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(a+b)* = a® + 2ab + b,
(a —b)* = a* — 2ab + b*.
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1.1.8 3 AR-B S R
(

a+b)+ (a—0b) b —
2 Y - 2 .

a =

1.1.4 FF Fo i fif.
(a+0)*+ (a—b)°
. .

a®+ b =

1.2 =AM iR, % o, b, c B =
1



2 CEZAR LUPU
1.2.1 FethF 5 517 .
(a+b+c) =a*+ b+ +2(ab+ be + ca).
AT X
(a+b+c)’=a>+ b+ +3(a’b + a’c + b*c + b*a + *a + *b) + 6abe.

AR

(a+b+c)=a*+b*+c+3(a+b)(b+c)(c+a).
1.2.2 3 #h Al X &

01:a+b+c, o9 = ab + bc + ca, o3 = abc.
)

a?+ b+ = o7 — 20,.

1.2.8 AR X5 F

(1) (a+b)(b+c)(c+a) = (a+ b+ c)(ab+ bc + ca) — abe.
(2) (a+b+c) —(a®+ b+ ) =3(a+b)(b+c)(c+a).
S,
(a+b+c)® = (a® + b +c*) =3((a+ b+ c)(ab+ be + ca) — abe).
i,
(3) a® +b* 4+ —3abe = (a+ b+ c)(a® + b* + ¢* — ab — be — ca).

(a—0)*+ (b—c)*+ (c—a)®* =2(a* + b* + & — ab — bc — ca).

ML
AV AV N2
¥+b?+8:(a bf +(b=cf +(c—a) + (ab + be + ca).

2
1.3 CHm SRS,
ANEE.
o (atb)? a®>— V= (a—Db)(a+b)

o a®+ b (a+b)?

o a2+ b2 — (a+b)2ﬂ2L(a—b)2

EAEE.
e (a+b+c) (a+b+c)?
o (a+b)(b+c)(c+a)=(a+b+c)(ab+ bc+ ca) — abe
o(a+b+@3—@ﬁ+b?+§):3m+bxh+@@+a)
o &’ + 0%+ ¢ —3abc = (a+ b+ c)(a* + b* + * — ab — be — ca)
o (a—b?*+(b—cP+(c—a)*=2(a*>+b*+c*—ab—bc— ca)

L1 1. 2. 3ABENAEXN... ULEL.



B S R %t
111, AT EREX. &z eR.
o TrraydE fikk:

2 > 0.
o ATERFX: XT x> 0:
x> |z,
o AARAFARTUTEFHTFX (AM-GM): XT—1EHE
2?4+ 1> 2.
o M FRFX: KT 2> 0:
Inz<z—1.
o BHTEFX
1+2x <e".

112, @A EF REX, B a A b EPIASE (FEBENIHT I IE MR .
o AM-GM REX: 14 a,b>0, 1

2
o AM-HM R X: WHR a,b>0, N
a+b> 2ab‘
2 T a+b

o MG #EFEREX (AR) -
(a® + b*)(2* + ) > (az + by)*.
o THREX, (HA): R a<bdbHz<y, N

ax + by > ay + bx.

[a? + b? - a—l—b.
2 - 2

e MMLEXTFX (2AEE): AR a<dH <y, M
a:)s+by> a+b r+y
2 - 2 2 ‘

la+b] < la| + |b|.

o S FHIREX:
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113, AT RFX. K abc>0, BRIEDA U
e INTEFU AM-GM 7% X :

g%ifzm@.

o MM e FEARER (ZM):
(a® + b + ) (2 +y° + 2°) > (ax + by + c2)*.

o THRFX (ZM): & a1 <ap < as, 11 < 32 < 23, FATH
121 + A%2 + A3T3 = A1T4(1) + A2To(2) + A3To(3)

XH 2): To(3) FB T1, T2, 3 W—EHHEY
AR ”ﬁ( KWX): XTF a,b,c>0:

a® +b* + ¢ + 3abe > a®(b+c) + b*(c + a) + *(a + b).
F s AR E X 4
a® + b+ ¢ — 3abc = (a + b+ c)(a® + b* + ¢* — ab — be — ca).
o MLEXFFX (INLE): WRa<b<cHaz<y<z, N

a:c+by+cz> a+b+c r+y+z
3 - 3 3 '

o FIFHLEX 3AT=E): MR r>s:

(IT—FbT—FCT 1/7"> as+bs+cs 1/s
3 - 3 '

o MALFHREX W w,we,ws >0 H wy +wy +ws =1, N

w1 w2 W3

/

wia + web + w3ec > a

2. — el 1
L PBAEX. BN TAER a,0,¢ >0,
ab + be 4 ca > \/3abc(a + b+ ¢).

8. R T

(ab+ be + ca)?* > 3abe(a + b+ c).
AN, (ab+ be+ ca)? = a?b? + b2 + c2a® 4 2abc(a + b+ ¢), HILFRATHARZER,
faitb A
a’b® + b*c® + *a* > abe(a + b+ c).
WAE, 4 be=m,ca=y M ab=z, TATHFEIE 22 + 9 + 22 > 2y +yz + 27,
XA T

(z=y)?+y—2)7+(-2)?>0
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2. VI DASEX. IR TAERE a,b,c> 0, A
(a+0)(b+ c)(c+ a) > 8abe.
. AM-GM A5, AT
a+b>2Vab, b+c> 2V, c+a>2/ca.
X =AM AT
(a4 b)(b+ ¢)(c+a) > 8Va2b?c2 = Sabe.

O
3. WIWFLLRAAE R, B FAERE a,b,c >0, H
a n b n c §
b+c c+a a—l—b 2
fiE. %

b+ c=2A, c+a=2B, a+b=2C,
H A, B,C > 0, F=AF=M G
a+b+c=A+B+C.
fiftth a,b,c 15
a=B+C—A, b=C+A-DB, c=A+B-C.
X EACA AT LKA

a+b+c B—l—CAC’—l—ABA—i—BC
b+c¢ c4+a a+b 2A 2B 2C
HERAEC
B+C-A 1 B+C_1
2A S 2\A4 A ’
C+A-B 1 C+A_1
2B ~2\B B ’
A+B-C 1 A+B_1
2C - 2\C C '
FFiX v EpIIEES
a + b + ¢ — E+é €+§ -3
b+c cH+a a+b 2 B B C ’
&?N?@¢x>0ﬁx+;22,%ﬁ¢%ﬂ—wiwﬁ2°ﬁ%,
a b c 1 3
b+c+c—|—a+a+b_2(6 3) = 2
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4. FXHAFR. IEHXTAEE a,b,c >0, FH
b+c¢c c+a a-+bd a b c
+ + >4 + + )
b+c c+a a+bd

a b c
. FRATIE A7 BN S
1+1> 1 b>0
a b~ a+b % ’

X AM-GM 3. FFIEASERATRN ¢ > 0 15

1 1 S 4c
‘(a*z)—@+u
R I PR M ) R 2 2 SR il

1 1 1 1 1 1 c a b
cl=+-)+al-+=)+b[-+-) >4 + + .
a b b ¢ ¢ a a+b b+c c+a

B2 fa A

b+c c+a a-+b
+ +—.
a b c

Elie

b+c+c+a+a+bz4( a b c >’

a b c b+c+c+a+a+b

RXIERFATEEIEAR. O

3. — SRR 1515
1. 1995 4 IMO 45 2 8. ¥ a,b, c NIES. IEH

1 n 1 N 1 >3
adb+c) bc+a) Ala+d) — 2

fFoBa=1, b= c=1, HPa,y,2>0 Mbte=_+ =12,
1 1 3yz

b+c)  (1a)Ply+2)/(y2) y+z
Helodh, AT L2 1 22 RS SN T

T4y

?yz  ylrz  ZPay
y+z x+z T4y

3
> —
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BIUAH T zyz:
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(x+z—y)(y+z—2)(z+y—2x) <azyz,
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(a+b)(b+c)(c+ a) > 8abc
RXEFE E—rhiE. O
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7
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AT, RATH

ry+zrtze—2zyz = (vytyztza)(vty+2)—2wyz = viyt+a’ oyt oty gt e tayz > 0

R .y, 2 B 5, X RS, AT T e T a+y+2=1,

Yz + 2+ 2y — 2ayz — G) (1= 22)(1 — 29)(1 — 22) + G) |
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4. )@
2] 1. [BMO, 2001] #% a,b,c >0 H a+b+c> abc, 0

a’+ b2+ > abeV'3.

28 2. & abe>0Ha+b+c=1, {IEHH

6(a® +b* +c*) + 1> 5(a® + b* + ¢?).

28 3. K x,y,2>0 Haoe+y+2=3. iEH

VT +\Y+Vz >y +yz+ e

28 4. [IMO i 1987) ¥ @, y, 2 NEHH 2% + 92 + 22 = 2, IFH]
r+y+z<axyz+2

. W a,b,c>0 H (a+b)(b+c)(c+a)=1, UEHH

&
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ab—i—bc—i—cagz.

3 y3 23

T+t 2) Txa0+2) T 0xnisy =1

21 7. % x,y,2>0 H abe =1, {IERH
1 n 1 i 1
l+a+b 1+b+c 1+c+a ™

28 8. & x,y,2>0 H ayz =1, §FEHH
1 n 1 n 1 <1
24+a 24b 2+4c¢”

IR 9. JEPIR AL EIE S a,b,c, A
1 n 1 n 1 S 27
alb+c)  blcta)  cla+b) T 2a+b+c)?

28 6. [IMO vk 1997] & z,y,2 >0 H zyz = 1. IEM
x

w

2810, K v,y,2>0 Ho+y+2+axyz =4, A
TH+y+z>ay+yz+ ze.
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LECTURE 1-ALGEBRA: BASIC IDENTITIES AND
INEQUALITIES

CEZAR LUPU

1. A LITTLE BIT OF THEORY

1.1 Identities for two real variables. Let a,b € R. In what follows we will
exhibit the most important identities.

1.1.1 Square and Difference Identities.

(a+b)* = a* + 2ab + V*,
a—0b)?=a?—2ab+ b
(

Difference of squares:
a® —b* = (a—b)(a+D).

1.1.2. Cubic Identities.
(a+0b)* = a® + 3ab + 3ab® + b*,
a® — b = (a—b)(a® + ab + b?),
a®+b* = (a+b)(a® — ab+ b?).

1.1.3. Symmetric-Antisymmetric Decomposition.

a:(a+b)+(a—b) b:(a—i-b)—(a—b)
2 ’ 2 '

1.1.4. Sum of squares decomposition.

(a+b)°+(a—b)°

2 2
b2 —
a” + 7

1.2. Identities in Three Real Variables. Let a,b,c € R.
1
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1.2.1. Squares and Cubes of Sums.
(a+0b+c) =a*+ b+ +2(ab+ be + ca).
Fully expanded form:
(a+b+c)*=a>+ b+ +3(a’b+ a’c + b*c + b*a + Pa + ¢*b) + 6abe.

Symmetric form:

(a+b+e)P=a*+b"+c+3(a+b)(b+c)(c+a).
1.2.2. Symmetric Sum Identities. Let

or=a+b+c, o9 = ab + bc + ca, o3 = abc.
Then

a? + b+ = o7 — 20,.

1.2.3. Fundamental Factorizations.

(1) (a+b)(b+c)(c+a)=(a+b+c)(ab+ bc+ ca) — abe.
(2) (a+b+c) —(a®+ b+ ) =3(a+b)(b+c)(c+a).
Equivalently,

(a+b+c)®—(a®>+ b+ %) =3((a+b+c)(ab+ be+ ca) — abe).

or
(3) a® + b+ ¢ — 3abc = (a + b+ c)(a® + b* + ¢ — ab — be — ca).
4 a—b2+b—-c)+(c—a)=20a*+b"+c* —ab—bc— ca).
(

Equivalently,

(a—=b)*+(b—c)*+ (c—a)?

2 2 2
b p—
a”+ 0" +c 7

+ (ab+ be + ca).
1.3. Summary of Key Identities.

Two variables.
e (a+b)? a®—0*=(a—"0b)(a+D)
e >+ (a+0b)?
o a2 4 b2 = (@t Hey?

Three variables.

e (a+b+c) (a+b+c)?

o (a+b)(b+c)(c+a)=(a+b+c)(ab+ bc+ ca) — abe

e (a+b+c))—(a®++c)=3(a+b)(b+c)(c+a)

o &+ b*+ * —3abc = (a+ b+ c)(a® + b* + ¢ — ab — be — ca)
o (a—b?+(b—cP+(c—a)*=2(a®>+b*+c*—ab—bc— ca)

1.1. Inequalities for one, two and three variables.
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1.1.1. Inequalities in one variable. Let x € R.
e Nonnegativity of squares:
2 > 0.

Absolute value inequality For x > 0:

x> |x|.

Basic Arithmetic-Geometric mean inequality (AM-GM) for one variable

2?2+ 1> 2.

Logarithmic Inequality For x > 0:

Inx <z -—1.

Exponential Inequality
1+x<ev.

1.1.2. Inequalities in two variables. Let a,b € R (positivity assumptions noted where
needed).

e AM-GM Inequality If a,b > 0, then
- ; ® > Vab.

e AM-HM Inequality If a,b > 0, then

a—I—b> 2ab

2 T a+b

e Cauchy—Schwarz Inequality (2-term)
(0 + 0)(2 + 4%) > (az + by)?.
e Rearrangement Inequality (2-term) If a < b and x < y, then
ar + by > ay + bx.

e Inequality of Quadratic Means

la? 4 b? S a+b'
2 - 2

e Chebyshev’s Inequality (2 variables) If a < b and <y, then

a:zc—l—by> a+b T +y
2 - 2 2 '

e Triangle Inequality

|+ b] < |af + [b].
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1.1.3. Inequalities in three variables. Let a,b,c > 0 unless otherwise stated.
e AM-GM for 3 variables

%’Hc > Vabe.

e Cauchy—Schwarz (3-term)
(a®> + b+ ) (2 +y° + 2°) > (ax + by + c2)*.
e Rearrangement Inequality (3-term) For a; < as < a3 and 1 < x9 < 23,
171 + AT + A3T3 2> A1T4(1) + A2T5(2) + A3T4(3),

where (1), To(2), To(3) is a reorder of xy, xa, 3.
e Schur’s Inequality (Degree 1 Form) For a,b,c > 0:

a® + b + ¢ + 3abe > a*(b+¢) + b*(c+ a) + *(a + b).
Equivalent symmetric factorization:
a®+ b +c* —3abe = (a+b+c)(a® +b* + & —ab— bc — ca).
e Chebyshev’s Inequality (3 variables) If a < b < cand x <y < z, then

a:c+by+cz> a+b+c r+y+z
3 - 3 3 '

e Power Mean Inequality (3 variables) If r > s:

ar_'_br+cr 1/7'> CLS+bS—|—CS 1/s
3 - 3 '

e Weighted Mean Inequality If wy,ws, w3 > 0 and w; + we + w3 = 1, then

wia + web + wic > a2 3.

2. SOME EASY EXAMPLES

1. Newton’s Inequality. Show that for any a, b, ¢ > 0, we have

ab + be 4 ca > \/3abc(a + b+ c).

Solution. By squaring the inequality we have

(ab+ bc+ ca)?* > 3abc(a + b+ c).

Moreover, (ab + be + ca)? = a®b* + b*c® + c*a® + 2abc(a + b + ¢) and thus our
inequality reduces to

a’b? + b*c® + c*a* > abe(a + b+ c).
Now, denote bc = z, ca = y and ab = z and we only need to prove that 2 + y* +
22 > xy + yz + zx is equivalent to

(z =y’ +(y—2)"+(z—2)*>0.
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2. Cesaro’s Inequality. Show that for any a,b,c > 0 we have
(a+0)(b+ c)(c+ a) > 8abe.
Solution. By the AM-GM inequality we have
a+b>2Vab, b+c>2Vbe,  c+a>2/ca
Multiplying these three inequalities gives

(a+0)(b+c)(c+ a) > 8Va?b?c? = 8abe.

3. Nesbitt’s Inequality. Show that for any a, b, c > 0 we have
a . b . c S 3
b+c c+a a+b 2

Solution. Let
b+ c=2A, c+a=2B, a+b=2C,
where A, B,C' > 0. Summing the three equalities gives
a+b+c=A+B+C.
Solving for a, b, ¢ yields
a=B+C—A, b=C+ A— B, c=A+B-C.

Substituting these into our expression gives

a N b N c :B+C'—A+C'+A—B+A+B—C'.
b+c c+a a+b 2A 2B 2C

Rewrite each fraction:

B+C-A _1(B C |
24 S 2\A A ’
C+A-B 1/C A
— = =4+=-1),
2B 2\ B B
A+B-C 1 A+B .
20 - 2\C C '

Adding these three equalities gives

@ b e _L[(B A\ (C A\ (C B\
b+c¢ c¢+a a+b 2|\A B A C B C ’

Since x + % > 2 for every = > 0, each pair in parentheses is at least 2. Hence,

a b c 1 3
> —(6—3) = —.
b+c+c—|—a+a+b_2( ) 2
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4. Levinson’s inequality. Show that for any a,b,c > 0 we have

b b b
+c+c+a+a—|— >4 a n n c ‘
b+c¢c c¢c+a a-+b

a b c
Solution. We use the simple inequality
L1 4
a b a+b
which follows from AM—-GM. Multiplying this inequality by ¢ > 0 yields

1 n 1 S 4c
cl —+ - )
a b) " a+b
Apply the same inequality cyclically and sum:
1 1 1 1 1 1 c a b
cl=+-)+als+=)+b(=-+=]>14 - - .
a b b ¢ c a a+b b+c cHa
But the left-hand side simplifies to
b+c c+a a+bd
+ + .

a,b>0,

a b c
Thus
b+c c+a a+bd a b c
+ - > 4 + - ,
b b+c c+a a+bd
which is exactly what we wanted to prove. O

3. SOME HARDER EXAMPLES

1. Problem 2, IMO 1995. Let a, b, ¢ be positive real numbers. Prove that

1 n 1 " 1 S 3
adb+c) bc+a) Ala+d) — 2
Solution. Set a =1, b=21 ¢=21withz,y,2 >0 Thenb+c=141=1=
T Yy z Y z Yz

and
1 1 3y

ab+c)  (1/2)3y+2)/(y2)  y+2

Similarly, the other terms become 22 and 222 Thus the inequality is equivalent
T+z Tty
to

yz  ylaz 2y

>3
y+z x+z x4y 2

( x? y? 22 ) 3
TYz + + > .
y+z x+z x4y 2

This reduces the problem to proving the classical inequality

Factor zyz out:

$2 y2 22

+
yt+z xT+z T+vy

>

N W
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for positive x,y, z, which can be shown by the standard method using the AM-GM
inequality or by summing squares:

2 2
R S ol ) S
y+z 2 2 r+y

cyc cyc

Equality holds when z =y = z,i.e., a =b=c. U
2. Problem 2, IMO 2000. Let a,b, c be positive real numbers such that abc = 1.

Prove that
1 1 1
G—1+—>G—l+—)G—1+—)§L
b c a

Solution. Since abc = 1, we can substitute a = z/y, b = y/z, ¢ = z/x for positive
2,1y, 2. Then
1 _
wqa T Lz _wte—y
by y y
Similarly, the other factors become

1 — 1 —
ol YtroE i ERYCT
c z a x
Hence the product is
(x+z—y)ly+z—2)(z+y—1)

Yz '

Therefore, we are left to prove that
(@+z—y)(y+z—2)(z+y—1z) <ayz,
By using the substituions y+z2—x = a,2+x—y = b and z+y— z = ¢ our inequality

reduces to

(a+0)(b+ c)(c+ a) > 8abe
which was already proven in the previous section. O

3. Problem 1, IMO 1984. Let z,y,z > 0 with x +y + z = 1. Prove that

7
0<zy+yz+zx—2zyz < o7
Solution. For the lower bound, we have

ry+zrtze—2zryz = (vytyztzx)(x+y+z)—2zyz = w2yt rtayi eyt e fayz > 0

because x, ¥y, z are nonnegative. On the other hand, for the upper bound, we proceed
as follows. Since z + y 4+ 2z = 1 notice that

1 1
yz + zx + xy — 2zyz = <1> (1 —2x)(1 —2y)(1 —22)+ <1> :
By the AM GM

(1—22)(1 — 29)(1 — 22) < %
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Therefore

1.1 1 7
yz + zx +xy — 2xyz < (Z)(ﬁ) t1=9

4. PROPOSED PROBLEMS
Problem 1. [BMO, 2001] Let a, b, ¢ > 0 such that a + b + ¢ > abc. Show that

a?+ v+ > abeV/'3.

Problem 2. Let a,b,c > 0 such that a + b+ ¢ = 1. Show that

6(a®> +b* +c*) +1 > 5(a® + b* + ¢?).

Problem 3. Let x,y,z > 0 such that z + y + z = 3. Show that

VT4 \y+vz >y +yz+ oz

Problem 4. [IMO Shortlist 1987] Let z,y, z be real numbers such that 2% + 3 +
22 = 2. Show that

r+y+z<axyz+2.

Problem 5. Let a,b,c > 0 such that (a 4+ 0)(b + ¢)(c + a) = 1. Show that

3
ab—l—bc—l—cagz.

Problem 6. [IMO Shortlist 1997] Let z,y,z > 0 such that such that zyz = 1.
Show that

x3 y3 23

(1912 U120+0) (+0(+y)

3
> —.
!

Problem 7. Let x,y, z > 0 such that abc = 1. Show that
1 n 1 n 1
l+a+b 1+b+c 1+c+a ™

Problem 8. Let x,y,z > 0 such that zyz = 1. Show that

1 n 1 . 1 <1
24+a 24b 2+4c

Problem 9. Show that for any positive real numbers a, b, ¢ we have
1 n 1 n 1 S 27
alb+c) blct+a) cla+b) = 2a+b+c)?
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Problem 10. Let z,y, z > 0 such that x +y + z + zyz = 4. Show that
z+y+z>zy+yz+ zx.
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