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2d Fermionic Path Integrals

We wish to check modular invariance for the closed oriented Type
IIA & Type IIB superstrings by direct computation of their partition
functions on the torus

Before going to that, we learn how to compute fermionic path
integrals on world-sheets of various topologies
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�
�

�
�Weyl Fermion on the Torus

We compute the partition function on a torus of periods (2π, 2πτ)
of a free Weyl fermion λ(z) with action

1
2π

∫
λ̄∂λ

subjected to the general periodicity condition

λ(w + 2π) = eπi(1−α)λ(w),

λ(w + 2πτ) = eπi(1−β)λ(w)

where α, β are real numbers with −1 < α, β ≤ 1

The left-moving Fermi-field pair λ(z), λ̄(z) form a fermionic b, c
system with λ = (1− λ) = 1

2 and “non-standard” Hermitian
structure
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We see the A-cycle of the torus as spatial circle,
B-cycle as periodic Euclidean time
Path integral ≡ trace in the Hilbert space Hα of Weyl fermions
quantized in the circle with b.c. λ(w + 2π) = eπi(1−α)λ(w)
Twisted b.c. shifts the modes of λ, λ̄ as

λ(w) =
∑
m∈Z

λm+(1−α)/2 e
i [m+(1−α)/2]w

the raising operators now are

λ−m+(1−α)/2 and λ̄−m+(1+α)/2, m = 1, 2, . . .

that is, the appropriate “twisted b.c. vacuum” |tws〉 satisfies{
λn|tws〉 = 0 for n ≥ −α

2 + 1
2

λ̄n|tws〉 = 0 for n > α
2 −

1
2

Conclusion
|tws〉 is the Fermi sea |α/2〉 for λ = 1/2 (sea level α/2)

Sergio Cecotti V.2 10d superstrings



From the general theory of Fermi/Bose sea states, we know that
the chiral sea state |α/2〉 has energy H = HL ≡ L0 − c/24

h − c

24
≡ 1

2
q(q + Q)− c

24
,

where in the present case Q = 0, q = α/2, and c = 1

That is, the HL-eigenvalue of |α/2〉 is

Eα/2 ≡
3α2 − 1

24

The complex fermion has a U(1) current : λ̄λ(z) : and an
associated conserved (non-anomalous!) charge J

The Fermi sea |α/2〉 has charge J = α/2,
while λ(z) has charge +1 and λ̄(z) charge −1
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We define a partition function in the Hilbert space Hα valued in the
U(1) characters as

Zαβ(τ)
def
= Trα

[
qL0−c/24eπiβJ

]
=

= q(3α2−1)/24 eπiαβ/2
∞∏

m=1

[
1 + eπiβqm−(1−α)/2][1 + e−πiβqm−(1+α)/2]

=
1

η(q)
ϑ

[
α/2
β/2

]
(τ),

where in the last line we write the answer in terms of ϑ-function
with characteristics by using Jacobi’s triple product identity

We need some facts about ϑ functions
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Interlude: ϑ-functions with characteristics

The θ-function with characteristics (a, b) on a torus of modulus τ ∈ H is the sum

ϑ
[ a
b

]
(z|τ)

def
=
∑
n∈Z

exp
[
πi(n + a)2τ + 2πi(n + a)(z + b)

]
It satisfies the identities (here m, n ∈ Z)

ϑ
[ a
b

]
(z + m + nτ |τ) = e2πima−iπn2τ−2πin(z+b) ϑ

[ a
b

]
(z|τ)

ϑ
[ a
b

]
(z|τ) = e iπa

2τ+2πia(z+b) ϑ

[
0
0

]
(z + aτ + b|τ)

ϑ

[
a + m

b + n

]
(z|τ) = e2πina ϑ

[ a
b

]
(z|τ) ϑ

[
−a
−b

]
(z|τ) = ϑ

[ a
b

]
(−z|τ)

The dependence on the first argument, z, may be absorbed in the characteristics

ϑ
[ a
b

]
(z|τ) = ϑ

[
a

b + z

]
(0|τ)

and we write ϑ
[ a
b

]
(τ) for ϑ

[ a
b

]
(0|τ) (the so-called theta-constants)
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The Jacobi triple-product identity allows to rewrite the function as an infinite product

ϑ
[ a
b

]
(τ) = η(τ) e2πiabqa

2/2−1/24
∞∏
n=1

(
1 + qn+a−1/2e2πib)(1 + qn−a−1/2e−2πib),

Its modular transformations are (for | arg
√
−iτ | < π/2)

ϑ
[ a
b

]
(τ+1) = e−πi(a

2−a) ϑ

[
a

a + b − 1
2

]
(τ), ϑ

[ a
b

]
(−1/τ) =

√
−iτ e2πiab ϑ

[
−b
a

]
(τ),

ϑ’s with characteristics a, b = 0, 1
2 related to spin structures on T 2. Special names

ϑ

[
1/2
1/2

]
= ϑ1, ϑ

[
1/2
0

]
= ϑ2 ϑ

[
0
0

]
= ϑ3, ϑ

[
0

1/2

]
= ϑ4

other notation ϑab(τ) = ϑ

[
a/2
b/2

]
, a, b = 0, 1

From the definition ϑ11(τ) = 0, and we have Jacobi’s “abstruse identity”

ϑ00(τ)4 − ϑ01(τ)4 − ϑ10(τ)4 = 0

A useful identity is ∂zϑ11(z|τ)
∣∣∣
z=0

= −2π η(τ)3 where η(τ) is the Dedekind function
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Back to the computation of fermionic path integrals

Zαβ(τ) ≡ Trα
[
qL0−c/24eπiβJ

]
=

1
η(q)

ϑ

[
α/2
β/2

]
(τ),

The world-sheet fermion number is F ≡ J mod 2, so that (−1)F ≡ eπiJ

Thus if we have a pair ψa (a = 1, 2) of MW fermions, which we combine in a
complex Weyl fermion λ = (ψ1 + iψ2)/

√
2, their torus partition functions with

the 4 possible spin-structures are

(A,A) Z 0
0(τ) = TrNS[q

L0−c/24]

(A,P) Z 0
1(τ) = TrNS[(−1)F qL0−c/24]

(P,A) Z 1
0(τ) = TrR[qL0−c/24]

(P,P) Z 1
1(τ) = TrR[(−1)F qL0−c/24]

(P,P) periodic for left- and right-movers;
(P,A) periodic for left-, anti-periodic for right-movers. etc

Sergio Cecotti V.2 10d superstrings



�
�

�
�Modular Properties

The transformation under the modular group of the Fermi partition
functions with given spin-structure follow from the modular
properties of the ϑab and η functions

1
η(τ + 1)

ϑ
[ a
b

]
(τ + 1) =

e−iπ/12

η(τ)
e−πi(a

2−a) ϑ

[
a

a + b − 1
2

]
(τ)

1
η(−1/τ)

ϑ
[ a
b

]
(−1/τ) =

1
√
−iτ η(τ)

√
−iτ e2πiab ϑ

[
−b
a

]
(τ) ≡

e2πiab

η(τ)
ϑ

[
−b
a

]
(τ)

We get

Z0
0(τ + 1) = e−iπ/12Z0

1(τ), Z1
0(τ + 1) = e iπ/6Z1

0(τ),

Z0
1(τ + 1) = e−iπ/12Z0

0(τ), Z1
1(τ + 1) = e iπ/6 Z1

1(τ),

Z0
0(−1/τ) = Z0

0(τ), Z0
1(−1/τ) = Z−1

0 (τ) ≡ Z1
0(τ)

Z1
0(−1/τ) = Z0

1(τ), Z1
1(−1/τ) = e iπ/2 Z1

1(τ),

(♣)

Note that Z1
1 (the odd spin-structure) transforms into itself

while the 3 even Z0
0, Z0

1, Z1
0 transform into each other
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�Dirac Fermion on the Cylinder

Cylinder [0, π]× R/2πtZ where t > 0 is the real modulus of its complex
structure. We see the interval [0, π] as space and the circle as periodic
Euclidean time, i.e. path integral ≡ thermal partition function for the
Dirac fermion quantized in the interval. With impose standard strip b.c.

λ̃(π, y) = λ(π, y) λ(0, y) = eπi(1−α)λ̃(0, y)

Doubling trick⇒ Hilbert space ' to Hα for 1 Weyl fermion on S1

TrHα

[
eβJq−2πt(L0−c/24)

]
= Zαβ(it).

Crossed-Channel Viewpoint In the crossed channel the path integral is
seen as a closed string of length 2π which propagates for an Euclidean
time π/t between suitable boundary states |B〉, |B ′〉 of the fermionic CFT

〈B ′| exp[−π(L0 + L̃0 − c/12)/t|B〉
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�
�Dirac Fermion on the Klein bottle

The Klein bottle of real modulus t > 0 is obtained from a cylinder of
circumference 2π and length 2πt by identifying the two boundaries with
a Ω-twist

The Klein bottle partition function then differs from the torus one with
τ = it just by the insertion of Ω in the Hilbert space trace

Trα,α̃
[
Ω eπi(βF+β̃F̃ ) qL0−c/24q̄L̃0−c/24

]
, q = e−2πt ,

where α, α̃, β, β̃ = 0, 1

Since Ω interchanges left- and right-movers, the amplitude vanishes if
α 6= α̃ while the states that contribute have F ≡ F̃ and L0 ≡ L̃0
the expression reduces to

Trα,α
[
Ω eπi(β+β̃)F e−4πt(L0−c/24)

]
= Zα

β+β̃
(2it)

Dirac fermion on the Möbius strip: Exercise
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Modular Invariance in Type II

We check modular invariance of the closed oriented Type II
superstrings – already established last time from first
principles – by direct computation of their one-loop amplitude

As for the bosonic string, the torus amplitude ZT 2 is given, in terms
of the physical particle spectrum, by the same Coleman-Weinberg
formula as in QFT except that the region of integration over
the Schwinger parameters τ1, τ2 is restricted from the strip
region R ⊂ H in the upper half-plane to the fundamental
domain F0 ' H/PSL(2,Z) of the moduli space of tori

0
1

2
1-

1

2
-1

Fundamental domain F0 for the action on SL(2,Z) on
the upper half plane H is the darker gray region
Half strip R is the union of dark and light gray regions
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Torus vacuum amplitude

ZT2 = V10

∫
F0

d2τ

τ2

∫
d10k

(2π)10

∑
i

(−1)Fi q(k2+m2
i )/2 q̄(k2+m̃2

i )/2 (F)

where V10 is the volume of 10d spacetime, q = exp(2πiτ), and:

1
∑

i stands for the trace over physical states at fixed momentum kµ,
≡ to the trace over the Hilbert space H⊥ of transverse oscillators.
The trace includes a sum over the sectors (α,F ; α̃, F̃ ) of H⊥;

2 spacetime fermions have a minus sign in the CW formula.
F is the spacetime fermion number (not confuse with F );

3 masses given by the transverse oscillator numbers, N⊥ and Ñ⊥:

m2 = 2(N⊥ − ν), m̃2 = 2(Ñ⊥ − ν̃)

with ν ≡ 1
2 (1−α), ν̃ ≡ 1

2 (1− α̃) equal to 0, 1
2 for R resp. NS sector
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In each sector (α,F ; α̃, F̃ ) the trace over the transverse oscillators,
including the integral over the transverse bosonic zero-mode k⊥,
decouples into the product of independent traces over the Hilbert space
of each transverse field X i , ψi and ψ̃i , that is, in the product of the
corresponding free-field torus partition functions

We have already computed all the relevant path integrals

The Partition Function of X The path integral for a single
non-compact scalar field X was computed 2 lectures ago. The total
contribution from the oscillators of X , together with the integral
over its zero-mode (momentum integral), is

ZX (τ) = (8π2τ2)−1/2|η(q)|−2

where η(q) it the Dedekind function

In (F) there is no contribution from the X± oscillators (cancelled
by ghosts!) but their zero-modes (k+, k−) contribute, giving an
additional factor

(8π2τ2)−1
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The Partition Function of ψ

The partition function on the left-moving fermions depends on their
spatial periodicity specified by α ∈ {0, 1} (α = 0 NS, α = 1 R
sector), and includes inside the trace the GSO projection operator

P± =
1
2
[
1± (−1)FGSO

]
on the appropriate chirality selected by the GSO± projection

We replace the 8 transverse MW fermions ψi (i = 1, · · · , 8) by 4
complex Weyl fermions λj (j = 1, · · · , 4). The partition functions
of a single free Weyl fermion λ for the various spin structures is

Zαβ(τ) ≡ Trα
[
qL0−c/24eπiβJ

]
=

1
η(q)

ϑ

[
α/2
β/2

]
(τ),
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GSO Projection

We compute the chiral partition function Z±ψ (τ) of the superstring 8 real
transverse fermions ψi subjected to the GSO projection which keeps the
sectors NS+ and R±
We know that the Fermi number FGSO relevant for the GSO projection
differs from F by the Fermi numbers (mod 2) of the longitudinal ψ±

zero-modes and of the spinor ghosts β,γ. Using the standard (−1)
picture for the NS sector we see that in the NS sector

(−1)FGSO = −(−1)F ,

while (by definition) in the R sector, (−1)FGSO = ±(−1)F if R± survives

Z±ψ = TrNS
[
1+(−1)FGSO

2 qL0−c/24
]
− TrR

[
1±(−1)FGSO

2 qL0−c/24
]

=

=
1
2

(
Z 0

0(τ)4 − Z 0
1(τ)4 − Z 1

0(τ)4 ∓ Z 1
1(τ)4

)
,

where the minus in second term of the first line arises from the
space-time fermion number sign factor (−1)Fi in the CW formula
Partition functions for right-movers ψ̃ complex conjugate (Z±ψ )∗.
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Modular properties integrand

Putting everything together, the closed superstring one-loop
vacuum amplitude is

ZT 2 = V10

∫
F0

d2τ

32π2τ22
ZX (τ, τ̄)8 Z+

ψ (τ)Z±ψ (τ)∗,

{
+ for IIB
− for IIA

As in the bosonic string, modular invariance of the integrand is a
consistency condition

d2τ/τ22 is the SL(2,R)-invariant Poincaré volume form which is
obviously modular invariant, as it is ZX (τ)

It remains to discuss the modular properties of the GSO-projected
fermionic traces Z±ψ and (Z±ψ )∗
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Modular Properties of Fermi Partitions Functions

The modular transformations of the functions Zαβ(τ) were tabled a
few slides ago in table (♣)

There is a subtlety which requires a comment. The partition
function Z 1

1(τ) vanishes identically: in the path integral formalism
this is due to the presence of a Fermi zero-mode for periodic b.c.
Since Z 1

1(τ) is zero, it is modular invariant for all choices of overall
phases in its transformation; we declare these phases to be as in
(♣). The physical reason for this will be explained later

From table (♣) we see that S : τ 7→ −1/τ acts on the set{
(Z 0

0)4, (Z 1
0)4, (Z 0

1)4, (Z 1
1)4
}

by permuting 2nd and 3rd elements, leaving invariant the expression

2Z±ψ ≡ (Z 0
0)4 − (Z 1

0)4 − (Z 0
1)4 ∓ (Z 1

1)4

so the partition functions are S-invariant
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Since (e−iπ/12)4 ≡ −e2πi/3, under T : τ → τ + 1 we have

2Z±ψ (τ + 1) = Z 0
0(τ + 1)4 − Z 0

1(τ + 1)4 − Z 1
0(τ + 1)4 ∓ Z 1

1(τ + 1)4

= −e2πi/3Z 0
1(τ)4 + e2πi/3Z 0

0(τ)4 − e2πi/3Z 1
0(τ)4 ∓ e2πi/3Z 1

1(τ)4

= 2 e2πi/3 Z±ψ (τ).

The two combinations Z+
ψ (τ)Z±ψ (τ)∗ are thus fully modular-invariant,

and hence the integrand of the torus partition function (F) is modular
invariant, and we should restrict the integral to the fundamental domain
F0 to avoid multiple counting

This implies that there are no UV divergences

As we shall see, NO IR divergence either
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Discussion & important issues

(A) The one-loop vacuum amplitude in a supersymmetric theory is
expected to vanish by cancellations between fermions and bosons. This
holds because of Z 1

1(τ) = 0 and the identity found by Jacobi and called
by him “aequatio identica satis abstrusa” (the “abstruse identity”)

ϑ3(q)4 = ϑ4(q)4 + ϑ2(q)4 ⇒ (Z 0
0)4 − (Z 0

1)4 − (Z 1
0)4 = 0

In String Theory II we shall prove a more general version of this identity

(B) Last time we stated that global Diff+ anomalies cancel in all
perturbative amplitudes provided all genus 1 BRST-invariant amplitudes
are modular invariant. We have shown modular invariance of 1-loop
amplitude without insertions. We must check that modular invariance is
not spoiled by insertions of GSO-allowed BRST-invariant operators. Easy:
2d fields are free, path integrals are Gaussian. Amplitudes for each spin
structure (α, β) are given by a product of functional determinants times a
contraction of propagators (by Wick’s thm). Anomalous phases under
MCG(T 2) from the determinants, are the same as in absence of insertions
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(C) A general one-loop amplitude has the form

A =

∫
F0

d2τ

τ22
F (τ, τ̄),

for some real-analytic function F (τ, τ̄) such that

F
(

aτ+b
cτ+d ,

aτ̄+b
c τ̄+d

)
= F (τ, τ̄) for all

(
a b
c d

)
∈ SL(2,Z)

The fundamental domain F0 has finite Poincaré volume∫
F0

d2τ

τ22
=

2π
3
.

thus if F (τ, τ̄) is bounded, the amplitude A is finite. F0 is biholomorphic
to a punctured sphere, where the puncture is at τ = i∞, i.e. q → 0. The
integrand F (τ, τ̄) may possibly diverge only in the q → 0 limit which is
controlled by the lightest state F = O((qq̄)m

2
lightest). In absence of

tachyons, the integrand is bounded and then the amplitude finite
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Divergences and Tadpoles in Type I Theories

We claimed that Type I is consistent only when the Chan-Paton
gauge group is SO(32)

There are various ways of seeing this

The main tool to detect inconsistencies is to require absence of
divergences in the open string one-loop amplitudes, or, equivalently,
require absence of tree-level tadpoles which cannot be consistently
shifted away, i.e. cancelled by a redefinition of the vacuum on which
we define the theory

This criterion plays the same role for open strings as modular
invariance in the closed case
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�
�

�
�Cylinder Amplitude

Let us pretend for a moment that there is an oriented open
superstring theory. We already know that such a model is
inconsistent from argument based on spacetime low-energy physics

Now we wish to see how the inconsistency is reflected at the full
superstring level in terms of one-loop divergences/disk tadpoles

The open-string 1-loop processes given by cylinder amplitudes

0 π

i j

The open-string sectors are labelled by α = 0, 1 (NS vs. R) and by
the Chan-Paton labels (a, b), a, b = 1, 2, . . . ,N, subjected to the
GSO projection

PGSO = 1
2

1∑
β=0

(−1)βFGSO
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Then the open one-loop vacuum amplitude takes the form

ZCy =
N2

2

1∑
α,β=0

(−1)α
∞∫
0

dt

4t

∫
d10k

(2π)10 e
−4πtk2

Tr′α
[
(−1)βF e−2πt(L0−c/24)

]

= N2
∞∫
0

dt

8t
(16π2t)−5η(it)−8[Z0

0(it)4 − Z1
0(it)4 − Z0

1(it)4 − Z1
1(it)4

]

where t is the real modulus of the cylinder, i.e. the radius of the
circle (the length of the cylinder is fixed to π). Of course, ZCy
vanishes by space-time supersymmetry: the space-time fermionic
contribution, α = 1, exactly cancel the bosonic one, α = 0

Indeed, ZCy vanishes by Z 1
1 = 0 and the abstruse identity
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ZCy may be interpreted in the crossed channel as a tree-level
closed-string process: a closed string propagates between the two
boundary states |B〉, |B ′〉 associated with the open string boundary
condition. In the closed-string channel, β = 0 corresponds to the
NS-NS sector and β = 1 to the R-R one. We write

ZCy = Z0 − Z1

Z0 = N2

∞∫
0

dt

8t
(16π2t)−5η(it)−8

[
Z 0

0(it)4 − Z 1
0(it)4

]

Z1 = N2

∞∫
0

dt

8t
(16π2t)−5η(it)−8

[
Z 0

1(it)4 + Z 1
1(it)4

]
Of course Z0 = Z1 since the total amplitude ZCy vanishes
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However if we wish the amplitude to be finite for arbitrary planar
insertions (i.e. insertions on one boundary component only) each
amplitude Z0, Z1 should be separately finite

Physically, this issue may be understood as follows: divergences in
the tree-level closed string amplitude Z0 arises from infinitely long
cylinders,

` ≡ 1/t →∞,

which corresponds to propagation of zero-momentum NS-NS states
in the crossed channel. The divergent part of the amplitude Z0 is
then proportional to the square of the disk amplitude with the
zero-momentum NS-NS vertex inserted, i.e. to the square of the
tadpole amplitude for the dilaton, just as in the bosonic string
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Using the modular properties

η(it) = t−1/2 η(i/t), Zαβ(it)4 = Zβα(i/t)4

we rewrite

Z0 =
N2

8(16π2)5

∞∫
0

d` η(i`)−8
[
Z 0

0(i`)4 − Z 0
1(i`)4

]
The asymptotics of the function η(τ) as `→∞ is

η(i`) = e−π`/12
∞∏
n=1

(
1− e−2πn`

)
= e−π`/12

(
1 + O(e−2π`)

)
,

while, using the “abstruse” identity

Z 0
0(i`)4 − Z 0

1(i`)4 ≡ Z 1
0(i`)4 =

(
1

η(i`)
· ϑ
[
1/2
0

]
(0|i`)

)4
=

=
(
eπ`/12 · 2 e−π`/4

(
1 + O(e−2π`)

))4
= 16 e−2π`/3

(
1 + O(e−2π`)

)
,
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Then the NS-NS cylindric amplitude

Z0 =
N2

8(16π2)5

∞∫
0

d`
[
16 + O(e−2π`)

]
,

has a linear divergence which is proportional to the square of a
NS-NS tadpole on the disk, analogous to the one we have in the
open bosonic string

The NS-NS tadpole is given by the disk amplitude with one
insertion of the dilaton vertex at zero-momentum〈

ηµν ψ
µψ̃νe−φ−φ̃

〉
disk
6= 0.

The R-R amplitude Z1 has an identical linear divergence which
should be interpreted in terms of a R-R tadpole on the disk.
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The R-R Tadpole: a (apparent) Paradox)

No propagating R-R 10d field which can be responsible for this tadpole

Indeed, in picture (− 1
2 ,−

1
2 ) the propagating R-R states have vertices

proportional to kµ which vanish in the zero-momentum limit.
Equivalently, a non-zero tadpole for a gauge field form, 〈A(k)〉 6= 0,
breaks the spacetime gauge symmetry (i.e. BRST-invariance) and this is
not allowed in a consistent theory

We arrived at an apparent paradox. Consistency with BRST
quantization requires the R-R tadpole to be the disk amplitude with one
R-R-sector BRST-invariant operator inserted in the bulk. By CFT
state-operator isomorphism, this BRST-invarint operator must
correspond to a BRST-invariant state. No state visible in light-cone or
OCQ will do since their vertices vanish at zero-momentum, so – if
the states visible in OCQ were the only physical states – we would get a
contradiction.
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Our careful discussion of BRST quantization solves this tricky
conundrum in a very transparent way:

FUNDAMENTAL FACT
There are more zero-momentum BRST-invariant states than
naively expected on the basis of analysis in the light-cone approach
(or OCQ)

The R-R tadpole arises from such subtle BRST-invariant states
which are invisible in the light-cone gauge or OCQ
(quasi-topological modes)

The relevant “subtle” state is easily understood: in Type IIB the
BRST-invariant R-R vertex in the appropriate (−1

2 ,−
3
2) picture.
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The R-R vertex in picture (−1
2 ,−

3
2) has the form∑

k even

A
(k)
µ1···µk (X )

(
Sγµ1···µk S̃

)
e−φ/2−3φ̃/2

and the even degree form A =
∑

k A
(k)(x) satisfies the

Kähler-Dirac equation in R9,1

vertex is BRST-invariant ⇐⇒ (d − δ)A = 0.

We know that A can be chosen to be self-dual, ∗A = iA. Suppose
that A ≡ A(10) has pure degree 10. The BRST condition becomes

0 = (d − δ)A(10) = ∗d(∗A(10)) ⇒ ∗A(10) = const,

so that taking A ≡ A(10) to be a constant 10-form produces a
BRST-invariant vertex which is not BRST-trivial, and hence it must
lead to observable physical effects
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We stress that this physical vertex does not correspond to
any propagating 10d degree of freedom, since its momentum
is frozen to zero by BRST-invariance

The disk tadpole of the R-R zero-momentum vertex is non-zero〈
Cαβ̇ SαS̃β̇ e

−φ/2−3φ̃/2
〉
disk

= κN 6= 0,

see NOTES for more details

The tadpole has a factor of N from the trace of the CP
labels on the boundary of the disk
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Spacetime Interpretation

Being BRST-invariant in the 2d sense, the zero-momentum R-R
vertex corresponds to a gauge-invariant interaction in 10d target
space. In Fourier analysis zero-momentum means integration over
the full R9,1 space, so that the 10d interaction must have the form

µ

∫
R9,1

A(10) “topological coupling”

for some non-zero constant µ. This space-time coupling is both
Diff+-invariant (being topological) as well as gauge invariant

µ

∫
R9,1

A(10) ≡ µ
∫
R9,1

(
A(10) + dλ(9)

)
,

as expected from its 2d BRST-invariance. The only possible R-R
tadpole is then a 10-form tadpole, and its value is given by the
coupling. The cylinder amplitude in the R-R channel shows that the
theory of the oriented open superstring necessarily has a non-zero
10-form tadpole µ proportional to N.
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The 10d effective action contains A(10) only trough the topological
coupling since the effective Lagrangian Leff is local and gauge invariant,
and hence – a part for the topological term – A(10) may enter in Leff only
through its gauge-invariant field-strength

F (11) = dA(10) ≡ 0,

which however is identically zero in R9,1. The topological coupling is the
only one consistent with gauge invariance, and we see that gauge
invariance freezes A(10) to zero momentum, exactly as expected from the
world-sheet BRST cohomology.
The equation of motion of A(10) takes the form

0 =
δSeff

δA(10)(x)
≡ µ.

In oriented open superstring theory this equation is inconsistent since µ is
a non-zero constant µ = κN. It is pretty clear that this tadpole cannot
be shifted away: oriented open superstrings are really inconsistent. We
already knew that this model is inconsistent: we just confirmed our
previous conclusion from a different “stringy” perspective
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Conclusion
The theory of open oriented superstrings is inconsistent at the
quantum level

How to cure this?
We sketch the story. Full details in the notes

Notations
we write |B〉 for the boundary state corresponding to the Neumann
b.c. on S1 with CP taking values 1, · · ·,N i.e. 〈0|O1 · · · Os |B〉 is
the disk amplitude with insertions Oj

|C 〉 stands for the crosscap state, i.e. 〈0|O1 · · · Os |C 〉 is the RP2

amplitude with insertions Oj
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For open + closed non-oriented superstrings 4 topologies at 1-loop:

1 torus: finite

2 cylinder: 2 boundaries, amplitude factor N2 from trace on CP d.o.f.

〈B| exp[−π(L0 + L̃0 − c/12)s]|B〉 =
∑
ψ

e−2π(h−c/24)s〈B|ψ〉 〈ψ|B〉

divergence proportional to |〈A(10)|B〉|2 = c21N
2

3 Klein bottle: 0 boundaries, amplitude independent on N

〈C | exp[−π(L0 + L̃0 − c/12)s]|C 〉 =
∑
ψ

e−2π(h−c/24)s〈C |ψ〉 〈ψ|C 〉

divergence proportional to |〈A(10)|C 〉|2 = c22

4 Möbius strip: 1 boundary, amplitude ∝ N, two possible signs ∓ for
SO(N), USp(N) resp.
divergence proportional to 2〈B|A(10)〉〈A(10)|C 〉 = ∓2 c1c2N
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Summing all contributions: divergence proportional to

c21N
2 ∓ 2 c1c2N + c22 = (c1N ∓ c2)2

i.e. proportional to the square of the dangerous tadpole at tree-level
(sum of the disk and RP2 tadpoles)

if c2/c1 is an integer, we have a choice of gauge group without
tadpoles/divergences SO(N) if c2/c1 > 0 or USp(N) if c2/c1 < 0

explicit computation (see Notes) the good gauge group is SO(32)

We shall give a deeper proof/interpretation of this result in String
Theory II
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