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§1. Introduction
(Equations, goals, motivations and main results)
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Final Goals of this Project

The fully nonlinear Jeans-type instabilities for the Euler—Poisson system
and the Einstein—Euler system.

The Recently Completed Work (This talk!)

The fully nonlinear Jeans-type instabilities for a simplified toy model: a
quasilinear wave equation with several difficult nonlinear terms which
models the Euler—Poisson and Einstein—Euler system in some aspects.

Ongoing Work
The fully nonlinear Jeans-type instabilities for the Euler—Poisson and 2nd

order perturbations (Bardeen invariants, by Hwang, Noh) of Einstein—Euler
system.

4

Expecting some opinions from the audiences

The fully nonlinear Jeans-type instabilities for the Einstein—Euler system:

1. The definition of density contrast is ill-defined due to gauge dependent.

2. The covariant fractional density gradient by Ellis and Bruni (1989)7 same mechanism
for 1st order, different for 2nd order?
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Equations and goals Mtlorahes] vorsn,
¥

070 — (Tf(ftg)); +4(k —m?)(1+ Q)) Ao = F(t,0,0u0)

where the nonlinear source terms are //W% S}Lﬂoé
4 (0,0)?
F(t, o, 8#@) ‘= _Q(1+Q) ——&g 3(1 f) ](;Nwméb"t Pﬂ%,,lncmf

S~ 3 3lte mewmg,jgwi

(i) self-increasing (ii) damplng (iii) Riccati

0 ,- i
I ( 2 ( tQ) + 4(k — mz)(l + Q))q di0 —K"(t, 0, 0.0)9i00j0.

(1+0)?

J/

~
(iv) convection

oicto = B 4+ W(x*)  and Bigliet, = Bo + Yo(x¥) , in{to} xR",
const. inhomogeneity const. inhomogeneity

@ (Goal) Find self-increasing blowup solutions (formations of nonlinear cosmological
structures).

@ (Result) The solutions can attain arbitrarily large values over time, leading to
self-increasing singularities at some future endpoints of null geodesics, provided the
inhomogeneous perturbations of data are sufficiently small (long wave feature!).
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P /y/h'CS exSin,

After time transform t — In t, the equation becomes:
S2en 74 Pég:a ,QL{WAMJ

i 2 4 4 (0¢0)? ;
8?@ —g70;0j0 = ﬁQ(l +0) — ﬁatQ‘F 5(1 ;)Q + 849 0io
1 ..
o _KU(t7 0, a,ug)algajga In [t07 t*) X an

t2
Olt=t, = B+ ¢(Xk) and  0:0|t=t, = Bo + wo(xk), in {to} x R",

where

i i ij 0:0)° 1+0)\
g’ = g"(t,0,0r0) = g(t, 0,0:0)0” = (mz(g jr ;)2 +4(k = m?)=—; )51.

@ Now focus on this equation!! A time transform t — e’ leads back to
the previous equation.
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A short version for the motivation

Relate to the famous problem in astrophysics:

Important astrophysical question

@ Cosmological perturbation theories (linear, higher order
approximations) by e.g., Jeans, Bonner, Lifshitz, Bardeen, Hawking,
Ellis, Bruni, Zel'dovich, Peebles, Brandenberger, Mukhanov, Hwang,
Noh... (long lists in astrophy.). Stability/instability;

@ (Jeans instability) The formations of the nonlinear cosmological
structures;

@ (Core mathematical mechanism) Nonlinear Jeans-type instability.
Rare mathematical studies currently.

@ A toy model for above system. Neglecting rotations, shears of the
fluids, and tidal forces, Euler—Poisson (or Einstein—Euler) leads to this
type of QNLW.
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Main Theorem shown by one picture
At

Sol. unknown domain

Charted/Uncharted bdry T T\ K .
m

f”%””‘é‘*

Char. COIllOd C

Homog. sol. dom. H

x| =1 |z| = o0

Rough expression of the main theorem

If the initial inhomogeneities ||(¢, 1¥o)||x are sufficiently small, then
t = t(t,x) — t, and o(t, x*) — f(t) and their derivatives as well of the reference

ODEs, at least within a sufficiently large domain D close to [tg, t,) x R”".
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Rough expression of the main theorem

If the initial inhomogeneities ||(, Y0)||x are sufficiently small, then

t = t(t,x) — t, and o(t,x*) — f(t) and their derivatives as well of the
reference ODEs, at least within a sufficiently large domain D close to
[to, tm) X R" where f(t) solves an ODE,

(Bf(1)° = 0,

ORF() + 200F() — A+ () — 1

+1(1)
f(to)) =8 >0 and 0:f(ty) = Bo > 0.

Moreover,

2
8 1
et X — 1 < o(t, x*) ~ F(t) < r — 1,
Const. — t3

and if the initial data 5y 2 3, then

1 1
1 _1§Q(t7xk)Nf(t)§ 2_17
(t~3 — Const.)3 Const. — t3
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Main Theorem

At

Charted/Uncharted bdry T Sol. unknown domain
T\ K
(

Wo{%%ibgimod C
v

Homog. sol. dom. H

x| =1 |z| = o0

C = {(t,x) € [to, tm) X R”

t
x| =1+ /t Vel F(v), fo()/))dy} .
0

Remark (directional bias)

The direction of convection is assumed to be constant and can be normalized qi = |q|5i.
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Generations

remark

The convection term introduces a directional bias in gg’, causing the wave
to propagate more strongly in a particular direction depending on the sign

' I
and magnitude of gq'.
y
t Al
Charted/Uncharted bdry T(l/ SOI.Il\mllénown domain Charted/Uncharted bdry T Sol. unknown domain

Inhomog. Sol. dom. Z Inhomog. Sol. dom. Z

Char. coiniod C Char. cohiod C

I:"/Homog. soi. dom. H

jz[ =1 2] = o0 |z =1 |z] = o0

Figure: ' = |q|d! Figure: g' oc x' /|x|
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Main Theorem
Suppose k € Z§+3, A, B, C, D are constants depending on the initial data
£ and [g, as defined in the article, and that Assumptions hold. Let

(v, 10) € C3(R™) be given functions with supp(w, 1) = B1(0), f(t) be
the solution to the key reference ODE (later!). Then there exist sufficiently
small constants og > 0 and og > 0, such that if the initial data satisfy

153

11| e gy(0y) + 101 [l ik, 0y) + 1¥oll ik (y0)) < € % 05,
then there exists a hypersurface t = T (x, dg) satisfying
r50 = {(t,X) S [t07 tm) x R" ‘ = T(X7 50)} C I? lim T(351750) = Im

a—>—|—oo
im T(x,00) = tm
do—0+ ( ’ ) ’

such that there is a solution p € C?(K UH) to the main equation where
K= {(t,x) € [to, tm) X R" | t < T(x,dp)} satisfying
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Main Theorem (conti.)

@ if we denote

50 1 50 1

1\ . 2 T8 X 1\ . ~Sn X 1
1_(x7):=1—Cope “0e 2 N1 and 1.(x):=1+Coge °0e 2 1, asx — +oo,

then there are estimates for (t, x) € K N Z,

1 (x)fo(to +1_(x")(t — 1)) < oot x) < 14(x")o(to + 1o (x)(t — 1)),
50 1 50 L

—Cole 20T T (14 f(to+1_(x")(t — 1)) < 0i(t,x) < Coe 0 e 2 (1+f(to + 14 (x)(t — 1)),

1_ () (to + 1 (x')(t — t0)) < e(t, x) < 14 (x))f (o + 14 (x)(t — t)).

Moreover, both pg and p reach the self-increasing singularities at the point py, = (tm, +00,0, - - -, 0):
lim o= lim f =400,
’CE(tyx)_*Pm ’Ca(tax)_)pm
lim 00 = lim fo = +oo and lim o;j = 0.
’CB(t,X)—>pm ’CB(t,X)—>pm ’CB(t,X)—>pm

Q@ o =ffor(t,x) € H.
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Main Theorem (conti.)

@ the growth rate of p can be estimated using visualizable functions

2
o(t, x) 21_(x1)f(t0 +1_ () (t — to)) > 1_(Xl)(ec(t0+1—(xl)(t—to))3 —1)

and

1

o(t, x) <14 (<MF(to + 14 (x1)(t — 1)) < —1

N | W

2
A 1 . 2
1+ 01 ) (t—t0) + B(tg + 14 (x*)(t — tp)) 3

for all (t,x) € KNZ.

@ if the initial data satisfy ﬁv = % — 1 > 0, then o has an improved lower bound, indicating finite-time blowups.

1+

o(t,x) > 1_(x")Ff (g + 1_ (<")(t — tg)) > 1_(x") . 1

3
(5958 (1 +1_ (<) (e — 1)) =5 — §)°

for all (t,xk) e KNI
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§2. Backgrounds: classical Jeans instabilities
(only include classical ones without further developments in astrophy.)
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Classical Jeans instability (Static, Euler—Poisson system)

)
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Classical Jeans instability (expansion)
E;xfxluobﬁj}' ﬁjeufﬁivm&nq, [/Cﬂ@vevﬁe,
/ —
[/P’PO&) “er o V' =Ukc 33;76‘ (Hé’f)« Haddle s [aw)
gé 575 77,6/0
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333#@'—--!919@— = €=

U/ Fouror wlfm‘g{«m

C + —46' (C&k W,) € =0,
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§3. Our previous works on Jeans instabilities
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Our previous works on nonlinear Jeans instability

@ (Extremely simplified nonlinear model) Rigorous proof of slightly

nonlinear Jeans instability in the expanding Newtonian universe.
Physical Review D (PRD), 2022, 105(4): 0435109.

@ (Mathematical model) Blowups for a class of second order nonlinear

hyperbolic equations: A reduced model of nonlinear Jeans instability.
arXiv:2208.06788.

@ (New exact Jeans instable solution to Euler-Poisson) Fully nonlinear
gravitational instabilities for expanding Newtonian universes with

inhomogeneous pressure and entropy: Beyond the Tolman's solution.
Physical Review D (PRD), 2023, 107(12): 123534

@ (Nonlinear Jeans instability for Euler-Poisson with specific source)
Fully nonlinear gravitational instabilities for expanding spherical

symmetric Newtonian universes with inhomogeneous density and
pressure. arXiv:2305.13211.
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Article 2: Composite nonlinearities but with synchronizable
sources

p a my _ E p pyy_ T k mY)2 —

Ho(x") + —0ro(x") — —0(x")(1+o(x")) 1+Q(XM)(&:@(X ) k;(tz,

0lt=t; = 6(x') >0 and  0:0|t—s, = do(x') > 0, 6s { ‘

) 7‘46 ‘rohzw,(j

where [0 := 8? — Ag — 83 — gU(t)ﬁ,‘aj, LM/“?”tllmeg;
a>1, b>0 1<c<3/2 O farkally kily,

5 5 5 Efecdi R cat) den,

gl(t) = Oef )5 4nd F(t) := (OcF(£))7 ot 70 shud

(14 1f(1))? 14 f(t)

where m € R is a given constant and f(t) solves an ODE,

1+ f(t)

f(to) =038>0 and atf(to) = Bo > 0.

RF(t) + 20:F(1) — AL+ F(1)) — S (0eF (1) = 0,
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The solutions of ODEs

() + 20ur (1) = ZF(O(1+ (1)~ 75775 OeF(0)° =
f(to):ﬁ>0 and atf(to): Bo > 0.

Theorem
Q t, €[0,00) exists and t, > to;

@ (Blowups) there is a constant t,, € [t,, 00], such that there is a
unique solution f € C?([to, tn)) to the ODE, and

lim f(t) = +oc and lim fy(t) = +o0.

t—tm t—tm

© (Estimates of growth rates of f) f satisfies upper and lower bound estimates,

1+ f(t) >exp(Ct¥ +Dt 1) for t € (to,tm);

at+A

1+ f(t) < (At - 1Bt 7

— 1)_1 for t € (to,ty).

y
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C
1+ f(t)
f(to) =05 >0 and 0157((1'0) = Bg > 0.

(9:£(t))* = 0,

0,_?f(t) -+ %&f(t) — t—bzf(t)(l + f(t)) —

Theorem
Furthermore, if the initial data satisfies By > a(1 + 3)/(Cty), then
Q t, and t* exist and finite, and tg < t, < t* < o0;

@ there is a finite time t,,, € [t., t*), such that there is a solution
f € C%([ty, tm)) to the ODE, and

lim f(t) =400 and lim fp(t) = +o0.

O (Improved lower bounds, finite time blowups) the solution f has improved
lower bound estimates, for t € (tg, tm),

(1+8)(1 - Etg —I—Eté)l/E < 14 1(t).

V.
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The solutions to the PDEs

D) + 3000(") = el ) (1ol ) 1oy

(De0(x"))? = kF(t),

0lt=t, = é(Xi) >0 and 0:0|t=t, = éo(Xi) > 0,

@ Conclusions: p has self-increasing singularities at t = t,, and has the
growth rates ~ f.
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The ideas

@ Methods: Fuchsian formulations.

1
B*0,,u :?BPU + G in[-1,0) x T",

u =up on {—1} x T".

Thm by Oliynyk (2016) then by Beyer, Olvera-Santamaria (2020)
implies the solution exists globally in [—1,0) x T".

@ The compactified time

e g(t) - exp(—A/t f(s)(f(s)+ 1)ds)

to Szfo(S)

_ (1 +bB /tsa2f(s)(1 + f(s))l_cds)_ e [-1,0).

to

o>
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Summary of tools

@ Fuchsian GIVP:;
@ The reference ODE of f;:

e Hidden quantities and identities of f (distinguishing Singular and
Regular-7 terms);

@ Time compactifications.

January 13, 2025 26 /51
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Article 3&4: Nonlinear gravitational instabilities
The dimensionless and normalized Euler—Poisson system

Oep + 0i(pv') = 0,

Sy |
Otv' + vV Oojv' + P +0'¢p =0,
0
81-5 + Viais = O,

A¢ = 6Y0;0;¢ = 4rp.
The equation of state becomes
p= Kesp% +p, for K> 0.

There is an exact solution on (t,x*) € [tp, 00) x R3,

3
. L . _4 o4 o 2
pt) = 62’ p(t) = Kt 30.ux"x' 53 +p, ¥/ (t,x) = ﬁXI’
. 2 - 3 -
t,xK) = Sqp0;x'x = L—5,--X’XJ, §(t, x*) = In t_%éklxkxl Sg”(l_ﬁ),
3" P o2
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We construct solutions

L3
(1) = (14 F(e)j() = D)
Vit xT) = EXI - f(¢) i

3t 3(1+f(1)

. 3 |2
o(t,x') = %77,5(1 + f(1))|x|* = (1 +9ft(2t))| | |

S(t,Xk) _ In(t_%(l i f)%(gk/Xle)sgn(l_”?)).

and the density contrast o(t) = f(t) where |x|? := §;x'x/ and f(t) is a
solution of the following nonlinear ODE,

/ 2

flt:to — 6 and f/‘t:to = 3(1 —+ 6)’)/

Moreover, the pressure becomes p(t) = : K)"j 4(1 + F)28xkx!.
6m)3t

@ Result: Self-increasing singularities.
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Article 3&4: Nonlinear gravitational instabilities

The dimensionless and normalized Euler—Poisson system

Orp + Oi(pv') =0,
o' p

0
Ors +v'0is =S(t, X, p, v, s, ¢),

A¢ = §Y0;0;¢ =4p.

8tvi—|—vj8jvi—|— +9'¢p =D'(t,x, p, v, s, ¢),

EoS is
for K > 0.

@ § and D provide the synchronizable source like F.

@ Transform to a type of Article 2;

@ Self-increasing singularities.

C. Liu (HUST) Jeans-type instabilities January 13, 2025 29 /51



Eventually, we arrive at

(A kRN, 2 4(8:0)
— ~ (1 _ _F
Dg@+(3t+1+f) 0= 300+ 0) 3075 =
fo
~G
OV + 31 1 f)uﬁgy 1,

where the wave operator is

Og 1= 0 — g 0F + 2g%° 0,0,

o 2+w)(1—:3) 1+ p)~H! y
- 9t? (1+F)*  9(1+f)?

g
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Transport eq.,
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94. Emergence of nonlinear Jean-type instabilities for QNLW
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After time transform t — In t, the equation becomes:

ij 2 0t 0 ° i
070 — g" 0,00 = 3 ~—o(l+0) - —&@ 3(111) +gq' 00
]' / . * n
o ij(ta 9, a,ug)algajga In [t07 t ) x R )

Olt=t, = B + ¢(Xk) and  0:0|t=t, = Po + wo(x"), in {to} x R",

where

SRee 9)2 t2
Remark
4 (0ef)* 2
Self-increasing/Riccati terms (dominant) ~ = (15’:_ )f = f(1+ f);
4 1 .
but damping terms ~ —?tatf _2f§(1 + f).
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Main Theorem shown by one picture

At

Charted/Uncharted bdry T Sol. unknown domain
T\ K
tm

gl

Char. coﬁniod C

I:"/Homog. sol. dom. H

2] = ] = o0

A few words about the Proof

@ Want to transform the wave eq. to a Fuchsian formulation by previous techniques, but fails;
@ No synchronizing terms, compactified time fails;
Q

Construct a companion system which can be transformed to a Fuchsian formulation. It shares the same solution with
the wave eq. in the lightgrey domain.
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T'hank you
for your attention!

§5. Ideas of the proofs (Extra materials below)
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ldeas and Fuchsian direction

@ Basic direction: the Fuchsian method (need time compactifications
and Fuchsian variables)!

@ Require time compactifications [tg, t,,) — [—1,0). How?
|dea: Intro. a compactified time like “Try 2”7
Difficulty: Fail! Since there is no synchronized term (synchronizing
source term synchronize the blowup time to 0), and it is high possible
that the solution blows up at different time (if it blows up!). The
compactified time works only if the blow up time can be synchronized
and the perturbations do not change the blowup times (if blwoup at
infinity, it may still work)

@ Define the compacitified time 7 = g(t, x) for t by solving the equation

\_ABo(t, x') (—g(t,x")) 't
t5 (o(t, 1) + 1)3

,
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Compactified time [to, t,,) — [—1,0)

@ Overcome diff.: Intro. two compactified time:
(1) for the reference solution (sol. to ref. ODE), use “try 2"
compactified time;

2
f:g(tZ:—(1+§B/
TV t

0
Increasing

t _3A

sT3F(s)(1 + f(s))—%ds) ? €[-1,0).

It synchronizes the blowup time of the reference solution. However,
the perturbations may not blowup at this time, blowup time may
deviate it.

@ In order to be comparable (this may not hold!), we intro the
compactified time analogue to this

2

r=g(tx)=—(1+ 38 [ s Sals)(1+ olsx)) as) € -1,0)

@ Wrong compactified time leads wrong structures and fails. It is crucial how
to choose it. Need guess and experiments!

C. Liu (HUST) Jeans-type instabilities January 13, 2025 36 /51



Remark: Comparisons of p and f

Wrong: o(t,x) — f(t) (when there is a synchronizing term as Try 2);
Correct: (7, ¢*) — f(7) (align the variables by compactified time 7).

C. Liu (HUST) Jeans-type instabilities
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ODE equivalence of the compactification

The compacitified time can be reexpressed in terms of two ODEs:

ABo(t,x') (—g(t, x")) =t
t3(o(t, x7) + 1)3

at“g(tvxi) —

)

g(to,Xi) — — 1.
and

FO(F() +1) _ ABF(t)(—g(t))*+3
o (t) 65(1 4 f(1)3

@ These ODEs provide the Jacobian and determine how the coordinate
transforms develop. We must solve the variant of the main equation
concurrently with the coordinate equation.

@ They provide some hidden identities.
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The first coordinate transform

We express the main equation to a singular hyperbolic system (1st order)
in terms of (7, () given by

r=g(t,x") and (' =x
Its inverse transformation denote

t=>b(r,¢'") and x'=('
and satisfies a ODE (Why? Since it is Fuchsianable)
b (7,¢")(1 + o(7:¢"))>
ABo(r, ') (=) 7t
b(—1,¢") =to

9-b(7,¢") =

@ We do not give the coordinate transform directly but give it by an evolution
equation (similar to the wave coordinates, perturbed Lagrangian
coordinates, etc.)

@ b and b := O:b become unknown variables since they describe the

coordinate transform and this transform has been solved from an equation.
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Singular symmetric hyperbolic system

Ky
e Intro. perturbation variables: e.g. u(7,(*) = Q(T’Cf()T)f(T)

@ Using a lot of hidden relations derived from the reference ODE and
the quantities xy and £ in “try 2" we can have a singular symmetric
hyperbolic equation (similar to “try 2").

@ Comparing with “Try 2", this method has already lead to the
Fuchsian system and it is done! However, now it can not be achieved.
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Lemma
1 1

A0 .U+ —A'9U=—AU+F,
T AT < AT H

where U = (U07 u_j; u, 8/72>Tr F = (SUO7{§UJ7§U7{§B;7§Z)T7

[ 1 # 0 0 0) (0 HP 0 0 0)
e (S+ZL)% 0 0 0 H 0 0 0 0
A= 0 0 2 0 0], A=|0 0 0 0 0]},
0 0 0 4§ 0 0 0 00 0
\ 0 0 0 0 1) \0 0 0 0 ¢
(-5 +2u —4kd/ + 2, 8+ 23 0 —8 + Zis )
0 (4k + 2%)5, 0 (24k + 254)0,, 0
A= -8+ Z3 0 2+ 23 0 —16 + Z35
0 (3 + Z4)0 0 (2 + Z44)0! 0
\ 0 0 0 0 .

Difficulty: A can not be positive definite whatever you do!
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ldeas from algebraic observations

o (I = S In(—7) + ¢* (where a > 0) and 7 = 7, we obtain the

following transformations: 0, = 0z + 1= R and 01 = ;-
1 1
A%0;:U + — AY + A ~U=—AU+F(U).
8U+A7" \(oc j ), 0= U o U+ F(U)
B o 1+ alU
\1+aU %oz

o A variable transformation { = <" U (where 6 > 0), the derivative
transforms as follows: Ai%c‘?q U = e_eclﬁ%ﬁglﬂ—ﬁe_ecl A%LL

1 e_eflil 1 Q0 1+ oze_eflii
" 8;7"_1,[ E— ~ 8" Ll
<e9<lu 1 ) i AT (1 + ae 9y 1a ¢!

:TEO :Tgl
1 _ 14 —0Ct g _ : :
_ 1 a 5 0 4 abe 1 M —gq " eeglF(e_chu).
AT \ 0 + abe 9 4 1+ ;a6

J/

~~

—:B
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Remark

An intuitive idea to overcoming this difficulty is to solve a global existence
problem for a revised hyperbolic system and ensure that this revised
system is consistent with the main eq. (or its variant) within a sufficiently
large lens-shaped domain. Outside the lens-shaped domain, we have
considerable flexibility to modify the hyperbolic equation to align with the
Fuchsian formulations, allowing us to use the Fuchsian GIVP for the
revised system to achieve a global solution.
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Two revisions (geometric meanings)

(1) The second coordinate transform: the tilted coordinate

ac’

F=#(,¢")=71 and C—C(TC")——ln( )+,

@ Motivations: Expand the “null infinity” (not precisely) and upright a
timelike direction (close to null) to be the time axis. since our
analysis can only work in this “closed to null” domain.

o From the equation point of view, (1) generate more terms in 5=A’
and will help compensate 1TA to achieve the positive definiteness.

@ From the geometric point of view, they tilt the characteristic conoid
and expand the “near-null” domain.
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Uncharted domain

Lid hypersurface ¥s,

C. Liu (HUST)

Coord. line ¢! = 0, 7 axis
(*)¢!
(7,¢) cord. expadds this infinity

Char. surface

Jeans-type instabilities

Coord. line ¢! = 0, 7 axis

il
Il

Char. surface

Char. surface



_ 153
(2) rescale all the variables by spatial factors, e.g., u(gl) = gge % e ~51¢"

and the variable, e.g., becomes
. 1 .
uO(Ta C) — 153 UO(Tv C)

oope % e—5Ll!

@ Motivation: Spatial factors like 1 will separate a new singular
remainder term Al A cmainder U from Al A'0;U, and 1 2 Aremainder U
compensate L AU to obtain a positive definite smgular lower order
term (consists with the Fuchsian).

@ Along the boundary of the char. cone, 7 ~ e—¢' gives decay factors.

@ Defect: p ~ e51¢" introduce infinities to the equation as ¢! — —o0.
Break the structures.

@ Idea to overcome: Revise the equation by cutoff function ¢ such that
the infinities vanish. However, the equation fails to equivalent to the
original equation due to the revision.

O € COO(R; [0,1]), gb|[ 51 +oc) = 1 and supp¢ C [—25()_1,+oo) C R.
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How to recover the solution

@ To recover original solution, on
(determination domain, see Fig

Cut off the left side, it becomes a Fuchsian

of the original one?

ly use the lens-shaped domain
. to explain)

AT

Lens-shaped dom. (Shaded)
7 =0 /

Char. surfac

weakly spacelike surf.

¢! = arctan —
0

Char. surface

\ weakly spacelike surf.

! S
g

A= A

(! = arctan -y
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The revised system becomes a Fuchsian system by
compactifying space

The third coordinate transform (compactifying the space)

#=7¢e[-1,0) and (' =arctan(y(’) € (_g g)

@ R" becomes T”, a closed manifold which is required by the Fuchsian
analysis.

@ After this coordinate transform, we have Fuchsian formulation and can
derive the global existence and stability result for this revised system.

@ Using determination domain obtain the main theorem.
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Uncharted domain

Lid hypersurface s,

C. Liu (HUST)
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AT

Coord. line (! =0, 7 axis

=0 (x)¢*

(7 75) cord. expgdds this infinity
L E
Char. surface
¢t=1 L= oo




Coord. line ¢! = 0, 7 axis

AN

N
I
)
I
—_

Char. surface Char. surface
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T'hank you
for your attention!
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