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It is well known that discrete Hamilton’s variational principle is
one of the structure-preserving numerical integrators, providing a
long-time numerically stable scheme for conservative Lagrangian
systems.

This principle is based on the fact that the discrete
FEuler-Lagrange equations preserve a discrete symplectic structure,
called the discrete Lagrangian two-form, along the discrete
Lagrangian map, which is the discrete analogue of the flow of the
Lagrangian vector field in the continuous setting.

On the other hand, when nonholonomic constraints are present, as
in nonholonomic mechanical systems, the associated equations of
motion can be derived using the Lagrange—d’Alembert principle.

In the discrete setting, discrete Hamilton’s principle is replaced by
the discrete Lagrange—d’Alembert principle, from which the
discrete Lagrange—d’Alembert equations can be obtained.
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These algorithms, which generalize variational integrators for
unconstrained Lagrangian systems, exhibit geometric properties
similar to those of continuous nonholonomic systems.

From a slightly different perspective, we can consider
nonholonomic systems that admit reversing symmetries and
developed integrators for such systems that preserve an analogous
reversing symimetry.

In these cases, the numerical integrator, referred to as a
"nonholonomic integrator,” no longer preserves the discrete
symplectic structure.

In fact, it is not yet fully understood what structure, if any, is
preserved by such a nonholonomic integrator.

Nevertheless, it remains a long-term numerically stable scheme for
conservative nonholonomic mechanical systems.
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Hamilton’s variational principle
Consider a mechanical system with a Lagrangian
L:TQ — R,

where TQ is the tangent bundle of an n-dimensional configuration
manifold Q with local coordinates g/, i =1, ...,n for g € Q.

Consider a path space

C(@) ={q:1=[0,T] - Q| qisa C? curve on Q such that
q(0) = g1 and q(T) = g2},
where | = [0, T] C R* is the space of time.
A point q in the manifold C(Q) is a curve on Q, namely, g = q(t).

The deformation of g = q(t) € C(Q) is given by q(t, €) = qe(t)
such that qo(t) = q(t,0) = q(t).
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Then, the variation of the curve g(t) is defined by

d
oq(t) = — t),
9= g ado
which is the tangent vector to a curve q(t).

Let
7Q: TR = Q;(q.09) =~ ¢
be the canonical projection and we get 7g o dq = q.

The restrictions q¢(0) = g1 and q.(T) = g2 lead to dq(0) = 0 and
dq(T) = 0 respectively.

Figure: Variations §q(t) of a curve q(t).
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Hamilton’s variational principle.
Define the action functional A: C(Q) — R by

/L ) dt,

where g(t) denotes the time derivative of q(t).
If a curve g = q(t) € C(Q) is a critical point of A: C(Q) — R,
0A(q) =0,  §6q(0)=dq(T)=0,

the direct computation in local coordinates yields

A(9) = dA(q) B9 = | Alau(t)

T /8L daL aL T
B 8q'dt + — 84’
| (- dtaq'> TET 55 ),

T /8L d 8L
- Id —
/ (aq' dtaq')‘sq t=0.
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In the above, the Einstein summation convention is employed; that
is, a repeated index implies summation over that index. We shall
use this convention throughout the paper unless stated otherwise.

Thus we get the Euler-Lagrange equations:

d(@L) oL _ o i1 .
dt\og') aq — T T

These Euler-Lagrange equations with degenerate Lagrangian can
have no solution at all. Here is a trivial example:

It is fair to say that the first author who considered the
Hamiltonian aspects of Lagrangian dynamical systems with
degenerate Lagrangian was Hamilton himself. The subject of his
investigations was first geometrical optics and then the dynamics
of mechanical systems in a tensional force field. partial force field.
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The optical properties of a medium are determined by the
refractive index n which is equal to the inverse of the speed of
light. In general it is a function of the point x and the direction of
the velocity of light particles v = x

n= f(<x|§—|> :

The propagation time of light along the beam (optical path
length) is determined by the integral

t:
A= [ Loax)de, L) = X F.

t1
This integral is often referred to as the Fermat action.

According to Fermat’s principle, light propagates along the path
with the shortest time duration.

In other words, the path t — x(t) is a stationary point of the
functional A with fixed ends and thus satisfies the Lagrangian

equation with Lagrangian L. g
1
y
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Since the Lagrangian L is a homogeneous function of the first

degree on velocities
oL

det 32

=0

and we have singular Lagrangian.
This difficulty was overcome by Hamilton in the following way.

We introduce a closed set of points v € R3 satisfying the equation
L(x,v) = 1. This surface is called the indicatrix at the point x.

Then we introduce a figuratrix, the set of momenta y € R3 defined
by the following relations

8L

= o L(x,v)=1.

y

If the indicatrix is a convex surface, then the figuratrix has the
same property.

Andrei Tsyganov Variational integrators and nonholonomic integrators



In this important case, there exists a single function H(x, y) that
is positively homogeneous on y

H(x, Ay) = AH(x,y)
for all A > 0 and equal to 1 for all momenta lying on the
figuratrix. Transformation
__OH
=%

translates the figuratrix into an indicatrix.

v H(x,y)=1

Thus, the functions L and H (as well as as well as indicatrix and
figuratrix) are dual to each other.

As shown Hamilton in 1824, the path t — x(t) is a light ray if and
only if there is a ‘conjugate’ function t — y(t) such that they
together satisfy the canonical equations

10
/1‘
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Let us comeback to non-singular case.

Suppose the Lagrangian L : TQ — R is hyperregular, namely, for
every point g € T4Q,

%L

From the Euler—Lagrange equations, we get

82l \ ‘(oL 8L
qj <6q,6qj> (6(]’ aqlaqkq ) ! ./ ' yn

In fact the above equations ensure that there exists a second-order
vector field, called the Lagrangian vector field, denoted by

X :TQ— QC TTQ.
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Here Q is the second-order submanifold defined by
Q:= {W € TTQ‘ T1o(w) = TTQ(W)} ,

and
Trq: TTQ = TQ;  (9.4.69,69) — (q,0q)

and
T7Q: TTQR = TQ;  (9,G.69,69) — (q.9).

Hence, T1g(w) = T10(w) yields
69 =14

and therefore an element w in the second-order submanifold Q has
the components (q, g, g).
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Say X, Y are two vector bundles over Q@ and f : X — Y is a
smooth fiber-preserving map (not necessarily fiberwise linear).

Then, we can define the object Ff : X — Hom(X, Y), by setting
for each x € Q and v € X,

(Ff)(v) := D(f]x )(v) € Hom(Xx, Yx) = Hom(X, Y)x
One can show this is a smooth fiber-bundle morphism or Fiber
Derivative.

This is really the appropriate terminology because we’re
restricting f to the fiber to get the mapping

f|XX X = Yy

between vector spaces, and we are taking the usual derivative of
such an object.
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Now, to such a morphism f : X — Y, we can define another
morphism Ef : X — Y as

Er(v) := (FF(V))(v) — f(v)

The reason for the symbol E is that it’s kind of like the "energy
mapping associated to f”.

Suppose that the fiber derivative Ff : X — Hom(X, Y) is a
fiber-bundle isomorphism (for which it is necessary that Y have
one-dimensional vector spaces as its fibers, so that X, and
Hom(X, Y)x have the same vector space dimension).

In this case, we can consider the mapping
Ar = Efo (Ff)~1: Hom(X,Y) =Y.

Classically, this mapping Ar is called the Legendre-transform of f.
So, given the function f, we consider its energy Ef, and then
change variables (compose with Ff) 1.
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As a special case, suppose L: TQ — R is a smooth function (the
Lagrangian, which we can trivially think of as a fiber-bundle map
TQ — Q@ xR, v — (x, f(v)), hence everything above can be
applied).

Then the fiber derivative is FL: TQ — T*Q; in terms of bundle
coordinates, it is

Now, the energy function is
E=E :TQ — R,

which by unwinding the definitions, can be written in coordinates
as

(x,v) — v,-g—‘fi(x, v) — L(x, v).

15
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If we make the assumption that the fiber derivative
FL: TQ— T*Q

is a diffeomorphism (typically called a hyperregular Lagrangian),
then we can consider the function

H=Eo(FL)™': T*Q = R,

and this is what we call the Hamiltonian function associated to the
Lagrangian L.

It is this function H (defined on a completely different space) that
is usually referred to as ”the Legendre transform of L” in
coordinates, people often write

H=gipi — L.
So, there’s two things to distinguish: the first is the fiber
derivative, the second is the Legendre transformation (which is the
composition of the ”energy” by the inverse of the fiber-derivative).

Often though, people may use "Legendre transform” to mean both
these things.
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Legendre transform

The Legendre transform FL: TQ — T*Q is a map defined by

d

FL(v) -w= —
(v) - w=—-

L(v+ew).
e=0

It is apartial case of the fiber derivative of L at v € T,Q along
w € T4Q), which is given in local coordinates by

i i oL
FL(q,v):(q,p,-:W)_

When L is hyperregular, the Legendre transform FL: TQ — T*@Q
is globally diffeomorphic.
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