
第一讲——代数：基本恒等式与不等式

CEZAR LUPU

1. 基础理论
1.1 两个实变量的恒等式. 设 a 和 b 是两个实数。下面我们将展示最重要的恒等
式。

1.1.1 和差平方恒等式.

(a+ b)2 = a2 + 2ab+ b2,
(a− b)2 = a2 − 2ab+ b2.

平方差恒等式：
a2 − b2 = (a− b)(a+ b).

1.1.2 立方恒等式.

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

a3 − b3 = (a− b)(a2 + ab+ b2),

a3 + b3 = (a+ b)(a2 − ab+ b2).

1.1.3 对称-反对称分解.

a =
(a+ b) + (a− b)

2
, b =

(a+ b)− (a− b)

2
.

1.1.4 平方和分解.

a2 + b2 =
(a+ b)2 + (a− b)2

2
.

1.2 三个实变量的恒等式. 设 a, b, c 是三个实数。
1
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1.2.1 和的平方与立方.
(a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca).

完全展开形式：

(a+ b+ c)3 = a3 + b3 + c3 + 3(a2b+ a2c+ b2c+ b2a+ c2a+ c2b) + 6abc.

对称形式：
(a+ b+ c)3 = a3 + b3 + c3 + 3(a+ b)(b+ c)(c+ a).

1.2.2 对称和恒等式. 令
σ1 = a+ b+ c, σ2 = ab+ bc+ ca, σ3 = abc.

则
a2 + b2 + c2 = σ2

1 − 2σ2.

1.2.3 基本因式分解.
(1) (a+ b)(b+ c)(c+ a) = (a+ b+ c)(ab+ bc+ ca)− abc.

(2) (a+ b+ c)3 − (a3 + b3 + c3) = 3(a+ b)(b+ c)(c+ a).

等价地，

(a+ b+ c)3 − (a3 + b3 + c3) = 3
(
(a+ b+ c)(ab+ bc+ ca)− abc

)
.

或者，

(3) a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca).

(a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2 − ab− bc− ca).

等价形式：

a2 + b2 + c2 =
(a− b)2 + (b− c)2 + (c− a)2

2
+ (ab+ bc+ ca).

1.3 关键恒等式总结.

两个变量.
• (a± b)2, a2 − b2 = (a− b)(a+ b)
• a3 ± b3, (a+ b)3

• a2 + b2 = (a+b)2+(a−b)2

2

三个变量.
• (a+ b+ c)2, (a+ b+ c)3

• (a+ b)(b+ c)(c+ a) = (a+ b+ c)(ab+ bc+ ca)− abc
• (a+ b+ c)3 − (a3 + b3 + c3) = 3(a+ b)(b+ c)(c+ a)
• a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca)
• (a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2 − ab− bc− ca)

1.1. 1、2、3 个变量的不等式... 以及更多.
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1.1.1. 一个变量的不等式. 设 x ∈ R。
• 平方的非负性：

x2 ≥ 0.

• 绝对值不等式：对于 x ≥ 0：

x ≥ |x|.

• 基本算术-几何平均不等式（AM–GM）：对于一个变量

x2 + 1 ≥ 2x.

• 对数不等式：对于 x > 0：

lnx ≤ x− 1.

• 指数不等式：
1 + x ≤ ex.

1.1.2. 两个变量的不等式. 设 a 和 b 是两个实数（在需要的地方注明正性假设）。

• AM–GM 不等式：如果 a, b ≥ 0，则

a+ b

2
≥

√
ab.

• AM–HM 不等式：如果 a, b > 0，则

a+ b

2
≥ 2ab

a+ b
.

• 柯西-施瓦茨不等式（两项）:

(a2 + b2)(x2 + y2) ≥ (ax+ by)2.

• 重排不等式（两项）：如果 a ≤ b 且 x ≤ y，则

ax+ by ≥ ay + bx.

• 二次平均不等式： √
a2 + b2

2
≥ a+ b

2
.

• 切比雪夫不等式（2 个变量）：如果 a ≤ b 且 x ≤ y，则

ax+ by

2
≥

(
a+ b

2

)(
x+ y

2

)
.

• 三角不等式：
|a+ b| ≤ |a|+ |b|.
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1.1.3. 三个变量的不等式. 设 a, b, c > 0，除非另有说明。
• 3 个变量的 AM–GM 不等式：

a+ b+ c

3
≥ 3

√
abc.

• 柯西-施瓦茨不等式（三项）：
(a2 + b2 + c2)(x2 + y2 + z2) ≥ (ax+ by + cz)2.

• 重排不等式（三项）：设 a1 ⩽ a2 ⩽ a3, x1 ⩽ x2 ⩽ x3, 我们有
a1x1 + a2x2 + a3x3 ≥ a1xσ(1) + a2xσ(2) + a3xσ(3)

这里 xσ(1), xσ(2), xσ(3) 是 x1, x2, x3 的一个重新排列。
• 舒尔不等式（一次形式）：对于 a, b, c ≥ 0：

a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(c+ a) + c2(a+ b).

等价对称因式分解：

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca).

• 切比雪夫不等式（3 个变量）：如果 a ≤ b ≤ c 且 x ≤ y ≤ z，则
ax+ by + cz

3
≥

(
a+ b+ c

3

)(
x+ y + z

3

)
.

• 幂平均不等式（3 个变量）：如果 r > s：(
ar + br + cr

3

)1/r

≥
(
as + bs + cs

3

)1/s

.

• 加权平均不等式：如果 w1, w2, w3 ≥ 0 且 w1 + w2 + w3 = 1，则

w1a+ w2b+ w3c ≥ aw1bw2cw3 .

2. 一些简单例子
1. 牛顿不等式. 证明对于任意 a, b, c > 0，有

ab+ bc+ ca ≥
√

3abc(a+ b+ c).

解. 将不等式平方得

(ab+ bc+ ca)2 ≥ 3abc(a+ b+ c).

此外，(ab+ bc+ ca)2 = a2b2 + b2c2 + c2a2 + 2abc(a+ b+ c)，因此我们的不等式
简化为

a2b2 + b2c2 + c2a2 ≥ abc(a+ b+ c).

现在，令 bc = x, ca = y 和 ab = z，我们只需要证明 x2 + y2 + z2 ≥ xy+ yz+ zx，
这等价于

(x− y)2 + (y − z)2 + (z − x)2 ≥ 0.

□
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2. 切萨罗不等式. 证明对于任意 a, b, c > 0，有

(a+ b)(b+ c)(c+ a) ≥ 8abc.

解. 由 AM–GM 不等式，我们有

a+ b ≥ 2
√
ab, b+ c ≥ 2

√
bc, c+ a ≥ 2

√
ca.

将这三个不等式相乘得

(a+ b)(b+ c)(c+ a) ≥ 8
√
a2b2c2 = 8abc.

□

3. 内斯比特不等式. 证明对于任意 a, b, c > 0，有

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

解. 令
b+ c = 2A, c+ a = 2B, a+ b = 2C,

其中 A,B,C > 0。将三个等式相加得

a+ b+ c = A+B + C.

解出 a, b, c 得

a = B + C − A, b = C + A− B, c = A+B − C.

将这些代入我们的表达式得

a

b+ c
+

b

c+ a
+

c

a+ b
=

B + C − A

2A
+

C + A− B

2B
+

A+B − C

2C
.

重写每个分数：
B + C − A

2A
=

1

2

(
B

A
+

C

A
− 1

)
,

C + A− B

2B
=

1

2

(
C

B
+

A

B
− 1

)
,

A+B − C

2C
=

1

2

(
A

C
+

B

C
− 1

)
.

将这三个等式相加得

a

b+ c
+

b

c+ a
+

c

a+ b
=

1

2

[(
B

A
+

A

B

)
+

(
C

A
+

A

C

)
+

(
C

B
+

B

C

)
− 3

]
.

由于对于每个 x > 0 有 x+ 1
x
≥ 2，括号中的每一对至少为 2。因此，

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 1

2
(6− 3) =

3

2
.

□
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4. 莱文森不等式. 证明对于任意 a, b, c > 0，有

b+ c

a
+

c+ a

b
+

a+ b

c
≥ 4

(
a

b+ c
+

b

c+ a
+

c

a+ b

)
.

解. 我们使用简单不等式
1

a
+

1

b
≥ 4

a+ b
, a, b > 0,

这由 AM–GM 得出。将此不等式乘以 c > 0 得

c

(
1

a
+

1

b

)
≥ 4c

a+ b
.

循环应用相同不等式并求和：

c

(
1

a
+

1

b

)
+ a

(
1

b
+

1

c

)
+ b

(
1

c
+

1

a

)
≥ 4

(
c

a+ b
+

a

b+ c
+

b

c+ a

)
.

但左边简化为
b+ c

a
+

c+ a

b
+

a+ b

c
.

因此
b+ c

a
+

c+ a

b
+

a+ b

c
≥ 4

(
a

b+ c
+

b

c+ a
+

c

a+ b

)
,

这正是我们想要证明的。 □

3. 一些较难的例子
1. 1995 年 IMO 第 2 题. 设 a, b, c 为正实数。证明

1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
≥ 3

2
.

解. 设 a = 1
x
, b = 1

y
, c = 1

z
，其中 x, y, z > 0。则 b+ c = 1

y
+ 1

z
= y+z

yz
，且

1

a3(b+ c)
=

1

(1/x)3(y + z)/(yz)
=

x3yz

y + z
.

类似地，其他项变为 y3xz
x+z
和 z3xy

x+y
。因此不等式等价于

x3yz

y + z
+

y3xz

x+ z
+

z3xy

x+ y
≥ 3

2
.

提取公因子 xyz：

xyz

(
x2

y + z
+

y2

x+ z
+

z2

x+ y

)
≥ 3

2
.

这将问题简化为证明经典不等式

x2

y + z
+

y2

x+ z
+

z2

x+ y
≥ 3

2
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对于正数 x, y, z，这可以通过使用 AM-GM 不等式的标准方法或通过求和平方来
证明： ∑

cyc

x2

y + z
− 3

2
=

1

2

∑
cyc

(x− y)2

x+ y
≥ 0.

当 x = y = z，即 a = b = c 时取等号。 □
2. 2000 年 IMO 第 2 题. 设 a, b, c 为正实数且 abc = 1。证明(

a− 1 +
1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

解. 由于 abc = 1，我们可以代入 a = x/y，b = y/z，c = z/x，其中 x, y, z > 0。
则

a− 1 +
1

b
=

x

y
− 1 +

z

y
=

x+ z − y

y
.

类似地，其他因子变为

b− 1 +
1

c
=

y + x− z

z
, c− 1 +

1

a
=

z + y − x

x
.

因此乘积为
(x+ z − y)(y + x− z)(z + y − x)

xyz
.

因此，我们只需证明

(x+ z − y)(y + x− z)(z + y − x) ≤ xyz,

通过代入 y + z − x = a, z + x− y = b 和 x+ y − z = c，我们的不等式简化为

(a+ b)(b+ c)(c+ a) ≥ 8abc

这已在上一节中证明。 □
3. 1984 年 IMO 第 1 题. 设 x, y, z ≥ 0 且 x+ y + z = 1。证明

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

解. 对于下界，我们有

xy+zx+zx−2xyz = (xy+yz+zx)(x+y+z)−2xyz = x2y+x2z+xy2+xz2+yz2+y2z+xyz ≥ 0

因为 x, y, z 非负。另一方面，对于上界，我们进行如下操作。由于 x+ y + z = 1，
注意

yz + zx+ xy − 2xyz =

(
1

4

)
(1− 2x)(1− 2y)(1− 2z) +

(
1

4

)
.

由 AM–GM
(1− 2x)(1− 2y)(1− 2z) ≤ 1

27
因此

yz + zx+ xy − 2xyz ≤ (
1

4
)(

1

27
) +

1

4
=

7

27
.

□
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4. 习题
习题 1. [BMO, 2001] 设 a, b, c > 0 且 a+ b+ c ≥ abc。证明

a2 + b2 + c2 ≥ abc
√
3.

习题 2. 设 a, b, c > 0 且 a+ b+ c = 1。证明

6(a3 + b3 + c3) + 1 ≥ 5(a2 + b2 + c2).

习题 3. 设 x, y, z > 0 且 x+ y + z = 3。证明

√
x+

√
y +

√
z ≥ xy + yz + zx.

习题 4. [IMO 预选题 1987] 设 x, y, z 为实数且 x2 + y2 + z2 = 2。证明

x+ y + z ≤ xyz + 2.

习题 5. 设 a, b, c > 0 且 (a+ b)(b+ c)(c+ a) = 1。证明

ab+ bc+ ca ≤ 3

4
.

习题 6. [IMO 预选题 1997] 设 x, y, z > 0 且 xyz = 1。证明

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)
≥ 3

4
.

习题 7. 设 x, y, z > 0 且 abc = 1。证明
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a
≤ 1.

习题 8. 设 x, y, z > 0 且 xyz = 1。证明
1

2 + a
+

1

2 + b
+

1

2 + c
≤ 1.

习题 9. 证明对于任意正实数 a, b, c，有
1

a(b+ c)
+

1

b(c+ a)
+

1

c(a+ b)
≥ 27

2(a+ b+ c)2
.

习题 10. 设 x, y, z > 0 且 x+ y + z + xyz = 4。证明

x+ y + z ≥ xy + yz + zx.
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LECTURE 1-ALGEBRA: BASIC IDENTITIES AND
INEQUALITIES

CEZAR LUPU

1. A little bit of theory

1.1 Identities for two real variables. Let a, b ∈ R. In what follows we will
exhibit the most important identities.

1.1.1 Square and Difference Identities.

(a+ b)2 = a2 + 2ab+ b2,
(a− b)2 = a2 − 2ab+ b2.

Difference of squares:
a2 − b2 = (a− b)(a+ b).

1.1.2. Cubic Identities.

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

a3 − b3 = (a− b)(a2 + ab+ b2),

a3 + b3 = (a+ b)(a2 − ab+ b2).

1.1.3. Symmetric–Antisymmetric Decomposition.

a =
(a+ b) + (a− b)

2
, b =

(a+ b)− (a− b)

2
.

1.1.4. Sum of squares decomposition.

a2 + b2 =
(a+ b)2 + (a− b)2

2
.

1.2. Identities in Three Real Variables. Let a, b, c ∈ R.
1
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1.2.1. Squares and Cubes of Sums.
(a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca).

Fully expanded form:
(a+ b+ c)3 = a3 + b3 + c3 + 3(a2b+ a2c+ b2c+ b2a+ c2a+ c2b) + 6abc.

Symmetric form:
(a+ b+ c)3 = a3 + b3 + c3 + 3(a+ b)(b+ c)(c+ a).

1.2.2. Symmetric Sum Identities. Let
σ1 = a+ b+ c, σ2 = ab+ bc+ ca, σ3 = abc.

Then
a2 + b2 + c2 = σ2

1 − 2σ2.

1.2.3. Fundamental Factorizations.
(1) (a+ b)(b+ c)(c+ a) = (a+ b+ c)(ab+ bc+ ca)− abc.

(2) (a+ b+ c)3 − (a3 + b3 + c3) = 3(a+ b)(b+ c)(c+ a).

Equivalently,
(a+ b+ c)3 − (a3 + b3 + c3) = 3

(
(a+ b+ c)(ab+ bc+ ca)− abc

)
.

or
(3) a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca).

(4) (a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2 − ab− bc− ca).

Equivalently,

a2 + b2 + c2 =
(a− b)2 + (b− c)2 + (c− a)2

2
+ (ab+ bc+ ca).

1.3. Summary of Key Identities.

Two variables.
• (a± b)2, a2 − b2 = (a− b)(a+ b)
• a3 ± b3, (a+ b)3

• a2 + b2 = (a+b)2+(a−b)2

2

Three variables.
• (a+ b+ c)2, (a+ b+ c)3

• (a+ b)(b+ c)(c+ a) = (a+ b+ c)(ab+ bc+ ca)− abc
• (a+ b+ c)3 − (a3 + b3 + c3) = 3(a+ b)(b+ c)(c+ a)
• a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca)
• (a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2 − ab− bc− ca)

1.1. Inequalities for one, two and three variables.
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1.1.1. Inequalities in one variable. Let x ∈ R.
• Nonnegativity of squares:

x2 ≥ 0.

• Absolute value inequality For x ≥ 0:

x ≥ |x|.

• Basic Arithmetic-Geometric mean inequality (AM–GM) for one variable

x2 + 1 ≥ 2x.

• Logarithmic Inequality For x > 0:

ln x ≤ x− 1.

• Exponential Inequality
1 + x ≤ ex.

1.1.2. Inequalities in two variables. Let a, b ∈ R (positivity assumptions noted where
needed).

• AM–GM Inequality If a, b ≥ 0, then

a+ b

2
≥

√
ab.

• AM–HM Inequality If a, b > 0, then

a+ b

2
≥ 2ab

a+ b
.

• Cauchy–Schwarz Inequality (2-term)

(a2 + b2)(x2 + y2) ≥ (ax+ by)2.

• Rearrangement Inequality (2-term) If a ≤ b and x ≤ y, then

ax+ by ≥ ay + bx.

• Inequality of Quadratic Means√
a2 + b2

2
≥ a+ b

2
.

• Chebyshev’s Inequality (2 variables) If a ≤ b and x ≤ y, then

ax+ by

2
≥

(
a+ b

2

)(
x+ y

2

)
.

• Triangle Inequality
|a+ b| ≤ |a|+ |b|.
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1.1.3. Inequalities in three variables. Let a, b, c > 0 unless otherwise stated.
• AM–GM for 3 variables

a+ b+ c

3
≥ 3

√
abc.

• Cauchy–Schwarz (3-term)
(a2 + b2 + c2)(x2 + y2 + z2) ≥ (ax+ by + cz)2.

• Rearrangement Inequality (3-term) For a1 ⩽ a2 ⩽ a3 and x1 ⩽ x2 ⩽ x3,
a1x1 + a2x2 + a3x3 ≥ a1xσ(1) + a2xσ(2) + a3xσ(3),

where xσ(1), xσ(2), xσ(3) is a reorder of x1, x2, x3.
• Schur’s Inequality (Degree 1 Form) For a, b, c ≥ 0:

a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(c+ a) + c2(a+ b).

Equivalent symmetric factorization:
a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca).

• Chebyshev’s Inequality (3 variables) If a ≤ b ≤ c and x ≤ y ≤ z, then
ax+ by + cz

3
≥

(
a+ b+ c

3

)(
x+ y + z

3

)
.

• Power Mean Inequality (3 variables) If r > s:(
ar + br + cr

3

)1/r

≥
(
as + bs + cs

3

)1/s

.

• Weighted Mean Inequality If w1, w2, w3 ≥ 0 and w1 + w2 + w3 = 1, then
w1a+ w2b+ w3c ≥ aw1bw2cw3 .

2. Some easy examples

1. Newton’s Inequality. Show that for any a, b, c > 0, we have

ab+ bc+ ca ≥
√

3abc(a+ b+ c).

Solution. By squaring the inequality we have

(ab+ bc+ ca)2 ≥ 3abc(a+ b+ c).

Moreover, (ab + bc + ca)2 = a2b2 + b2c2 + c2a2 + 2abc(a + b + c) and thus our
inequality reduces to

a2b2 + b2c2 + c2a2 ≥ abc(a+ b+ c).

Now, denote bc = x, ca = y and ab = z and we only need to prove that x2 + y2 +
z2 ≥ xy + yz + zx is equivalent to

(x− y)2 + (y − z)2 + (z − x)2 ≥ 0.

□
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2. Cesaro’s Inequality. Show that for any a, b, c > 0 we have

(a+ b)(b+ c)(c+ a) ≥ 8abc.

Solution. By the AM–GM inequality we have

a+ b ≥ 2
√
ab, b+ c ≥ 2

√
bc, c+ a ≥ 2

√
ca.

Multiplying these three inequalities gives

(a+ b)(b+ c)(c+ a) ≥ 8
√
a2b2c2 = 8abc.

□

3. Nesbitt’s Inequality. Show that for any a, b, c > 0 we have
a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Solution. Let

b+ c = 2A, c+ a = 2B, a+ b = 2C,

where A,B,C > 0. Summing the three equalities gives

a+ b+ c = A+B + C.

Solving for a, b, c yields

a = B + C − A, b = C + A− B, c = A+B − C.

Substituting these into our expression gives
a

b+ c
+

b

c+ a
+

c

a+ b
=

B + C − A

2A
+

C + A− B

2B
+

A+B − C

2C
.

Rewrite each fraction:
B + C − A

2A
=

1

2

(
B

A
+

C

A
− 1

)
,

C + A− B

2B
=

1

2

(
C

B
+

A

B
− 1

)
,

A+B − C

2C
=

1

2

(
A

C
+

B

C
− 1

)
.

Adding these three equalities gives
a

b+ c
+

b

c+ a
+

c

a+ b
=

1

2

[(
B

A
+

A

B

)
+

(
C

A
+

A

C

)
+

(
C

B
+

B

C

)
− 3

]
.

Since x+ 1
x
≥ 2 for every x > 0, each pair in parentheses is at least 2. Hence,

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 1

2
(6− 3) =

3

2
.

□
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4. Levinson’s inequality. Show that for any a, b, c > 0 we have
b+ c

a
+

c+ a

b
+

a+ b

c
≥ 4

(
a

b+ c
+

b

c+ a
+

c

a+ b

)
.

Solution. We use the simple inequality
1

a
+

1

b
≥ 4

a+ b
, a, b > 0,

which follows from AM–GM. Multiplying this inequality by c > 0 yields

c

(
1

a
+

1

b

)
≥ 4c

a+ b
.

Apply the same inequality cyclically and sum:

c

(
1

a
+

1

b

)
+ a

(
1

b
+

1

c

)
+ b

(
1

c
+

1

a

)
≥ 4

(
c

a+ b
+

a

b+ c
+

b

c+ a

)
.

But the left-hand side simplifies to
b+ c

a
+

c+ a

b
+

a+ b

c
.

Thus
b+ c

a
+

c+ a

b
+

a+ b

c
≥ 4

(
a

b+ c
+

b

c+ a
+

c

a+ b

)
,

which is exactly what we wanted to prove. □

3. Some harder examples

1. Problem 2, IMO 1995. Let a, b, c be positive real numbers. Prove that
1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
≥ 3

2
.

Solution. Set a = 1
x
, b = 1

y
, c = 1

z
with x, y, z > 0. Then b + c = 1

y
+ 1

z
= y+z

yz
,

and
1

a3(b+ c)
=

1

(1/x)3(y + z)/(yz)
=

x3yz

y + z
.

Similarly, the other terms become y3xz
x+z

and z3xy
x+y

. Thus the inequality is equivalent
to

x3yz

y + z
+

y3xz

x+ z
+

z3xy

x+ y
≥ 3

2
.

Factor xyz out:

xyz

(
x2

y + z
+

y2

x+ z
+

z2

x+ y

)
≥ 3

2
.

This reduces the problem to proving the classical inequality
x2

y + z
+

y2

x+ z
+

z2

x+ y
≥ 3

2
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for positive x, y, z, which can be shown by the standard method using the AM-GM
inequality or by summing squares:∑

cyc

x2

y + z
− 3

2
=

1

2

∑
cyc

(x− y)2

x+ y
≥ 0.

Equality holds when x = y = z, i.e., a = b = c. □

2. Problem 2, IMO 2000. Let a, b, c be positive real numbers such that abc = 1.
Prove that (

a− 1 +
1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

Solution. Since abc = 1, we can substitute a = x/y, b = y/z, c = z/x for positive
x, y, z. Then

a− 1 +
1

b
=

x

y
− 1 +

z

y
=

x+ z − y

y
.

Similarly, the other factors become

b− 1 +
1

c
=

y + x− z

z
, c− 1 +

1

a
=

z + y − x

x
.

Hence the product is
(x+ z − y)(y + x− z)(z + y − x)

xyz
.

Therefore, we are left to prove that
(x+ z − y)(y + x− z)(z + y − x) ≤ xyz,

By using the substituions y+z−x = a, z+x−y = b and x+y−z = c our inequality
reduces to

(a+ b)(b+ c)(c+ a) ≥ 8abc

which was already proven in the previous section. □

3. Problem 1, IMO 1984. Let x, y, z ≥ 0 with x+ y + z = 1. Prove that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

Solution. For the lower bound, we have

xy+zx+zx−2xyz = (xy+yz+zx)(x+y+z)−2xyz = x2y+x2z+xy2+xz2+yz2+y2z+xyz ≥ 0

because x, y, z are nonnegative. On the other hand, for the upper bound, we proceed
as follows. Since x+ y + z = 1 notice that

yz + zx+ xy − 2xyz =

(
1

4

)
(1− 2x)(1− 2y)(1− 2z) +

(
1

4

)
.

By the AM–GM
(1− 2x)(1− 2y)(1− 2z) ≤ 1

27
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Therefore
yz + zx+ xy − 2xyz ≤ (

1

4
)(

1

27
) +

1

4
=

7

27
.

□

4. Proposed Problems

Problem 1. [BMO, 2001] Let a, b, c > 0 such that a+ b+ c ≥ abc. Show that

a2 + b2 + c2 ≥ abc
√
3.

Problem 2. Let a, b, c > 0 such that a+ b+ c = 1. Show that

6(a3 + b3 + c3) + 1 ≥ 5(a2 + b2 + c2).

Problem 3. Let x, y, z > 0 such that x+ y + z = 3. Show that
√
x+

√
y +

√
z ≥ xy + yz + zx.

Problem 4. [IMO Shortlist 1987] Let x, y, z be real numbers such that x2+ y2+
z2 = 2. Show that

x+ y + z ≤ xyz + 2.

Problem 5. Let a, b, c > 0 such that (a+ b)(b+ c)(c+ a) = 1. Show that

ab+ bc+ ca ≤ 3

4
.

Problem 6. [IMO Shortlist 1997] Let x, y, z > 0 such that such that xyz = 1.
Show that

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)
≥ 3

4
.

Problem 7. Let x, y, z > 0 such that abc = 1. Show that
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a
≤ 1.

Problem 8. Let x, y, z > 0 such that xyz = 1. Show that
1

2 + a
+

1

2 + b
+

1

2 + c
≤ 1.

Problem 9. Show that for any positive real numbers a, b, c we have
1

a(b+ c)
+

1

b(c+ a)
+

1

c(a+ b)
≥ 27

2(a+ b+ c)2
.
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Problem 10. Let x, y, z > 0 such that x+ y + z + xyz = 4. Show that
x+ y + z ≥ xy + yz + zx.
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