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Motivation

“The Internet of things (IoT) describes the network of physical

objects that are embedded with sensors, software, and other

technologies for the purpose of connecting and exchanging data

with other devices and systems over the Internet."

A number of recent research works illustrate the usefulness and

efficiency of IoT applications to increase the quality of health

services to the citizens of smart cities.

Wearable biosensors are hugely used in monitoring patients with

chronic diseases. This type of system can monitor patients’ health

conditions not only in hospitals and/or medical centers but in their

own personal environments as well.
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Importance of IoT

Remote monitoring of patients are advantageous since it reduces

patients’ discomfort and risk of infection due to long stay in

hospitals, and also offers mobility. This is very relevant in the

post-covid period.

For the developing countries where most of the doctors reside in

the urban areas, digitised healthcare services through biosensors

are promoted especially for the patients living in the rural areas.

Biosensors are wearable as well as implantable, and they provide

measurements on basic important physiological parameters

(hereafter referred to as biomarkers) e.g. heart rate, blood

pressure, body and skin temperature, oxygen saturation,

respiration rate etc., as well as environmental parameters e.g.

location, temperature, humidity, light etc.
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Figure: Health monitoring using AI
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Our Goal

We propose a statistical model that can predict a patient’s health

condition in the next time point based on the previously observed

measurements.

We consider a set of correlated biomarkers which are measured

longitudinally from a patient’s body and are recorded automatically

by a set of sensor nodes placed at different parts of the patient’s

body.

These sensor nodes, which are low-powered tiny devices, convert

the continuous measurements to binary or ordinal outcomes (say;

low, good, fair, high, very high) based on some (known) prefixed

thresholds and send to the base station.

The challenge is to use these ordinal outcomes for an effective

patient monitoring.
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Figure: A cluster-based wireless sensor network
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Statistical Model

We consider N sensor nodes located at different parts of a

patient’s body, each measuring one of the K related biomarkers

(features) at T different discrete time points.

Each sensor node measures one particular biomarker (of interest)

at T discrete time points. The biomarkers are correlated in the

sense that a high (or low) value of one biomarker at time t can

affect the values of the other biomarkers (some or all) at time

t + 1.

The sensor nodes report only the binary/ordinal outcomes, say, 1

(high) and 0 (fair) based on some prefixed thresholds for each

biomarker.

The non-medical persons can better understand the patient’s

condition in this way. Additionally, this approach is energy efficient.
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Statistical Model

Let Yik(t) be the binary outcome at time t obtained from the i-th

sensor node measuring the k-th biomarker (and hence belonging

to the k-th cluster).

At the base station, we only receive Yik(t), and the corresponding

unobserved measurement Y ∗

ik(t) is considered as a latent random

variable.

The latent or unobserved continuous variables Y ∗

ik(t) and the

observed Yik(t) are related as follows:

Yik(t) =

{

1, for Y ∗

ik(t) > ck;
0, for Y ∗

ik(t) ≤ ck,

for the prefixed (known) constants ck, k = 1, 2, . . . , K.

The above approach is similar to Bayesian data-augmentation

method proposed in Albert and Chib [1993].
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Statistical Model

For the latent random variables, we consider:

Y ∗

ik(t) = fk(t) + αkY ∗

ik(t − 1) + βkZ∗

ik(t − 1) + γik + eik(t), (1)

where, Z∗

ik(t − 1) denotes the average Y ∗ values at time t − 1 from

all the other n − 1 nodes (except the i-th node) measuring the k-th

biomarker.

Here, γiks denote the sensor and biomarker specific random

effects; and the residual errors eik(t)s are assumed to be

identically and independently distributed as the Gaussian

distribution with mean=0 and variance=σ2.

The function fk essentially captures the general effect of time on

the k-th biomarker, and is modeled as:

fk(t) = δ0k + δ1kt + δ2kt2 + . . . + δrkktrk .
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Statistical Model

In (1), the random effects γik are used for capturing the

correlations (dependence) among the biomarkers. We assume

γi = [γi1, γi2, . . . , γiK ]T are identically and independently

distributed as a K-variate Gaussian distribution with mean=0 and

unknown covariance matrix=Σ.

The correlation between Y ∗

ik(t) and Y ∗

ik′(t) given all the

measurements till time t − 1 can be expressed as:

Cor(Y ∗

ik(t), Y ∗

ik′(t)) =
Cov(γik ,γ

ik′ )√
V ar(γik)V ar(γ

ik′ )
, where Cov(γik, γik′) is the

(k, k′)-th element of Σ; and V ar(γik) and V ar(γik′) are the k-th

and k′-th diagonal element of Σ respectively.

Thus, the above model captures the inter-biomarker dependence

and intra-biomarker dependence simultaneously.
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Bayesian Computations

We consider a Bayesian approach and estimate the coefficients

by Markov Chain Monte Carlo (MCMC) method.

We consider a multivariate (rk + 1 variate) Gaussian prior with

mean=0 and covariance matrix=σ2
δk

I, for δk = [δ0k, δ1k, . . . , δrkk]T .

An Inverse Gamma (κ1, κ2) prior is taken for σ2 and a Wishart

(V, p) prior is taken for the matrix Σ−1.

For α and β, we consider diffuse priors simply because it is quite

unlikely to have some prior information on these coefficients.

Define the set of unknown coefficients θ = [δ, α, β, σ2, Σ]. We

need to estimate θ based on the available data.
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Posterior Distribution

The likelihood of Y∗ conditional on Y and θ can be expressed as

the following:

L(Y∗|Y, θ, γ) =
K
∏

k=1

n
∏

i=1

T
∏

t=1

{1(Y ∗

ik(t) > ck)1(Yik(t) = 1)

+1(Y ∗

ik(t) ≤ ck)1(Yik(t) = 0)} × φ(Y ∗

ik(t)|γi),

(2)

where, φ(Y ∗

ik(t)|γi) denotes the Gaussian density of Y ∗

ik(t)
conditional on γi from (1).

Using Bayes theorem, joint posterior distribution is:

π(θ, γ, Y∗|Y) ∝ L(Y∗|Y, θ, γ) ×
∏

i

g(γ i)

×π(δ) × π(α) × π(β) × π(σ2) × π(Σ),

(3)

where g denotes multivariate normal density of γi.
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Estimation and Prediction

The Gibbs sampler (based on MCMC iterations) is a very efficient

computational tool for estimating the model parameters.

We skip the computational details, and just note that it takes 2-3

minutes to estimate all the model parameters using Gibbs

sampler.

Based on the estimated model (1), we predict the latent variables,

and hence get the binary predictions on the patient’s health

condition for the future time points.

The predicted outcomes are sent (through internet) to the

healthcare providers, and also to the patient’s family.
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Figure: A flowchart summarizing the proposed patient monitoring approach.
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Simulation Study: 1
We consider N=30 sensor nodes (10 sensors for each of the 3

biomarkers) measuring 3 biomarkers longitudinally at T =12 evenly

spaced time points.

We generate latent random variables from the following linear

model:

Y ∗

ik(t) = δ0k + δ1kt + αkY ∗

ik(t − 1) + βkZ∗

ik(t − 1) + γik + eik(t), (4)

where, δ01=1.15, δ11=-0.78, δ02=2.79, δ12=-1.65, δ03=1.76,

δ13=-0.87. We take α1 = 1.5, α2 = 2, α3 = 2.8; and β1 = 0.86,

β2 = 1.6, β3 = 1.3. Assume eik(t) ∼ N(0, 1) distribution, are iid.

We generate γi = [γi1, γi2, γi3]T from N3(0, Σ), where

Σ =







4 3.6 5.6
9 9.6

16






. This assigns the value of the correlation

coefficients between the responses (1,2), (1,3) and (2,3) as 0.6,

0.7 and 0.8 respectively.
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Simulation Study: 1

Once the latent variables are simulated, we generate the observed

binary responses Yik(t) based on some prefixed thresholds

(c1 = 10, c2 = 15, c3 = 8). Now we treat the binary outcomes as

the observed responses and fit the model given in equation (1).

We use first 10 time points for model fitting and the last 2 time

points for the prediction purpose.

We fit the model given in (1) and then predict latent responses at

t=11 and 12. Based on the prefixed thresholds, we obtain the

predicted binary responses for t=11, and 12. We repeat this for

N = 60, 150, 300; and compute misclassification proportion based

on 100 replications (1 misclassified as 0, or vice versa).
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Results

Table: Misclassification proportions for different responses for different

sample sizes in Simulation I.

Biomarker 1 Biomarker 2 Biomarker 3

N t=11 t=12 t=11 t=12 t=11 t=12

9 0.08 0.12 0.07 0.11 0.10 0.13

15 0.06 0.09 0.06 0.10 0.09 0.11

24 0.05 0.08 0.06 0.07 0.05 0.08

30 0.05 0.07 0.06 0.06 0.04 0.08
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Simulation Study: 2

Sometimes it is not meaningful to consider only two ordinal

categories for the biomarkers. Depending on the patient’s health

condition, we may want to monitor the patient more critically.

We perform simulation study to assess the performance of our

predictive model when some of the biomarkers of interest have

more than 2 ordinal categories. We consider 3 biomarkers, each

of which is measured by 5 sensor nodes over 10 time points.

First we simulate Y ∗

ik(t) as in study 1, and obtain the multinomial

responses Yik(t) as the following:

For k=1,2;

Yik(t) =











2, for Y ∗

ik(t) > ck2
;

1, for ck2
> Y ∗

ik(t) > ck1
;

0, for Y ∗

ik(t) ≤ ck1
.
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Simulation Study: 2

For k=3;

Yik(t) =

{

1, for Y ∗

ik(t) > ck;
0, for Y ∗

ik(t) ≤ ck;

where, ckl
for l=1,2; k=1,2; and ck for k=3; are known constants.

We fit our model on the generated multinomial responses for the

first 5 time points to estimate the regression coefficients. We use

these coefficients to predict the condition of the patient (with

respect to different biomarkers) at time point 6 and find out

misclassification proportion.

We keep on repeating this by including data on one more time

point in a roll-in manner, and classify the patient’s condition for the

next time point, and compute the misclassification proportion.
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Results

Table: Estimated misclassification error rates for different biomarkers over

time in Simulation 2.

Time point B-1 B-2 B-3

6 0.15 0.0 0.13

7 0.12 0.08 0.10

8 0.10 0.05 0.05

9 0.04 0.03 0.02

10 0.03 0.01 0.01
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Real data analysis

We focus on monitoring and predicting three important biomarkers

related to cardiovascular disorder of a patient, namely, systolic

blood pressure (normal range 120-140), diastolic blood pressure

(normal range 70-90), and heart rate (normal range 72-85).

We consider 10 sensor nodes for the heart rate, 5 sensor nodes

for the diastolic BP; and 5 sensor nodes for the systolic BP. Three

biomarkers are measured at 10 discrete time points, not

necessarily evenly spaced.

For systolic BP, a response >150 is treated as high (coded by 2);

<100 is recorded as low (coded by 0); and a value in-between is

recorded as fair (coded by 1). For the diastolic BP, similar

thresholds are 90, and 70, respectively. For the heart rate we take

85 as our threshold; i.e. a value > 85 is recorded as high (coded

by 1), and < 85 is recorded as normal (coded by 0).
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Real data analysis

First, we consider the data for the first 6 time points, and use this

as the training data. The remaining part of the data is used as the

test data.

We use the estimated regression coefficients in equation (1), and

predict the latent variable Y ∗ for each sensor node at T =7. The

predicted latent variables are then categorized using the threshold

values mentioned earlier. We compute the misclassification

proportions for each biomarker. We repeat this for T = 8, 9, 10 and

the results are summarized.

We notice that the misclassification proportions are mostly 0 for

T =7,8; and for all the 4 time points, the maximum misclassification

proportion is 0.2. This illustrates that our approach provides

reasonably good predictions.
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Results

Table: Estimated misclassification proportions for the proposed joint model.

Time point Systolic BP Diastolic BP Heart Rate

7 0 0 0.1

8 0 0 0

9 0.2 0.2 0

10 0 0.2 0.1
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Comparison with Other Models

We also analyze the same data using two existing approaches,

namely, (i) state-space model for dynamic state estimation, and (ii)

separate linear mixed model for each biomarker.

Traditionally, state-space models are used for dynamic state

estimation in wireless communications. We consider the following

model for our latent variables:

Y ∗

ik(t) = Z∗

ik(t) + eik(t), Z∗

ik(t) = αZ∗

ik(t − 1) + ǫik(t), (5)

where, eik(t) and ǫik(t) independently follow N(0, σ2
e ) and N(0, σ2

ǫ )
respectively.

We also need to consider |α| < 1 for valid inference. We estimate

the regression coefficients using Kalman-Filter.
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Comparison with Other Models

Next, we consider the linear mixed models for each biomarker

separately. In other words, we do not consider correlations among

the biomarkers and estimate the latent responses independently.

Thus, we use the following model:

Y ∗

ik(t) = fk(t) + αkY ∗

ik(t − 1) + βkZ∗

ik(t − 1) + eik(t). (6)

This model is similar to Chatterjee et al. [2016] where they use

Gibbs sampler for state estimation and anomaly detection. Note

that such separate modeling assumes that the biomarkers are

independent, and hence one biomarker does not affect the others.
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Results

Table: Estimated misclassification proportions for dynamic state-space

model, and separate linear mixed models.

dynamic state-space model separate linear models

Time point SBP DBP HR SBP DBP HR

7 0.2 0.2 0.1 0.2 0.2 0.1

8 0.2 0.4 0.1 0.4 0.4 0.2

9 0.4 0.4 0.1 0.2 0.6 0.2

10 0.4 0.6 0.2 0.4 0.4 0.3
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Summary

We propose a flexible Bayesian dynamic joint model which can

effectively monitor multiple biomarkers over time, and can also

predict the biomarkers.

Our model is useful for monitoring patients with chronic diseases

in the rural as well as in the urban areas.

There might be some latent clusters among the patients, and

based on the observed data we can use a functional clustering

method for detecting such latent clusters.

Cluster-based modeling should improve the predictive power of

the model.
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