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§1. Introduction
(Equations, goals, motivations and main results)
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Final Goals of this Project

The fully nonlinear Jeans-type instabilities for the Euler–Poisson system
and the Einstein–Euler system.

The Recently Completed Work (This talk!)

The fully nonlinear Jeans-type instabilities for a simplified toy model: a
quasilinear wave equation with several di�cult nonlinear terms which
models the Euler–Poisson and Einstein–Euler system in some aspects.

Ongoing Work

The fully nonlinear Jeans-type instabilities for the Euler–Poisson and 2nd
order perturbations (Bardeen invariants, by Hwang, Noh) of Einstein–Euler
system.

Expecting some opinions from the audiences
The fully nonlinear Jeans-type instabilities for the Einstein–Euler system:
1. The definition of density contrast is ill-defined due to gauge dependent.
2. The covariant fractional density gradient by Ellis and Bruni (1989)? same mechanism
for 1st order, di↵erent for 2nd order?
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Equations and goals

@2

t %�
✓
m2(@t%)2

(1 + %)2
+ 4(k�m2)(1 + %)

◆
�% = F (t, %, @µ%)

where the nonlinear source terms are

F (t, %, @µ%) :=
2
3
%(1 + %)

| {z }
(i) self-increasing

�1
3
@t%

| {z }
(ii) damping

+
4
3
(@t%)2

1 + %| {z }
(iii) Riccati

+

✓
m2 (@t%)2

(1 + %)2
+ 4(k�m2)(1 + %)

◆
qi@i%

| {z }
(iv) convection

�Kij(t, %, @µ%)@i%@j%.

%|t=t0 = �|{z}
const.

+  (xk)| {z }
inhomogeneity

and @t%|t=t0 = �0|{z}
const.

+  0(x
k)| {z }

inhomogeneity

, in {t0}⇥ Rn,

(Goal) Find self-increasing blowup solutions (formations of nonlinear cosmological
structures).

(Result) The solutions can attain arbitrarily large values over time, leading to
self-increasing singularities at some future endpoints of null geodesics, provided the
inhomogeneous perturbations of data are su�ciently small (long wave feature!).
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After time transform t ! ln t, the equation becomes:

@2t %� gij@i@j% =
2

3t2
%(1 + %)�

4

3t
@t%+

4

3

(@t%)2

1 + %
+ gqi@i%

�
1

t2
Kij(t, %, @µ%)@i%@j%, in [t0, t

?)⇥ Rn,

%|t=t0
= � +  (xk) and @t%|t=t0

= �0 +  0(x
k), in {t0}⇥ Rn,

where

gij = gij(t, %, @t%) := g(t, %, @t%)�
ij =

✓
m2

(@t%)2

(1 + %)2
+4(k�m2)

1 + %

t2

◆
�ij .

Now focus on this equation!! A time transform t ! e
t leads back to

the previous equation.
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A short version for the motivation

Relate to the famous problem in astrophysics:

Important astrophysical question

Cosmological perturbation theories (linear, higher order
approximations) by e.g., Jeans, Bonner, Lifshitz, Bardeen, Hawking,
Ellis, Bruni, Zel’dovich, Peebles, Brandenberger, Mukhanov, Hwang,
Noh... (long lists in astrophy.). Stability/instability;

(Jeans instability) The formations of the nonlinear cosmological
structures;

(Core mathematical mechanism) Nonlinear Jeans-type instability.
Rare mathematical studies currently.

A toy model for above system. Neglecting rotations, shears of the
fluids, and tidal forces, Euler–Poisson (or Einstein–Euler) leads to this
type of QNLW.
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Main Theorem shown by one picture

pm

 

Possible'blueshit

5
Possibly shorten longwavelength
thewavelength longwavelength domain

andformshocks domain redshift

Rough expression of the main theorem

If the initial inhomogeneities k( , 0)kX are su�ciently small, then
t = t(t, x) ! t, and %(t, xk) ! f (t) and their derivatives as well of the reference
ODEs, at least within a su�ciently large domain D close to [t0, tm)⇥ Rn.
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Rough expression of the main theorem

If the initial inhomogeneities k( , 0)kX are su�ciently small, then
t = t(t, x) ! t, and %(t, xk) ! f (t) and their derivatives as well of the
reference ODEs, at least within a su�ciently large domain D close to
[t0, tm)⇥ Rn where f (t) solves an ODE,

@2

t f (t) +
a
t
@tf (t)�

b
t2
f (t)(1 + f (t))� c

1 + f (t)
(@tf (t))

2 = 0,

f (t0) = � > 0 and @t f (t0) = �0 > 0.

Moreover,

eConst.⇥t

2

3 � 1 . %(t, xk) ⇠ f (t) . 1

Const.� t
2

3

� 1,

and if the initial data �0 & �, then

1

(t�
1

3 � Const.)3
� 1 . %(t, xk) ⇠ f (t) . 1

Const.� t
2

3

� 1,
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Main Theorem

pm

 

Possible'blueshit

5
Possibly shorten longwavelength
thewavelength longwavelength domain

andformshocks domain redshift

C :=

(
(t, x) 2 [t0, tm) ⇥ Rn

���� |x| = 1 +

Z
t

t0

q
g(y, f (y), f0(y))dy

)
.

Remark (directional bias)
The direction of convection is assumed to be constant and can be normalized q

i
= |q|�i

1
.
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Generations

remark

The convection term introduces a directional bias in gqi , causing the wave
to propagate more strongly in a particular direction depending on the sign
and magnitude of gqi .

Figure: qi = |q|�i
1

Figure: qi / x
i/|x |
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Main Theorem
Suppose k 2 Z n

2
+3, A, B, C, D are constants depending on the initial data

� and �0, as defined in the article, and that Assumptions hold. Let
( , 0) 2 C

1

0
(Rn) be given functions with supp( , 0) = B1(0), f (t) be

the solution to the key reference ODE (later!). Then there exist su�ciently
small constants �0 > 0 and �0 > 0, such that if the initial data satisfy

k kHk (B1(0))
+ k@i kHk (B1(0))

+ k 0kHk (B1(0))
 e

� 153

�0 �20,

then there exists a hypersurface t = T (x , �0) satisfying

��0 := {(t, x) 2 [t0, tm)⇥ Rn
| t = T (x , �0)} ⇢ I, lim

a!+1
T (a�i1, �0) = tm

lim
�0!0+

T (x , �0) = tm,

such that there is a solution % 2 C
2(K [H) to the main equation where

K := {(t, x) 2 [t0, tm)⇥ Rn
| t < T (x , �0)} satisfying
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Main Theorem (conti.)

if we denote

1�(x
1
) := 1 � C�2

0
e
� 50

�0 e
� x

1

2 & 1 and 1+(x
1
) := 1 + C�2

0
e
� 50

�0 e
� x

1

2 & 1, as x
1
! +1,

then there are estimates for (t, x) 2 K \ I,

1�(x
1
)f0

�
t0 + 1�(x

1
)(t � t0)

�
 %0(t, x)  1+(x

1
)f0

�
t0 + 1+(x

1
)(t � t0)

�
,

�C�2

0
e
� 50

�0 e
� x

1

2 (1 + f
�
t0 + 1�(x

1
)(t � t0)

�
)  %i (t, x)  C�2

0
e
� 50

�0 e
� x

1

2
�
1 + f

�
t0 + 1+(x

1
)(t � t0)

��
,

1�(x
1
)f
�
t0 + 1�(x

1
)(t � t0)

�
 %(t, x)  1+(x

1
)f
�
t0 + 1+(x

1
)(t � t0)

�
.

Moreover, both %0 and % reach the self-increasing singularities at the point pm := (tm,+1, 0, · · · , 0):

lim
K3(t,x)!pm

% = lim
K3(t,x)!pm

f = +1,

lim
K3(t,x)!pm

%0 = lim
K3(t,x)!pm

f0 = +1 and lim
K3(t,x)!pm

%i = 0.

% ⌘ f for (t, x) 2 H.
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Main Theorem (conti.)

the growth rate of % can be estimated using visualizable functions

%(t, x) �1�(x
1
)f
�
t0 + 1�(x

1
)(t � t0)

�
> 1�(x

1
)
�
e
C(t0+1�(x

1
)(t�t0))

2

3
� 1

�

and

%(t, x) 1+(x
1
)f
�
t0 + 1+(x

1
)(t � t0)

�
<

3

2

0

BB@
1

1 +
A

t0+1+(x1)(t�t0)
+ B(t0 + 1+(x1)(t � t0))

2

3

� 1

1

CCA

for all (t, x) 2 K \ I.

if the initial data satisfy �̆ :=
t0�0

1+� � 1 > 0, then % has an improved lower bound, indicating finite-time blowups.

%(t, x) � 1�(x
1
)f
�
t0 + 1�(x

1
)(t � t0)

�
> 1�(x

1
)

0

BBBB@

1 + �

⇣ �0t

4

3
0

1+�

�
t0 + 1�(x1)(t � t0)

�� 1

3 � �̆
⌘
3

� 1

1

CCCCA

for all (t, xk ) 2 K \ I.
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§2. Backgrounds: classical Jeans instabilities
(only include classical ones without further developments in astrophy.)
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Classical Jeans instability (Static, Euler–Poisson system)
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Classical Jeans instability (expansion)
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§3. Our previous works on Jeans instabilities
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Our previous works on nonlinear Jeans instability

(Extremely simplified nonlinear model) Rigorous proof of slightly
nonlinear Jeans instability in the expanding Newtonian universe.
Physical Review D (PRD), 2022, 105(4): 043519.

(Mathematical model) Blowups for a class of second order nonlinear
hyperbolic equations: A reduced model of nonlinear Jeans instability.
arXiv:2208.06788.

(New exact Jeans instable solution to Euler-Poisson) Fully nonlinear
gravitational instabilities for expanding Newtonian universes with
inhomogeneous pressure and entropy: Beyond the Tolman’s solution.
Physical Review D (PRD), 2023, 107(12): 123534.

(Nonlinear Jeans instability for Euler-Poisson with specific source)
Fully nonlinear gravitational instabilities for expanding spherical
symmetric Newtonian universes with inhomogeneous density and
pressure. arXiv:2305.13211.
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Article 2: Composite nonlinearities but with synchronizable
sources

2%(xµ) +
a

t
@t%(x

µ)�
b

t2
%(xµ)(1+%(xµ))�

c� k

1 + %(xµ)
(@t%(x

µ))2 = kF (t),

%|t=t0
= %̊(x i ) > 0 and @t%|t=t0

= %̊0(x
i ) > 0,

where 2 := @2t ��g = @2t � gij(t)@i@j ,

a > 1, b > 0, 1 < c < 3/2

gij(t) :=
m2(@t f (t))2

(1 + f (t))2
�ij and F (t) :=

(@t f (t))2

1 + f (t)
,

where m 2 R is a given constant and f (t) solves an ODE,

@2t f (t) +
a

t
@t f (t)�

b

t2
f (t)(1 + f (t))�

c

1 + f (t)
(@t f (t))

2 = 0,

f (t0) = � > 0 and @t f (t0) = �0 > 0.
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The solutions of ODEs

@2t f (t) +
a

t
@t f (t)�

b

t2
f (t)(1 + f (t))�

c

1 + f (t)
(@t f (t))

2 = 0,

f (t0) = � > 0 and @t f (t0) = �0 > 0.

Theorem
1 t? 2 [0,1) exists and t? > t0;

2 (Blowups) there is a constant tm 2 [t?,1], such that there is a
unique solution f 2 C

2([t0, tm)) to the ODE, and

lim
t!tm

f (t) = +1 and lim
t!tm

f0(t) = +1.

3 (Estimates of growth rates of f ) f satisfies upper and lower bound estimates,

1 + f (t) > exp
�
Ct

ā+4
2 + Dt�1

�
for t 2 (t0, tm);

1 + f (t) <
�
At

ā�4
2 + Bt

ā+4
2 + 1

��1
for t 2 (t0, t?).
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@2t f (t) +
a

t
@t f (t)�

b

t2
f (t)(1 + f (t))�

c

1 + f (t)
(@t f (t))

2 = 0,

f (t0) = � > 0 and @t f (t0) = �0 > 0.

Theorem

Furthermore, if the initial data satisfies �0 > ā(1 + �)/(c̄t0), then

4 t? and t
? exist and finite, and t0 < t? < t

? < 1;

5 there is a finite time tm 2 [t?, t?), such that there is a solution
f 2 C

2([t0, tm)) to the ODE, and

lim
t!tm

f (t) = +1 and lim
t!tm

f0(t) = +1.

6 (Improved lower bounds, finite time blowups) the solution f has improved
lower bound estimates, for t 2 (t0, tm),

(1 + �)
�
1� Et ā

0
+ Et ā

�1/c̄
< 1 + f (t).
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The solutions to the PDEs

2%(xµ) +
a

t
@t%(x

µ)�
b

t2
%(xµ)(1+%(xµ))�

c� k

1 + %(xµ)
(@t%(x

µ))2 = kF (t),

%|t=t0
= %̊(x i ) > 0 and @t%|t=t0

= %̊0(x
i ) > 0,

Conclusions: % has self-increasing singularities at t = tm and has the
growth rates ⇠ f .

C. Liu (HUST) Jeans-type instabilities January 13, 2025 24 / 51



The ideas

Methods: Fuchsian formulations.

B
µ@µu =

1

t
BPu + G in [�1, 0)⇥ Tn,

u =u0 on {�1}⇥ Tn.

Thm by Oliynyk (2016) then by Beyer, Olvera-Santamaŕıa (2020)
implies the solution exists globally in [�1, 0)⇥ Tn.

The compactified time

⌧ := �g(t) =� exp
⇣
�A

Z
t

t0

f (s)(f (s) + 1)

s2f0(s)
ds

⌘

=�

⇣
1 + bB

Z
t

t0

s
a�2

f (s)(1 + f (s))1�c
ds

⌘�A

b

2 [�1, 0).
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Summary of tools

Fuchsian GIVP;

The reference ODE of f ;

Hidden quantities and identities of f (distinguishing Singular and
Regular-⌧ terms);

Time compactifications.
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Article 3&4: Nonlinear gravitational instabilities
The dimensionless and normalized Euler–Poisson system

@t⇢+ @i (⇢v
i ) = 0,

@tv
i + v

j@jv
i +

@ip

⇢
+ @i� = 0,

@ts + v
i@i s = 0,

�� = �ij@i@j� = 4⇡⇢.

The equation of state becomes

p = Ke
s⇢

4

3 + p, for K � 0.

There is an exact solution on (t, xk) 2 [t0,1)⇥ R3,

⇢̊(t) =
◆3

6⇡t2
, p̊(t) = Kt

� 4

3 �klx
k
x
l ⇢̊

4

3 + p, v̊
i (t, xk) =

2

3t
x
i ,

�̊(t, xk) =
2

3
⇡⇢̊�ijx

i
x
j =

◆3

9t2
�ijx

i
x
j , s̊(t, xk) = ln(t�

4

3 �klx
k
x
l)sgn(1�◆3),
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We construct solutions

⇢(t) = (1 + f (t))⇢̊(t) =
◆3(1 + f (t))

6⇡t2
,

v
i (t, x i ) =

2

3t
x
i
�

f
0(t)

3(1 + f (t))
x
i ,

�(t, x i ) =
2

3
⇡⇢̊(1 + f (t))|x |2 =

◆3(1 + f (t))|x |2

9t2
,

s(t, xk) = ln
�
t
� 4

3 (1 + f )
2

3 �klx
k
x
l
�sgn(1�◆3)

.

and the density contrast %(t) = f (t) where |x |2 := �ijx ix j and f (t) is a
solution of the following nonlinear ODE,

f
00(t) +

4

3t
f
0(t)�

2

3t2
f (t)(1 + f (t))�

4(f 0(t))2

3(1 + f (t))
= 0,

f |t=t0
= � and f

0
|t=t0

= 3(1 + �)�.

Moreover, the pressure becomes p(t) = K ◆4

(6⇡)
4

3 t4
(1 + f )2�klxkx l .

Result: Self-increasing singularities.
C. Liu (HUST) Jeans-type instabilities January 13, 2025 28 / 51



Article 3&4: Nonlinear gravitational instabilities

The dimensionless and normalized Euler–Poisson system

@t⇢+ @i (⇢v
i ) =0,

@tv
i + v

j@jv
i +

@ip

⇢
+ @i� =D

i (t, x j , ⇢, vk , s,�),

@ts + v
i@i s =S(t, x j , ⇢, vk , s,�),

�� = �ij@i@j� =4⇡⇢.

EoS is
p = Ke

s⇢
4

3 for K > 0.

S and D provide the synchronizable source like F .

Transform to a type of Article 2;

Self-increasing singularities.
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Eventually, we arrive at

2g%̂+
⇣ 4

3t
+

f0
1 + f

⌘
@t %̂�

2

3t2
%̂(1 + %̂)�

4(@t %̂)2

3(1 + %̂)
=F1, Article 2’s eq.

@t⌫ +
f0

3(1 + f )
⌫@⇣⌫ =G1, Transport eq.,

where the wave operator is

2g := @2t � g⇣⇣@2⇣ + 2g0⇣@⇣@t ,

g⇣⇣ :=
(2 + !)(1� ◆3)

9t2
(1 + %̂)!+1

(1 + f )!
�

f
2

0

9(1 + f )2
⌫2, g0⇣ :=

f0

3(1 + f )
⌫.
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§4. Emergence of nonlinear Jean-type instabilities for QNLW
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After time transform t ! ln t, the equation becomes:

@2t %� gij@i@j% =
2

3t2
%(1 + %)�

4

3t
@t%+

4

3

(@t%)2

1 + %
+ gqi@i%

�
1

t2
Kij(t, %, @µ%)@i%@j%, in [t0, t

?)⇥ Rn,

%|t=t0
= � +  (xk) and @t%|t=t0

= �0 +  0(x
k), in {t0}⇥ Rn,

where

gij = gij(t, %, @t%) := g(t, %, @t%)�
ij =

✓
m2

(@t%)2

(1 + %)2
+4(k�m2)

1 + %

t2

◆
�ij .

Remark

Self-increasing/Riccati terms (dominant) ⇠
4

3

(@tf )2

1 + f
⇠

2

3t2
f (1 + f );

but damping terms ⇠ �
4

3t
@tf ⇠

1

t2
f

1

2 (1 + f ).
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Main Theorem shown by one picture

pm

 

Possible'blueshit

5
Possibly shorten longwavelength
thewavelength longwavelength domain

andformshocks domain redshift

A few words about the Proof
Want to transform the wave eq. to a Fuchsian formulation by previous techniques, but fails;

No synchronizing terms, compactified time fails;

Construct a companion system which can be transformed to a Fuchsian formulation. It shares the same solution with

the wave eq. in the lightgrey domain.
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Thank you
for your attention!

§5. Ideas of the proofs (Extra materials below)
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Ideas and Fuchsian direction

Basic direction: the Fuchsian method (need time compactifications
and Fuchsian variables)!

Require time compactifications [t0, tm) ! [�1, 0). How?
Idea: Intro. a compactified time like “Try 2”?
Di�culty: Fail! Since there is no synchronized term (synchronizing
source term synchronize the blowup time to 0), and it is high possible
that the solution blows up at di↵erent time (if it blows up!). The
compactified time works only if the blow up time can be synchronized
and the perturbations do not change the blowup times (if blwoup at
infinity, it may still work)

Define the compacitified time ⌧ = g(t, x) for t by solving the equation

@tg(t, x
i ) =

AB%(t, x i )
�
�g(t, x i )

� 2

3A
+1

t
2

3 (%(t, x i ) + 1)
1

3

,

g(t0, x
i ) =� 1.
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Compactified time [t0, tm) ! [�1, 0)
Overcome di↵.: Intro. two compactified time:
(1) for the reference solution (sol. to ref. ODE), use “try 2”
compactified time;

⌧ = g(t)| {z }
Increasing

= �

⇣
1 +

2

3
B

Z t

t0

s
� 2

3 f (s)(1 + f (s))�
1

3 ds

⌘� 3A

2

2 [�1, 0).

It synchronizes the blowup time of the reference solution. However,
the perturbations may not blowup at this time, blowup time may
deviate it.
In order to be comparable (this may not hold!), we intro the
compactified time analogue to this

⌧ = g(t, x i ) = �

⇣
1 +

2

3
B

Z
t

t0

s
� 2

3 %(s, x i )(1 + %(s, x i ))�
1

3 ds

⌘� 3A

2

2 [�1, 0).

Wrong compactified time leads wrong structures and fails. It is crucial how
to choose it. Need guess and experiments!
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Remark: Comparisons of % and f

Wrong: %(t, x)� f (t) (when there is a synchronizing term as Try 2);
Correct: %(⌧, ⇣k)� f (⌧) (align the variables by compactified time ⌧).
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ODE equivalence of the compactification
The compacitified time can be reexpressed in terms of two ODEs:

@tg(t, x
i ) =

AB%(t, x i )
�
�g(t, x i )

� 2

3A
+1

t
2

3 (%(t, x i ) + 1)
1

3

,

g(t0, x
i ) =� 1.

and

@tg(t) =� Ag(t)
f (t)(f (t) + 1)

t2f0(t)
=

ABf (t)(�g(t))1+
2

3A

t
2

3 (1 + f (t))
1

3

,

g(t0) =� 1.

These ODEs provide the Jacobian and determine how the coordinate
transforms develop. We must solve the variant of the main equation
concurrently with the coordinate equation.

They provide some hidden identities.
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The first coordinate transform
We express the main equation to a singular hyperbolic system (1st order)
in terms of (⌧, ⇣) given by

⌧ = g(t, x i ) and ⇣ i = x
i

Its inverse transformation denote

t = b(⌧, ⇣ i ) and x
i = ⇣ i

and satisfies a ODE (Why? Since it is Fuchsianable)

@⌧b(⌧, ⇣
i ) =

b
2

3 (⌧, ⇣ i )(1 + %(⌧, ⇣ i ))
1

3

AB%(⌧, ⇣ i ) (�⌧)
2

3A
+1

,

b(�1, ⇣ i ) =t0

We do not give the coordinate transform directly but give it by an evolution
equation (similar to the wave coordinates, perturbed Lagrangian
coordinates, etc.)

b and b⇣ := @⇣b become unknown variables since they describe the
coordinate transform and this transform has been solved from an equation.
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Singular symmetric hyperbolic system

Intro. perturbation variables: e.g. u(⌧, ⇣k) =
%(⌧,⇣k )�f (⌧)

f (⌧)

Using a lot of hidden relations derived from the reference ODE and
the quantities � and ⇠ in “try 2” we can have a singular symmetric
hyperbolic equation (similar to “try 2”).

Comparing with “Try 2”, this method has already lead to the
Fuchsian system and it is done! However, now it can not be achieved.
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Lemma

A0@⌧U +
1

A⌧
Ai@⇣ iU =

1

A⌧
AU + F,

where U :=
�
u0, uj , u,Bl , z

�T
, F =

�
Fu0

,Fuj
,Fu,FBi

,Fz

�T
,

A0 =

0

BBBB@

1 R j 0 0 0
Rk (S + L )�j

k
0 0 0

0 0 2 0 0
0 0 0 �l

s
0

0 0 0 0 1

1

CCCCA
, Ai =

0

BBBB@

0 H
ij 0 0 0

H
i

k
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 q

i

1

CCCCA
,

A =

0

BBBB@

�
14

3
+ Z11 �4kqj + Z j

12
8 + Z13 0 �8 + Z15

0 (4k + Z22)�
j

k
0 (24k + Z24)�lk 0

�8 + Z31 0 40

3
+ Z33 0 �16 + Z35

0 ( 2
3
+ Z42)�js 0 ( 2

3
+ Z44)�ls 0

0 0 0 0 0

1

CCCCA
.

Di�culty: A can not be positive definite whatever you do!
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Ideas from algebraic observations
⇣̃1 = ↵

A
ln(�⌧) + ⇣1 (where ↵ > 0) and ⌧̃ = ⌧ , we obtain the

following transformations: @⌧ = @⌧̃ +
↵
A⌧̃ @⇣̃1 and @⇣1 = @⇣̃1 .

A0@⌧̃U +
1

A⌧̃

�
↵A0 + A1

�
| {z }

=

0

@ ↵ 1 + ↵U
1 + ↵U 1

4
↵

1

A

@⇣̃1U =
1

A⌧̃
AU + F(U).

A variable transformation U = e
✓⇣̃1

U (where ✓ > 0), the derivative

transforms as follows: 1

A⌧̃ @⇣̃1U = e
�✓⇣̃1 1

A⌧̃ @⇣̃1U�✓e
�✓⇣̃1 1

A⌧̃ U.
 

1 e
�✓⇣̃1U

e
�✓⇣̃1U 1

4

!

| {z }
=:B0

@⌧̃U+
1

A⌧̃

 
↵ 1 + ↵e�✓⇣̃1U

1 + ↵e�✓⇣̃1U 1

4
↵

!

| {z }
=:B1

@⇣̃1U

=
1

A⌧̃

 
↵✓ � 14

3
✓ + ↵✓e�✓⇣̃1U� q

✓ + ↵✓e�✓⇣̃1U 1 + 1

4
↵✓

!

| {z }
=:B

U+ e
✓⇣̃1F(e�✓⇣̃1U).
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Remark
An intuitive idea to overcoming this di�culty is to solve a global existence
problem for a revised hyperbolic system and ensure that this revised
system is consistent with the main eq. (or its variant) within a su�ciently
large lens-shaped domain. Outside the lens-shaped domain, we have
considerable flexibility to modify the hyperbolic equation to align with the
Fuchsian formulations, allowing us to use the Fuchsian GIVP for the
revised system to achieve a global solution.
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Two revisions (geometric meanings)

(1) The second coordinate transform: the tilted coordinate

⌧̃ = ⌧̃(⌧, ⇣k) = ⌧ and ⇣̃ i = ⇣̃ i (⌧, ⇣k) =
aci

A
ln(�⌧) + ⇣ i ,

Motivations: Expand the “null infinity” (not precisely) and upright a
timelike direction (close to null) to be the time axis. since our
analysis can only work in this “closed to null” domain.

From the equation point of view, (1) generate more terms in 1

A⌧A
i

and will help compensate 1

A⌧A to achieve the positive definiteness.

From the geometric point of view, they tilt the characteristic conoid
and expand the “near-null” domain.
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⇣̃1 = 1⇣̃1 = 1

⌧̃

⇣̃1

Char. surface

⌧̃ = 0

⌧̃ = �1

Char. surface

⌧̃ = �e
51A
100 ⇣̃

1

Coord. line ⇣1 = 0, ⌧ axis
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(2) rescale all the variables by spatial factors, e.g., µ(⇣̃1) := �0e
� 153

�0 e
�51⇣̃1

and the variable, e.g., becomes

u0(⌧̃, ⇣̃) =
1

�0e
� 153

�0 e�51⇣̃1
eu0(⌧̃, ⇣̃)

Motivation: Spatial factors like µ will separate a new singular
remainder term 1

A⌧AremainderU from 1

A⌧A
i@iU, and 1

A⌧AremainderU

compensate 1

A⌧AU to obtain a positive definite singular lower order
term (consists with the Fuchsian).

Along the boundary of the char. cone, ⌧̃ ⇠ e
�⇣̃1 gives decay factors.

Defect: µ ⇠ e
�51⇣̃1 introduce infinities to the equation as ⇣̃1 ! �1.

Break the structures.

Idea to overcome: Revise the equation by cuto↵ function � such that
the infinities vanish. However, the equation fails to equivalent to the
original equation due to the revision.

� 2 C
1�R; [0, 1]

�
, �|

[���1

0
,+1)

= 1 and supp� ⇢ [�2��1

0
,+1) ⇢ R.
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How to recover the solution of the original one?
To recover original solution, only use the lens-shaped domain
(determination domain, see Fig. to explain)
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The revised system becomes a Fuchsian system by
compactifying space

The third coordinate transform (compactifying the space)

⌧̂ = ⌧̃ 2 [�1, 0) and ⇣̂ i = arctan(�⇣̃ i ) 2
⇣
�
⇡

2
,
⇡

2

⌘

Rn becomes Tn, a closed manifold which is required by the Fuchsian
analysis.

After this coordinate transform, we have Fuchsian formulation and can
derive the global existence and stability result for this revised system.

Using determination domain obtain the main theorem.

C. Liu (HUST) Jeans-type instabilities January 13, 2025 48 / 51



C. Liu (HUST) Jeans-type instabilities January 13, 2025 49 / 51



⇣̃1 = 1⇣̃1 = 1

⌧̃

⇣̃1

Char. surface

⌧̃ = 0

⌧̃ = �1

Char. surface

⌧̃ = �e
51A
100 ⇣̃

1

Coord. line ⇣1 = 0, ⌧ axis
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Thank you
for your attention!
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