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| GPT: Generative Pre-Training

BERT (Bidirectional Encoder GPT (Improving Language
Representations from Transformers) Understanding by Generative Pre-
Google 2018 Training), OpenAl 2018

1 1

[ Transformer (“Attention is all you need”) }

Google 2017

1

Attention (“Neural Machine Translation
by Jointly Learning to Align and
Translate”), 2015




| Brief Introduction to GPT-2

GPT-2

» Avery large, transformer-based language model trained on a massive dataset.
» Architecture very similar to the decoder-only transformer.

@ Cib.

The scientist
named the
population, after their

distinctive horn,
Ovid’s Unicorn.

OpenAl testers gave the new engine an absurdist opener:

“In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the

researchers was the fact that the unicorns spoke perfect English.”

The engine returned with this: “The scientist named the population, after their distinctive
horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were previously unknown
to science. Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved. Dr. Jorge Perez, an evolutionary biologist from the
University of La Paz, and several companions, were exploring the Andes Mountains when

they found a small valley, with no other animals or humans.



I " By nzzassee
| Brief Introduction to GPT-2 ﬁmgm—
GPT-2

» Trained on a massive 40GB dataset called WebText.
» Takes up 500MBs ~ 6.5 GBs of storage to store all of its parameters.

117M Parameters 345M Parameters 762M Parameters 1,542M Parameters




| Brief Introduction to GPT-2

https://demo.allennlp.org/next-token-Im
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I Transformers for Language Modeling

Original transformer

>

>

Encoder-decoder
architecture.
Suitable for text
generation (e.g.,
machine translation)
tasks.
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I Transformers for Language Modeling

Large Language Models (LLM)

>

>
>
>

The architecture shed either the encoder or decoder, stacking as high as possible

Feed with massive amounts of training text
Throw vast amounts of compute at them
Cost hundreds of thousands of dollars to train

@ GPT-2
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I Transformers for Language Modeling 2

The size of GPT-2 variants. GPT1-2
EXTRA
LARGE

(. )
GI PT_ 2 a8 DECODER )}

LARGE

GI PT‘ 2 (36 ( DECODER 9
MED|UM 6 DECODER
GPT-2 - .

)]
24 DECODER DECODER )
SMALL ‘ / a( DECODER ) a( DECODER )}
12( DECODER D Tt 3 ( DECODER ) s ( DECODER D
e 2 ( DEGODER D 2 ( DEGODER )} 2 ( DECODER D
1( DECODER D 1( DEGODER ) % C DEGODER )j C( DECODER )j

Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280 Model Dimensionality: 1600



I One Difference From BERT %IM‘SJ‘_’ZE

The GPT-2 is built using transformer decoder blocks. BERT, on the other hand, uses
transformer encoder blocks.

GPT2, like traditional language models, outputs one token at a time.

Output




| One Difference From BERT 25

Auto-regression: After each token is produced, that token is added to the sequence of inputs.

Output

Input

the
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I The Evolution of the Transformer Block gﬁﬁ%

Transformer Encoder Block

S THE TRANSFORMER
ENCODER BLOCK

\
(r N
Feed Forward Neural Network
- Y,
€ )
Self-Attention
&k )J
robot must obey orders <eos> <pad> e <pad>
1 2 3 4 5 6 512

An encoder block can take inputs up until a certain max sequence length (e.g. 512 tokens).



I The Evolution of the Transformer Block %JQLI\\/IS

Transformer Decoder Block

The decoder block has a layer to allow it to pay attention to specific segments from the encoder:

S THE TRANSFORMER
DECODER BLOCK

[ Feed Forward Neural Network )
C Encoder-Decoder Self-Attention )
[ Masked Self-Attention )
Input

<s> robot must obey

1 2 3 4 5 6 512



I The Evolution of the Transformer Block

The self-attention calculation
blocks information from tokens
that are to the right of the
position being calculated.

To highlight the path of position
#4, we can see that it is only
allowed to attend to the present
and previous tokens:

DECODER BLOCK #2

F

BiM
ZEaS

C

C

S

Masked Self-Attention

Input
<s> robot must obey
1 2 3 4 512
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I The Evolution of the Transformer Block é&g\:‘S

A normal self-attention block allows a position to peak at tokens to its right.

Masked self-attention prevents that from happening:

Self-Attention Masked Self-Attention

1) i)




I The Evolution of the Transformer Block

Masked self-attention

Self-attention —» Masked Self-attention
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I The Evolution of the Transformer Block

Masked Self-attention
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I The Evolution of the Transformer Block

The Decoder-Only Block

This early transformer-based language model was made up of a stack of six transformer decoder blocks:

These blocks were very
similar to the original
decoder blocks, except
they did away with that
decoder-encoder
attention layer.

*
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I Looking Inside GPT-2 P 4

In GPT-2, each token flows through all the decoder blocks along its own path.
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I Looking Inside GPT-2
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1) The vector of <s> is scored against the model’s vocabulary (50,000 words in the case of GPT-2).
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I Looking Inside GPT-2 fﬁﬁ

2) Add the output from the first step to the input sequence, and have the model make its next
prediction.

Each layer of GPT-2 has retained its own interpretation of the first token and will use it in processing
the second token. GPT-2 does not re-interpret the first token in light of the second token.

~
[ DECODER J

DECODER

DECODER

<S> The

1 2 3 B 5 6 7 8 w5 1024



I A Deeper Look Inside

Input Encoding

The model looks up the
embedding of the input word in
its embedding matrix — one of
the components we get as part

of a trained model.

Betn. bt

Token Embeddings (wte)

aardvark
aarhus
aaron
model vocabulary size
50,257
zZyzzyva

—_
embedding size

768 (small) / 1024 (medium) / 1280 (large) / 1600 (extra large)
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I A Deeper Look Inside %%

Positional encoding: Part of the trained model, a matrix that contains a positional encoding vector for each of

the 1024 positions in the input.

Positional Encodings (wpe)

—_

Context size
1024

1024

_
embedding size

768 (small) / 1024 (medium) / 1280 (large) / 1608 (extra large)



I A Deeper Look Inside %lMSM

LA

Token embedding and positional encoding: Two of the weight matrices that constitute the trained GPT-2.

( DECODER )

[ DECODER ]

\_ J/
Token Positional
Embeddings Encodings

_ | | Positional encoding for token #1

Token embedding of <s>

1 2 . 1024

Sending a word to the first transformer block means looking up its embedding and adding up
the positional encoding vector for position #1.



I A Deeper Look Inside

A journey up the Stack
B Block by block, self-attention > FFNN.

B Each block has the same structure but own weights.

Decoder #12, Position #1

_“ output vector

e ~
[ DECODER ]
Decoder #2, Position #1
(IT1T] output vector **
[ DECODER J

Decoder #1, Position #1

DECODER E[Dj output vector

( Feed Forward Neural Network

( Masked Self-Attention

\_

<S>
1 2 1024



I A Deeper Look Inside

Self-Attention Recap

Language heavily relies on context. For example, look at the second law:

it b iman beings except where such orders would c e First Law

When a model processes this sentence:
m it refers to the robot
m such orders refers to the earlier part of the law, namely “the orders given it by human beings”

m The First Law refers to the entire First Law

Self-attention assigns scores to how relevant each word in the segment is, and adding up their vector representation.



I A Deeper Look Inside

Self-attention layer in the top block is paying attention to “a robot” when it processes the word “it”

[

(  DECODER )

\_/

( Feed Forward Neural Network

Masked Self-Attention
0.1% 30% 50% 0.2% 0.1% 0.03% 0.5% 0.2% 18%

S robot

[ DECODER J
o J
<8> a robot must obey orders given

1 2 3 4 5 6 7 8 9 1024



I A Deeper Look Inside

The significant components of Self-Attention are three vectors:

m Query: The query is a representation of the current word used to score against all the other words (using their
keys). We only care about the query of the token we’re currently processing.

: Key vectors are like labels for all the words in the segment. They’re what we match against in our search
for relevant words.

: Value vectors are actual word representations, once we’ve scored how relevant each word is, these are
the values we add up to represent the current word.

K EEEI value #4
Key #3 IID value #3
Query #9 (ey #2 [:D:] value #2
[TT]

Aaqo

Dj:l value #1

Isnw

10qou



I A Deeper Look Inside

The query is like a sticky note with the topic you're researching.

The are like the labels of the folders.

The are contents of that folder.

Multiplying the query vector by each vector produces a score for each folder (technically: dot product
followed by softmax).

value #4

value #3

Query #9 50% value #2
HEN o
o
it 3N <
30% value #1 = E,
o R
o
(o]
=
&



I A Deeper Look Inside

Self-attention outcome: multiply each value by its score and sum up.

Word
<S>
a
robot
must
obey
the
orders
given
it

Value vector

HEEHEEHEH

Score
0.001
0.3
0.5
0.002
0.001
0.0003
0.005
0.002
0.19

Sum:

Value X Score

111
[T

1 X281}
amkEdan

B s
#ens

This weighted blend of value vectors
results in a vector that paid 50% of its
“attention” to the word robot, 30% to the

word a, and 19% to the word it.



| A Deeper Look Inside s

Model Output
The output vector of the top block ¢ the embedding matrix.

Token

Embeddings
Decoder #12, Position #1
output vector | S -
== X
768
50,257 x 768
i Bt
[ DECODER J

[ DECODER J

<8>
1 2 - 1024
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I A Deeper Look Inside 3

The embedding matrix: the embedding of a word in the model’s vocabulary.

The result of this multiplication is interpreted as a score for each word.

output token probabilities (logits)

0.19850038 |aardvark
0.7089803 aarhus
0.46333563 |aaron

model vocabulary size
50,257

-0.51006055 zZyzZzyva




I A Deeper Look Inside

Output: the token with the highest score (top_k = 1).

Alternative: sample a word from a list (top_k = 40) using the score as the probability of selecting that word (so

words with a higher score have a higher chance of being selected).

output token

Token probabilities (logits)
Embeddings
10.19850038 |aardvark
10.7089803 aarhus
Decoder #1.},7, ‘Posrrmn #1 I |0. 46333563 aaron Pick an output
output vector
token based on
i g X H = its probability
(sample)
The
£ |-0.51006055  zyzzyva
7~
[ DECODER
L
[ DECODER
\
<S>

1 2 1024

The model continues
iterating until the entire
context is generated (1024
tokens) or until an end-of-

sequence token is produced.



I End of part #1: The GPT-2

m GPT2 uses Byte Pair Encoding to create the tokens TTT 1T _
In its vocabulary. This means the tokens are usually 768
parts of words.

m At training time, the model would be trained against Zoom 1in

longer sequences of text and processing multiple
tokens at once. Also at training time, the model would
process larger batch sizes (512) vs. the batch size of .

one that evaluation uses. 768
m Transformers use a lot of layer normalization.




I Part #2: The lllustrated Self-Attention

Self-attention being applied in a layer that is processing the word ‘it’:

The actual implementations are done by multiplying giant matrices together.

DECODER

C

Feed Forward Neural Network

\_/

30% 50%

Masked Self-Attention

18%

| E A
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I Part #2: The lllustrated Self-Attention

Self-Attention (without masking)

1. Create the Query, Key, and Value vectors for each path.
2. For each input token, use its query vector to score against all the other key vectors
3.  Sum up the value vectors after multiplying them by their associated scores.

Self-Attention

[ 1] LT [ ]
3) Sum
2) Score

1) Create q, k, v



| Part #2: The lllustrated Self-Attention s

1- Create Query, Key, and Value Vectors

The first path: take its query, and compare against all the keys. That produces a score for each key. The
first step in self-attention is to calculate the three vectors for each token path:

1) For each input token, create a query vector, a key vector, and a
value vector by multiplying by weight Matrices W@, W« WV

Self-Attention

x: x: €1 0 [ 5 O #1 S I




| Part #2: The lllustrated Self-Attention s

2- Score

Use the query and key vectors only for step #2. Multiply the query by all the other key vectors resulting in a score
for each of the four tokens.

2) Multiply (dot product) the current query vector, by all the key
vectors, to get a score of how well they match

Self-Attention .
score 20% 10% 50% 20%

-
-
-
-

-

1
x X [N x: I x. [




I Part #2: The lllustrated Self-Attention

3- Sum

Multiply the scores by the
value vectors. A value with
a high score will constitute
a large portion of the
resulting vector after

summing them up.

3) Multiply the value vectors by the scores, then sum up

Self-Attention
4 2 A
[T T]
© 0 O O
score 0.2 0.1 0.5 0.2
. J

x I X [ Xs|

X
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I Part #2: The lllustrated Self-Attention s

End up with a vector representing each token containing the appropriate context of that token.

Presented to the next sublayer in the transformer block (the feed-forward neural network):
Self-Attention

Zq Z Z3 Z4

. |

3) Sum
2) Score

1) Create q, k, v

X I €1 [ R €11 ) B ¥ B



Betn. bt

I Part #2: The lllustrated Masked Self-Attention %AS

Masked Self-Attention
Assuming the model only has two tokens as input and we’re observing the second token. In this case, the last

two tokens are masked. So the model interferes in the scoring step. It basically always scores the future tokens
as 0 so the model can’t peak to future words:

Masked Self-Attention

r )
score 20% 80% 0% 0%
softmax kiD:lj kZEDj . »

\. J

xil T T T ]  C11 R 1 N ) 0 [ 1
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I Part #2: The lllustrated Masked Self-Attention g@

Masked Self-Attention
Implemented as a matrix called an attention mask.

Work in batches: assume a batch size of 4 that will process the entire sequence (with its four steps) as one batch.

Features Labels
position: 1 2 3 4
Example:
1 robot must obey orders must
2 robot must obey orders obey
3 robot must obey orders orders

4 robot must obey orders <eos>



I Part #2: The lllustrated Masked Self-Attention

Matrix form: calculate the scores by multiplying a queries matrix by a keys matrix.

Scores
(before softmax)

. robot must obey @ orders 0.11 0.00 0.81 0.79
Queries
robot must obey orders 0.19 0.50 0.30 0.48

robot must obey orders X =

robot must obey orders 0.53 0.98 0.95 0.14

robot must obey @ orders 0.81 0.86 0.38 0.90
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I Part #2. The lllustrated Masked Self-Attention 5&2\45

Attention mask: after the multiplication, set the cells we want to mask to -infinity or a very large

negative number (e.g. -1 billion in GPT2):

Scores Masked Scores
(before softmax) (before softmax)
P 4y 5 0.00 9.81 0.79 . v 1 g —-inf —-inf —-inf

Apply Attention N I M
0.19 ©0.50 0.30  0.48 Mask 0.19 ©0.50 | -inf | -inf

0.53 0.98 .95 0.14 0.53 0.98 0.95 =1

0.81 0.86 0.38 0.90 0.81 .86 0.38 0.90



I Part #2: The lllustrated Masked Self-Attention

Then, applying softmax on each row produces the actual scores used for self-attention:

Masked Scores

Scores
(before softmax)
0.11 —inf —inf —inf SOftITIaX 1 0 (7] 0
0.19  0.50  —inf | —inf (along rows ) 0.48 | 0.52 0 0
0.53 0.98 .95 —inf | 0.31 @.35 0.34 0
0.81 0.86 0.38 0.90 .25 .26 0.23 0.26

®m  When the model processes the first example in the dataset (row #1), which contains only one word (“robot”),
100% of its attention will be on that word.

®m  When the model processes the second example in the dataset (row #2), which contains the words (“robot
must”), when it processes the word “must”, 48% of its attention will be on “robot”, and 52% of its attention will
be on “must”.

®m  Andsoon



I Evaluation Time

Evaluation Time: Processing One Token at a Time

During evaluation, when the model is only adding one new word after each iteration, it would be inefficient to

recalculate self-attention along earlier paths for tokens which have already been processed.
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I Evaluation Time

Evaluation Time: Processing One Token at a Time

GPT-2 holds on to the key and value vectors of a token. Every self-attention layer holds on to its

respective key and value vectors for that token:

robot

DECODER

' 2

Feed Forward Neural Network

-

Masked Self-Attention

& 4)

DECODER

Feed Forward Neural Network

N

Masked Self-Attention

A 4 )
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I Evaluation Time %ﬁ%

Y Tm—
ckoncen e Apyi o

Evaluation Time: Processing One Token at a Time
In the next iteration, when the model processes the word “robot”, it does not need to generate query, key, and

value queries for the ‘a’ token. It just reuses the ones it saved from the first iteration:

DECODER

Feed Forward Neural Network

[ - ' Masked Self-Attention

DECODER

\__U,

( Feed Forward Neural Network

Masked Self-Attention
ok
="

& 4)




I GPT-2 Parameters s

GPT-2 Self-attention: 1- Creating queries, keys, and values
When processing the word ‘it’, in the bottom block, the input for that token would be the

embedding of “it” + the positional encoding for slot #9:

GPT2 Self-Attention

r A

1) Create q, k, v

<S> a robot must obey



I GPT-2 Parameters

Every block in a transformer has its own weights.

The first is the weight matrix that we use to create the queries, keys, and values.

GPT2 Self-Attention
Self-attention
a K

multiplies its input
by its weight matrix

(and adds a bias
1) Create q, k, v
vector). I X

768 X 768*3

L attn/c_attn/w

<S> a robot must obey give

1 2 3 o 5 6 7 8 9



The multiplication results: a vector that’s basically a concatenation of the query, key, and value

vectors for the word “it”.

Multiplying the
input vector by the
attention weights
vector (and adding
a bias vector
afterwards) results
in the key, value,
and query vectors

for this token.

I GPT-2 Parameters

GPT2 Self-Attention

f”

768 768 768
split

768*3

attn/c_attn/w 766 X766°3

1) Create q, k, v

must obey

4 5 6 7




I GPT-2 Parameters

GPT-2 Self-attention: 1.5- Splitting into attention heads

“Splitting” attention heads is simply reshaping the long vector into a matrix.

GPT2 Self-Attention

The small GPT2 has 12 attention heads, so that would be the first dimension of the reshaped matrix:

H

12x 64 12 x 64 12 x 64

Split attention heads

ﬁ‘\

- ke Vo 1.5) split
D:D:D:D:_ attention heads
768 768 768
Zoom in
o ko Vo
e B
768 768 768
J
<s> a robot must obey

1 2 3 4 5 6 7

. BEE L L]
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I GPT-2 Parameters

Multiple attention-heads:

GPT2 Self-Attention
( attentionhead s
Qo,1 [ITO ko,1 1M Vg,1 (11

.............................................

.............................................

.............................................

---------------------------------------------

Vo2 BEEE : 1.5 spiit

....................... ’ attention heads

Clo,3 NN Ko, mmmm
__ hm ko
<S> a robot must obey
1 2 3 4 5
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I GPT-2 Parameters s

GPT-2 Self-attention: 2- Scoring

GPT2 Self-Attention

( attention head #1 j

P

2) Score

....................................................................

<s> a robot must obey orders | given

1 2 3 4 5 6 7 8 9
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I GPT-2 Parameters gﬁ.ﬁ i

The token get scored against all of keys of the other tokens:

GPT2 Self-Attention
[ attentionhead 1o R
2) Score .
30% 50% 18%
= & & & & % ko
k1,1 2,1 3,1 4,1 51 6,1 71 8,1 T
"""""""""""""" @....L..,..,.........l..,.'I.':::::::::::::::::::I.....1..,........ : Qo1

<S> a robot must obey ] given

1 2 3 4 5 6 7 8 9



I GPT-2 Parameters s

GPT-2 Self-attention: 3- Sum

Multiply each value with its score, then sum them up, producing the result of self-attention for attention-head #1:

GPT2 Self-Attention
( )

attention head #1 HZQ,-H

64 3) Sum

<s> a robot must obey rde

1 2 3 4 5 6 7 8 9



I GPT-2 Parameters

GPT-2 Self-attention: 3.5- Merge attention heads

To deal with the various attention heads, firstly, concatenate them into one vector:

GPT2 Self-Attention
(’

ready to be sent to the attention head #1

But the vector isn’t

1

Z9,1
64

3.5) Merge
attention heads

next sublayer just yet.

Need to first turn the

attention head #2 Z9.1-12

Z92

hidden states into a 61

homogenous
Z9,3

& 768 J

<s> a robot must obey :

1 2 3 4 5 6 7 8 9

attention head #3

BN TTT 7]

B LT (T 1]

representation. \




I GPT-2 Parameters

GPT-2 Self-attention: 4- Projecting

A large weight matrix that projects the results of the attention heads into the output vector of the self-

attention sublayer:

GPT2 Self-Attention

~

Z9,1-12

[

768

Zoom out
T T
76
Z9,1-12

Z9,1-12

768

768 x 768
attn/c_proj/w

4) Project

1

[

IEXL L L]
RS
nnnnnnn

e
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Produced the vector to send along to the next layer:

MASKED DECODER

( Feed Forward Neural Network )
GPT2 Self-Attention
é )
4) Project
29 768
Z9,1-12
[T x
768
768 x 768

L attn/c_proj/w J
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GPT-2 Fully-Connected Neural Network: Layer #1

The first layer is four times the size of the model (GPT2 small is 768, this network would have 768*4 = 3072 units).
Why four times? That'’s just the size the original transformer rolled with (model dimension was 512 and layer #1 in
that model was 2048). This seems to give transformer models enough representational capacity to handle the tasks
that have been thrown at them so far.

GPT2 Fully-Connected Neural Network
( )

1) Neural Network
Layer #1

Zg

768 768 X 768*4
mlp/c_fc/w
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GPT-2 Fully-Connected Neural Network: Layer #2 - Projecting to model dimension
The second layer projects the result from the first layer back into model dimension (768 for the small GPT2).
The result of this multiplication is the result of the transformer block for this token.

GPT2 Fully-Connected Neural Network

( , e
mlp/c_proj/w

2) Neural Network
Layer #2

k 768*4 x 768 )




I GPT-2 Parameters

To recap, the input vector of “it” encounters these weight matrices:

DECODER

Ro

-~

Feed Forward Neural Network

1]

mlp/c_proj/w

[768%4 x 768]

mlp/c_fc/w

[768 x 768+%4]

Masked Self-Attention

N\

iF
EELH

attn/c_proj/w
[768 x 768]

attn/c_attn/w

[768 x 768%3]

A\

<s> a robot must | obey

9

Y Tm—
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Each block has its own set of these weights.

The model has only one token embedding matrix and one positional encoding matrix:

® CGPT-2 SMALL

N

\
12| DECODER HEHHA
768 x 2,304 768 x768 768 x 3072
3072 x 768
1 || RECORER B H
768 x 2,304 768x768 768 x 3072
3072 x 768
/

Token Positional
Embeddings Encodings

50,257 x 768 1024 x 768
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To see all the parameters
of the model:

Add up to 124M
parameters instead of
117M for some reason.
Not sure why, but that's
how many of them
seems to be in the

published code.

Single Transformer Block

Dimensions Parameters
Convid attn/c_attn W 768 2,304 1,769,472
b 2,304 2,304
attn/c_proj W 768 768 589,824
b 768 768
mip/c_fc w 768 3,072 2,359,296
b 768 768
mip/c_proj w 3,072 768 2,359,296
b 768 768
Norm In_1 g 768 768
b 768 768
In_2 g 768 768
b 768 768
Total 7,085,568
X 12 blocks 85,026,816
Embeddings 50,257 768 38,597,376
Positional Encoding 1,024 768 786,432
Grand Total 124,410,624

per block

In all blocks



I Part 3: Beyond Language Modeling

The decoder-only transformer keeps showing promise beyond language modeling.

Machine Translation
An encoder is not
required to conduct

translation. The same

Training Dat t
task can be addressed a g batase

| am a student <to-fr> je suis

by a decoder-only

them eat cake <to-fr> Quils mangent

transformer: let

good morning <to-fr> Bonjour

étudiant

de

Output #2
allez-vous

Qutput #1
Comment

*

@Transformer—Decoder

how are you  <to-r>

1024
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Summarization

This is the task that the first

decoder-only transformer was

trained on. Namely, it was trained to

B s

read a wikipedia article (without the :w
opening section before the table of f{ """"""
contents), and to summarize it. The z:‘
actual opening sections of the ’
articles were used as the labels in mome o
— y ARTICLE
the training datasest: e s e




I Part 3: Beyond Language Modeling

The paper trained the model against wikipedia articles, and thus the trained model was able to summarize articles:

Output #2
Output #1
Training Dataset ) 4 .
Article #1 tokens <summarize>  Article #1 Summary
. q Article #2 ‘
Article #2 tokens = <summarize> padding
Summay %Transformer— Decoder
Avrticle #3 tokens <summarize> Qrticle it
ummary

<summarize>

1 113 114 256



I Transfer Learning gjzaASfi“f

In , @ decoder-only
transformer is first pre-trained on language modeling, then finetuned to do summarization. It turns

out to achieve better results than a pre-trained encoder-decoder transformer in limited data settings.

The GPT2 paper also shows results of summarization after pre-training the model on language

modeling.


https://arxiv.org/abs/1905.08836

I Music Generation

B Music Transformer: uses a decoder-only transformer to generate music with expressive timing and dynamics.
B “Music Modeling”: let the model learn music in an unsupervised way, then have it sample outputs.
B How music is represented?

-- With a musical performance (e.g., Piano), represent the notes and velocity — how hard the piano key is pressed.

5 B
% o0 “;fb c,e(’OZé’OQ
% % ’c\// = oo oﬁ\b
L, o & (_>‘ (}, é& @'\' ‘96("
- o?\ 3 c}‘{‘“k\ @ ° qzj"o '\m "Lm N
S :}( \\\Q ccrzf’/ c’e,.*’/-,\oQQ\\)QQ ,\,\){‘\Q
e e e .-
1 128 129 256 257 288 289 388
128 32 100
Note off Velocity Time

ool e



I Music Generation

A music performance is a series of these one-hot vectors.

A midi file can be converted into such a format:

SET_VELOCITY<80>, NOTE_ON<60>

TIME_SHIFT<500>, NOTE_ON<64>
o TIME_SHIFT<500>, NOTE_ON<67>
TIME_SHIFT<1000>, NOTE_OFF<60>, NOTE_OFF<64>,
NOTE_OFF<67>
TIME_SHIFT<500>, SET_VELOCITY<100>, NOTE_ON<65>
TIME_SHIFT<500>, NOTE_OFF<65>

T T T
[} (13 1 15 2 25 3



I Music Generation

The one-hot vector representation for this input sequence would look like this:

=)

- oo oo e

[clelslsl=]=]=]=]- FlEEEEEEERE

SET_VELOCITY<80>,

FFEFEFEF-FEEEEEEREE

NOTE_ON<60>,

cocopRr oo

[ll=ll=l==]=]- HEEEEEEEE

TIME_SHIFT<500>,

oo oo e e

CEEEEEEF-FEEEEEEEE

NOTE_ON<64>

Music Transformer




Music Generation

A visual showcases self-attention in the Music Transformer.

The note currently
being processed

The other notes the model is paying attention to
as it processes the pink note

high attention scores
(where the model is paying the most attention)

Legend
attention head #3 High attention score

Low attention score

"Figure: This piece has a recurring triangular contour. The query is at one of the latter peaks and it attends to
all of the previous high notes on the peak, all the way to beginning of the piece." ... "[The] figure shows a
guery (the source of all the attention lines) and previous memories being attended to (the notes that are
receiving more softmax probabiliy is highlighted in). The coloring of the attention lines correspond to different
heads and the width to the weight of the softmax probability."



B|M ‘

Music Generation #5515
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I How GPT3 Works - Visualizations and Animations %lmsm

LA

GPT3: Atrained language model generates text.

Input Prompt: Recite the first law of robotics

¥

GPT-3

\

Output:
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gy S,

Training based on lots of text. Cost 355 GPU years and cost $4.6m.

c Unsupervised Pre-training

- - T T T TN

I Expensive training on massive datasets

Dataset: 300 billion tokens of text I
I Objective: Predict the next word

I Example:

a robot  must ? |



I How GPT3 Works - Visualizations and Animations

The dataset of 300 billion tokens of text is used to generate training examples for the model.

Text: Second Law of Robotics: A robot must obey the orders given it by human beings

Generated training examples

Example # Input (features) Correct output (labels)

1 Second law of robotics

2 Second law of robotics 3 a

3 Second 1law of robotics 3 a robot
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gy S,

Training: Calculate the error in its Unsupervised Pre-training

prediction and update the model so ( "\ Correct output (label):
T Input (features)  a robot  must ~obey

next time it makes a better I

prediction.

Repeat millions of times.

Output (Prediction)



A =xamu
IIIIIIII

I et
[y Tm—
Ay ioen

I How GPT3 Works - Visualizations and Animations L'\:'s

GPT3 actually generates output one token at a time.

Input Prompt: Recite the first law of robotics

\

GPT-3

Output:
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I How GPT3 Works - Visualizations and Animations %IM e

GPT3 is MASSIVE, with 175 billion

Unsupervised Pre-training

parameters.

The untrained model starts with
random parameters.

Training finds values that lead to

better predictions.
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Prediction is mostly a lot of matrix multiplication.

GPT3 is 2048 tokens wide. That is its “context window™.

1 2 3 4 5 6 2048

Input Recite the first law of robotics

Output:



I How GPT3 Works - Visualizations and Animations é&g\\%

High-level steps:
B Convert the word to a GPT-3

vector (list of numbers)

representing the word
B Compute prediction robotics 1 2 3

B Convert resulting

vector to word \ 2
1- Convert word 2- Magic 3- Convert vector
into vector into word
Vector (i think of size 12,288) Vector (i think of size 12,289)
Embedding of robotics Prediction result

+ positional encoding for position #6



I How GPT3 Works - Visualizations and Animations gﬁ;“v'

GPT3 “depth”: 96 transformer decoder layers.

Each of these decoder layers has its own 1.8B parameters.

GPT-3
( )
N 4 4
r# r#\ ) ) (?
. Q j:4] B 3 a
robotics i 2 2 2 a‘ A
S ) ) ) S
H 3 3 3 3 3
® ® ® © ®
= = = = =
w) W) O (v W)
® ® @ o® ®
o o o o o
o o o o o
=1 o o o o
ng La) LgJ ugJ kg,d
N 4
1 2 3 4 96
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Every token flows through the entire layer stack.

a robot must obey the orders given it

coro OO0 OOE DI D B N e .

i i i i i i i n i
P S
1 Transformer Decoder
A\ J
| | | [ | | | | | [ | | ] | |
4 3
2 Transformer Decoder
\_ J
| | | § | | | | [ | i ] | |
( )
| | | [ | | | | | [ | ] 1 | |
- 3
96 Transformer Decoder
\_ J
\C | J
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Code generation example:
Input prompt (in green), and a couple of examples of description=>code.

The react code would be generated like the pink tokens.

[example] an input that says “search” [toCode] Class App extends React Component.. </div> } } }
[example] a button that says “I’'m feeling lucky” [toCode] Class App extends React Component..
[example] an input that says “enter a todo” [toCode]




I How GPT3 Works - Visualizations and Animations

Fine-tuning actually updates the model's weights to make the model better at a certain task.

Pre-training

/ \

Fine-tuning
! o —

= = = == BN

| Additional training to become |

better at a certain task

Example: English to
French Translation

S

IM

seu IM?I'D

el

gy S,
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