Summary

	8 Completeness
	8.1 Maximal consistency
	8.2 Completeness
	8.3 Summary

	III Predicate logic
	9 The language of predicate logic
	9.1 Terms
	9.2 Formulas
	9.3 Summary

	10 Semantics
	10.1 Interpretation of terms and formulas
	10.2 Models and countermodels
	10.3 Bounded quantifiers
	10.4 Summary

	11 Simplifications
	11.1 Algebraic simplifications
	11.2 Simplification by substitution
	11.3 Summary

	12 Natural deduction
	12.1 New rules
	12.2 Misc. exercises
	12.3 Summary

	13 Soundness & Review exercises
	13.1 Soundness
	13.2 Summary
	13.3 Review exercises

	14 Completeness
	14.1 Maximal consistency and the existence property
	14.2 Completeness
	14.3 Compactness
	14.4 Summary

	IV Appendix and index
	Normalization proofs
	Solutions to the exercises
	Index

