
Generat ive Pre-trained
Transformer (GPT)

Ha ihua X ie , As s i s t an t P rof es so r

Be i j i ng In s t i t u te of Ma themat i ca l S c i enc es
and App l i c a t ions (B IMS A)

A r t i f i c i a l I n te l l i gence and Mac h ine Lea rn ing

2 0 2 4 .0 5

谢海华. 《自然语言处理与文本数据挖掘》 2024/5/8 2

语言模型
（统计）

神经网路
语言模型

深度
神经网络

Word2vec
（词向量）

Seq2seq+Attention
（注意力机制）

Transformer
（自注意力机制）

BERT
（自编码）

GPT
（自回归）

ChatGPT
（GPT-3.5）

大规模
预训练
语言模型

语言模型发展脉络

预训练
语言模型

GPT: Generative Pre-Training

Transformer (“Attention is all you need”)
Google 2017

Attention (“Neural Machine Translation
by Jointly Learning to Align and

Translate”), 2015

BERT (Bidirectional Encoder
Representations from Transformers)

Google 2018

GPT (Improving Language
Understanding by Generative Pre-

Training), OpenAI 2018

Brief Introduction to GPT-2
GPT-2
 A very large, transformer-based language model trained on a massive dataset.
 Architecture very similar to the decoder-only transformer.

Brief Introduction to GPT-2
GPT-2
 Trained on a massive 40GB dataset called WebText.
 Takes up 500MBs ~ 6.5 GBs of storage to store all of its parameters.

Brief Introduction to GPT-2

Officials also
expressed
concern that
the mutation
could result in
immune
evasion and
enhanced
transmissibility
of the virus.

https://demo.allennlp.org/next-token-lm

Transformers for Language Modeling

Original transformer
 Encoder-decoder

architecture.
 Suitable for text

generation (e.g.,
machine translation)
tasks.

Transformers for Language Model ing
Large Language Models (LLM)
 The architecture shed either the encoder or decoder, stacking as high as possible
 Feed with massive amounts of training text
 Throw vast amounts of compute at them
 Cost hundreds of thousands of dollars to train

Transformers for Language Model ing

The size of GPT-2 variants.

One Difference From BERT

The GPT-2 is built using transformer decoder blocks. BERT, on the other hand, uses

transformer encoder blocks.

GPT2, like traditional language models, outputs one token at a time.

One Difference From BERT

Auto-regression: After each token is produced, that token is added to the sequence of inputs.

The Evolution of the Transformer Block

Transformer Encoder Block

An encoder block can take inputs up until a certain max sequence length (e.g. 512 tokens).

The Evolution of the Transformer Block

Transformer Decoder Block

The decoder block has a layer to allow it to pay attention to specific segments from the encoder:

The Evolution of the Transformer Block

The self-attention calculation
blocks information from tokens
that are to the right of the
position being calculated.

To highlight the path of position
#4, we can see that it is only
allowed to attend to the present
and previous tokens:

The Evolution of the Transformer Block

A normal self-attention block allows a position to peak at tokens to its right.

Masked self-attention prevents that from happening:

The Evolution of the Transformer Block

Masked self-attention

The Evolution of the Transformer Block

Masked Self-attention

第二步，计算<sos>的（每一层）向量值时，

不考虑词1（即没有Attention(0,1)的计算）：

 <sos>的（每一层）向量值直接采用前一

步的计算结果，以减小计算量。

输入 Attention 预测

第一步

第二步

<sos>

<sos>

<词1>

Attention(0,0)

Attention(0,0)

Attention(1,0)

Attention(1,1)

<词1>

<词2>

<sos> <词1> <词2> <词3> 预测

<sos>

<词1>

<词2>

<词3>

<词1>

<词2>

<词3>

<eos>

*

*

*

*

o

*

*

*

o

o

*

*

o

o

o

*

在训练阶段，语句（<sos>，词1，词2，词3）

一次性输入模型，并行预测<词1>，<词2>，

<词3>。此时采用mask attention以确保预

测<词x>时不会有已知的信息。

The Evolution of the Transformer Block

The Decoder-Only Block
This early transformer-based language model was made up of a stack of six transformer decoder blocks:

These blocks were very
similar to the original
decoder blocks, except
they did away with that
decoder-encoder
attention layer.

Looking Inside GPT-2

In GPT-2, each token flows through all the decoder blocks along its own path.

Looking Inside GPT-2

1) The vector of <s> is scored against the model’s vocabulary (50,000 words in the case of GPT-2).

Looking Inside GPT-2

2) Add the output from the first step to the input sequence, and have the model make its next
prediction.
Each layer of GPT-2 has retained its own interpretation of the first token and will use it in processing
the second token. GPT-2 does not re-interpret the first token in light of the second token.

A Deeper Look Inside

Input Encoding

The model looks up the

embedding of the input word in

its embedding matrix – one of

the components we get as part

of a trained model.

A Deeper Look Inside

Positional encoding: Part of the trained model, a matrix that contains a positional encoding vector for each of

the 1024 positions in the input.

A Deeper Look Inside

Token embedding and positional encoding: Two of the weight matrices that constitute the trained GPT-2.

Sending a word to the first transformer block means looking up its embedding and adding up
the positional encoding vector for position #1.

A Deeper Look Inside

A journey up the Stack
 Block by block, self-attention  FFNN.

 Each block has the same structure but own weights.

A Deeper Look Inside

Self-Attention Recap

Language heavily relies on context. For example, look at the second law:

When a model processes this sentence:

 it refers to the robot

 such orders refers to the earlier part of the law, namely “the orders given it by human beings”

 The First Law refers to the entire First Law

Self-attention assigns scores to how relevant each word in the segment is, and adding up their vector representation.

A Deeper Look Inside

Self-attention layer in the top block is paying attention to “a robot” when it processes the word “it”.

A Deeper Look Inside
The significant components of Self-Attention are three vectors:
 Query: The query is a representation of the current word used to score against all the other words (using their

keys). We only care about the query of the token we’re currently processing.
 Key: Key vectors are like labels for all the words in the segment. They’re what we match against in our search

for relevant words.
 Value: Value vectors are actual word representations, once we’ve scored how relevant each word is, these are

the values we add up to represent the current word.

A Deeper Look Inside
The query is like a sticky note with the topic you’re researching.
The keys are like the labels of the folders.
The values are contents of that folder.
Multiplying the query vector by each key vector produces a score for each folder (technically: dot product
followed by softmax).

A Deeper Look Inside

Self-attention outcome: multiply each value by its score and sum up.

This weighted blend of value vectors

results in a vector that paid 50% of its

“attention” to the word robot, 30% to the

word a, and 19% to the word it.

A Deeper Look Inside

Model Output
The output vector of the top block • the embedding matrix.

A Deeper Look Inside

The embedding matrix: the embedding of a word in the model’s vocabulary.

The result of this multiplication is interpreted as a score for each word.

A Deeper Look Inside

Output: the token with the highest score (top_k = 1).

Alternative: sample a word from a list (top_k = 40) using the score as the probability of selecting that word (so

words with a higher score have a higher chance of being selected).

The model continues

iterating until the entire

context is generated (1024

tokens) or until an end-of-

sequence token is produced.

End of part #1: The GPT-2

 GPT2 uses Byte Pair Encoding to create the tokens
in its vocabulary. This means the tokens are usually
parts of words.

 At training time, the model would be trained against

longer sequences of text and processing multiple

tokens at once. Also at training time, the model would

process larger batch sizes (512) vs. the batch size of

one that evaluation uses.
 Transformers use a lot of layer normalization.

Part #2: The Illustrated Self-Attention

Self-attention being applied in a layer that is processing the word ‘it’:

The actual implementations are done by multiplying giant matrices together.

Part #2: The Illustrated Self-Attention

Self-Attention (without masking)
1. Create the Query, Key, and Value vectors for each path.
2. For each input token, use its query vector to score against all the other key vectors
3. Sum up the value vectors after multiplying them by their associated scores.

Part #2: The Illustrated Self-Attention

1- Create Query, Key, and Value Vectors
The first path: take its query, and compare against all the keys. That produces a score for each key. The
first step in self-attention is to calculate the three vectors for each token path:

Part #2: The Illustrated Self-Attention

2- Score
Use the query and key vectors only for step #2. Multiply the query by all the other key vectors resulting in a score
for each of the four tokens.

Part #2: The Illustrated Self-Attention

3- Sum

Multiply the scores by the

value vectors. A value with

a high score will constitute

a large portion of the

resulting vector after

summing them up.

Part #2: The Illustrated Self-Attention

End up with a vector representing each token containing the appropriate context of that token.

Presented to the next sublayer in the transformer block (the feed-forward neural network):

Part #2: The Illustrated Masked Self-Attention

Masked Self-Attention
Assuming the model only has two tokens as input and we’re observing the second token. In this case, the last
two tokens are masked. So the model interferes in the scoring step. It basically always scores the future tokens
as 0 so the model can’t peak to future words:

Part #2: The Illustrated Masked Self-Attention

Masked Self-Attention

Implemented as a matrix called an attention mask.

Work in batches: assume a batch size of 4 that will process the entire sequence (with its four steps) as one batch.

Part #2: The Illustrated Masked Self-Attention

Matrix form: calculate the scores by multiplying a queries matrix by a keys matrix.

Part #2: The Illustrated Masked Self-Attention

Attention mask: after the multiplication, set the cells we want to mask to -infinity or a very large

negative number (e.g. -1 billion in GPT2):

Part #2: The Illustrated Masked Self-Attention

Then, applying softmax on each row produces the actual scores used for self-attention:

 When the model processes the first example in the dataset (row #1), which contains only one word (“robot”),

100% of its attention will be on that word.
 When the model processes the second example in the dataset (row #2), which contains the words (“robot

must”), when it processes the word “must”, 48% of its attention will be on “robot”, and 52% of its attention will
be on “must”.

 And so on

Evaluation Time

Evaluation Time: Processing One Token at a Time

During evaluation, when the model is only adding one new word after each iteration, it would be inefficient to

recalculate self-attention along earlier paths for tokens which have already been processed.

Evaluation Time

Evaluation Time: Processing One Token at a Time

GPT-2 holds on to the key and value vectors of a token. Every self-attention layer holds on to its

respective key and value vectors for that token:

Evaluation Time

Evaluation Time: Processing One Token at a Time
In the next iteration, when the model processes the word “robot”, it does not need to generate query, key, and

value queries for the ‘a’ token. It just reuses the ones it saved from the first iteration:

GPT-2 Parameters

GPT-2 Self-attention: 1- Creating queries, keys, and values

When processing the word ‘it’, in the bottom block, the input for that token would be the

embedding of “it” + the positional encoding for slot #9:

GPT-2 Parameters

Every block in a transformer has its own weights.

The first is the weight matrix that we use to create the queries, keys, and values.

Self-attention

multiplies its input

by its weight matrix

(and adds a bias

vector).

GPT-2 Parameters

The multiplication results: a vector that’s basically a concatenation of the query, key, and value

vectors for the word “it”.

Multiplying the

input vector by the

attention weights

vector (and adding

a bias vector

afterwards) results

in the key, value,

and query vectors

for this token.

GPT-2 Parameters

GPT-2 Self-attention: 1.5- Splitting into attention heads

“Splitting” attention heads is simply reshaping the long vector into a matrix.

The small GPT2 has 12 attention heads, so that would be the first dimension of the reshaped matrix:

GPT-2 Parameters

Multiple attention-heads:

GPT-2 Parameters

GPT-2 Self-attention: 2- Scoring

GPT-2 Parameters

The token get scored against all of keys of the other tokens:

GPT-2 Parameters

GPT-2 Self-attention: 3- Sum

Multiply each value with its score, then sum them up, producing the result of self-attention for attention-head #1:

GPT-2 Parameters

GPT-2 Self-attention: 3.5- Merge attention heads

To deal with the various attention heads, firstly, concatenate them into one vector:

But the vector isn’t

ready to be sent to the

next sublayer just yet.

Need to first turn the

hidden states into a

homogenous

representation.

GPT-2 Parameters

GPT-2 Self-attention: 4- Projecting

A large weight matrix that projects the results of the attention heads into the output vector of the self-
attention sublayer:

GPT-2 Parameters

Produced the vector to send along to the next layer:

GPT-2 Parameters
GPT-2 Fully-Connected Neural Network: Layer #1
The first layer is four times the size of the model (GPT2 small is 768, this network would have 768*4 = 3072 units).
Why four times? That’s just the size the original transformer rolled with (model dimension was 512 and layer #1 in
that model was 2048). This seems to give transformer models enough representational capacity to handle the tasks
that have been thrown at them so far.

GPT-2 Parameters
GPT-2 Fully-Connected Neural Network: Layer #2 - Projecting to model dimension
The second layer projects the result from the first layer back into model dimension (768 for the small GPT2).
The result of this multiplication is the result of the transformer block for this token.

GPT-2 Parameters

To recap, the input vector of “it” encounters these weight matrices:

GPT-2 Parameters

Each block has its own set of these weights.

The model has only one token embedding matrix and one positional encoding matrix:

GPT-2 Parameters

To see all the parameters

of the model:

Add up to 124M

parameters instead of

117M for some reason.

Not sure why, but that’s

how many of them

seems to be in the

published code.

Part 3: Beyond Language Modeling

The decoder-only transformer keeps showing promise beyond language modeling.

Machine Translation

An encoder is not

required to conduct

translation. The same

task can be addressed

by a decoder-only

transformer:

Part 3: Beyond Language Modeling

Summarization

This is the task that the first

decoder-only transformer was

trained on. Namely, it was trained to

read a wikipedia article (without the

opening section before the table of

contents), and to summarize it. The

actual opening sections of the

articles were used as the labels in

the training datasest:

Part 3: Beyond Language Modeling

The paper trained the model against wikipedia articles, and thus the trained model was able to summarize articles:

Transfer Learning

In Sample Efficient Text Summarization Using a Single Pre-Trained Transformer, a decoder-only

transformer is first pre-trained on language modeling, then finetuned to do summarization. It turns

out to achieve better results than a pre-trained encoder-decoder transformer in limited data settings.

The GPT2 paper also shows results of summarization after pre-training the model on language

modeling.

https://arxiv.org/abs/1905.08836

Music Generation

 Music Transformer: uses a decoder-only transformer to generate music with expressive timing and dynamics.

 “Music Modeling”: let the model learn music in an unsupervised way, then have it sample outputs.

 How music is represented?

-- With a musical performance (e.g., Piano), represent the notes and velocity – how hard the piano key is pressed.

Music Generation

A music performance is a series of these one-hot vectors.

A midi file can be converted into such a format:

Music Generation

The one-hot vector representation for this input sequence would look like this:

Music Generation

A visual showcases self-attention in the Music Transformer.

"Figure: This piece has a recurring triangular contour. The query is at one of the latter peaks and it attends to
all of the previous high notes on the peak, all the way to beginning of the piece." ... "[The] figure shows a
query (the source of all the attention lines) and previous memories being attended to (the notes that are
receiving more softmax probabiliy is highlighted in). The coloring of the attention lines correspond to different
heads and the width to the weight of the softmax probability."

Music Generation

How GPT3 Works - Visualizations and Animations

GPT3: A trained language model generates text.

How GPT3 Works - Visualizations and Animations

Training based on lots of text. Cost 355 GPU years and cost $4.6m.

How GPT3 Works - Visualizations and Animations

The dataset of 300 billion tokens of text is used to generate training examples for the model.

How GPT3 Works - Visualizations and Animations

Training: Calculate the error in its

prediction and update the model so

next time it makes a better

prediction.

Repeat millions of times.

How GPT3 Works - Visualizations and Animations

GPT3 actually generates output one token at a time.

How GPT3 Works - Visualizations and Animations

GPT3 is MASSIVE, with 175 billion

parameters.

The untrained model starts with

random parameters.

Training finds values that lead to

better predictions.

How GPT3 Works - Visualizations and Animations

Prediction is mostly a lot of matrix multiplication.

GPT3 is 2048 tokens wide. That is its “context window”.

How GPT3 Works - Visualizations and Animations

High-level steps:

 Convert the word to a

vector (list of numbers)

representing the word

 Compute prediction

 Convert resulting

vector to word

How GPT3 Works - Visualizations and Animations

GPT3 “depth”: 96 transformer decoder layers.

Each of these decoder layers has its own 1.8B parameters.

How GPT3 Works - Visualizations and Animations

Every token flows through the entire layer stack.

How GPT3 Works - Visualizations and Animations

Code generation example:

Input prompt (in green), and a couple of examples of description=>code.

The react code would be generated like the pink tokens.

How GPT3 Works - Visualizations and Animations

Fine-tuning actually updates the model’s weights to make the model better at a certain task.

Q&A

问题及讨论

	Generative Pre-trained Transformer (GPT)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Q&A

