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GPT: Generative Pre-Training  

Transformer (“Attention is all you need”) 
Google 2017 

Attention (“Neural Machine Translation 
by Jointly Learning to Align and 

Translate”), 2015 

BERT (Bidirectional Encoder 
Representations from Transformers) 

Google 2018 

GPT (Improving Language 
Understanding by Generative Pre-

Training),  OpenAI 2018 



Brief Introduction to GPT-2 
GPT-2 
 A very large, transformer-based language model trained on a massive dataset. 
 Architecture very similar to the decoder-only transformer. 



Brief Introduction to GPT-2 
GPT-2 
 Trained on a massive 40GB dataset called WebText.  
 Takes up 500MBs ~ 6.5 GBs of storage to store all of its parameters. 



Brief Introduction to GPT-2 

Officials also 
expressed 
concern that 
the mutation 
could result in 
immune 
evasion and 
enhanced 
transmissibility 
of the virus. 

https://demo.allennlp.org/next-token-lm 



Transformers for Language Modeling 

Original transformer 
 Encoder-decoder 

architecture. 
 Suitable for text 

generation (e.g., 
machine translation) 
tasks. 



Transformers for  Language Model ing  
Large Language Models (LLM) 
 The architecture shed either the encoder or decoder, stacking as high as possible 
 Feed with massive amounts of training text 
 Throw vast amounts of compute at them  
 Cost hundreds of thousands of dollars to train 



Transformers for  Language Model ing  

The size of GPT-2 variants. 



One Difference From BERT 

The GPT-2 is built using transformer decoder blocks. BERT, on the other hand, uses 

transformer encoder blocks.  

GPT2, like traditional language models, outputs one token at a time. 



One Difference From BERT 

Auto-regression: After each token is produced, that token is added to the sequence of inputs.  



The Evolution of  the  Transformer  Block  

Transformer Encoder Block 

An encoder block can take inputs up until a certain max sequence length (e.g. 512 tokens).  



The Evolution of  the  Transformer  Block  

Transformer Decoder Block 

The decoder block has a layer to allow it to pay attention to specific segments from the encoder: 



The Evolution of  the  Transformer  Block  

The self-attention calculation 
blocks information from tokens 
that are to the right of the 
position being calculated. 

To highlight the path of position 
#4, we can see that it is only 
allowed to attend to the present 
and previous tokens: 



The Evolution of  the  Transformer  Block  

A normal self-attention block allows a position to peak at tokens to its right.  

Masked self-attention prevents that from happening: 



The Evolution of  the  Transformer  Block  

Masked self-attention 

    



The Evolution of the Transformer Block 

Masked Self-attention 

第二步，计算<sos>的（每一层）向量值时，

不考虑词1（即没有Attention(0,1)的计算）： 

 <sos>的（每一层）向量值直接采用前一 

步的计算结果，以减小计算量。 
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在训练阶段，语句（<sos>，词1，词2，词3）

一次性输入模型，并行预测<词1>，<词2>，

<词3>。此时采用mask attention以确保预

测<词x>时不会有已知的信息。 



The Evolution of  the  Transformer  Block  

The Decoder-Only Block 
This early transformer-based language model was made up of a stack of six transformer decoder blocks: 

These blocks were very 
similar to the original 
decoder blocks, except 
they did away with that 
decoder-encoder 
attention layer. 



Looking Inside GPT-2 

In GPT-2, each token flows through all the decoder blocks along its own path. 



Looking Inside GPT-2 

1) The vector of <s> is scored against the model’s vocabulary (50,000 words in the case of GPT-2). 



Looking Inside GPT-2 

2) Add the output from the first step to the input sequence, and have the model make its next 
prediction.  
Each layer of GPT-2 has retained its own interpretation of the first token and will use it in processing 
the second token. GPT-2 does not re-interpret the first token in light of the second token. 



A Deeper Look Inside 

Input Encoding 

The model looks up the 

embedding of the input word in 

its embedding matrix – one of 

the components we get as part 

of a trained model. 



A Deeper Look Inside 

Positional encoding: Part of the trained model, a matrix that contains a positional encoding vector for each of 

the 1024 positions in the input. 



A Deeper Look Inside 

Token embedding and positional encoding: Two of the weight matrices that constitute the trained GPT-2. 

Sending a word to the first transformer block means looking up its embedding and adding up 
the positional encoding vector for position #1. 



A Deeper Look Inside 

A journey up the Stack 
 Block by block, self-attention  FFNN.  

 Each block has the same structure but own weights. 



A Deeper Look Inside 

Self-Attention Recap 

Language heavily relies on context. For example, look at the second law: 

 

 

 

When a model processes this sentence: 

 it refers to the robot 

 such orders refers to the earlier part of the law, namely “the orders given it by human beings” 

 The First Law refers to the entire First Law 

Self-attention assigns scores to how relevant each word in the segment is, and adding up their vector representation. 



A Deeper Look Inside 

Self-attention layer in the top block is paying attention to “a robot” when it processes the word “it”. 



A Deeper Look Inside 
The significant components of Self-Attention are three vectors: 
 Query: The query is a representation of the current word used to score against all the other words (using their 

keys). We only care about the query of the token we’re currently processing. 
 Key: Key vectors are like labels for all the words in the segment. They’re what we match against in our search 

for relevant words. 
 Value: Value vectors are actual word representations, once we’ve scored how relevant each word is, these are 

the values we add up to represent the current word. 



A Deeper Look Inside 
The query is like a sticky note with the topic you’re researching.  
The keys are like the labels of the folders.  
The values are contents of that folder. 
Multiplying the query vector by each key vector produces a score for each folder (technically: dot product 
followed by softmax). 



A Deeper Look Inside 

Self-attention outcome: multiply each value by its score and sum up. 

This weighted blend of value vectors 

results in a vector that paid 50% of its 

“attention” to the word robot, 30% to the 

word a, and 19% to the word it. 
 



A Deeper Look Inside 

Model Output 
The output vector of the top block  •  the embedding matrix. 



A Deeper Look Inside 

The embedding matrix: the embedding of a word in the model’s vocabulary.  

The result of this multiplication is interpreted as a score for each word. 



A Deeper Look Inside 

Output: the token with the highest score (top_k = 1).  

Alternative: sample a word from a list (top_k = 40) using the score as the probability of selecting that word (so 

words with a higher score have a higher chance of being selected).  

The model continues 

iterating until the entire 

context is generated (1024 

tokens) or until an end-of-

sequence token is produced. 

 

 



End of part #1: The GPT-2 

 GPT2 uses Byte Pair Encoding to create the tokens 
in its vocabulary. This means the tokens are usually 
parts of words. 

 At training time, the model would be trained against 

longer sequences of text and processing multiple 

tokens at once. Also at training time, the model would 

process larger batch sizes (512) vs. the batch size of 

one that evaluation uses. 
 Transformers use a lot of layer normalization. 



Part #2: The Illustrated Self-Attention 

Self-attention being applied in a layer that is processing the word ‘it’: 

The actual implementations are done by multiplying giant matrices together.  

 

 

 

 

 

 

 



Part #2: The Illustrated Self-Attention 

Self-Attention (without masking) 
1. Create the Query, Key, and Value vectors for each path. 
2. For each input token, use its query vector to score against all the other key vectors 
3. Sum up the value vectors after multiplying them by their associated scores. 



Part #2: The Illustrated Self-Attention 

1- Create Query, Key, and Value Vectors 
The first path: take its query, and compare against all the keys. That produces a score for each key. The 
first step in self-attention is to calculate the three vectors for each token path: 



Part #2: The Illustrated Self-Attention 

2- Score 
Use the query and key vectors only for step #2. Multiply the query by all the other key vectors resulting in a score 
for each of the four tokens. 



Part #2: The Illustrated Self-Attention 

3- Sum 

Multiply the scores by the 

value vectors. A value with 

a high score will constitute 

a large portion of the 

resulting vector after 

summing them up. 



Part #2: The Illustrated Self-Attention 

End up with a vector representing each token containing the appropriate context of that token. 

Presented to the next sublayer in the transformer block (the feed-forward neural network): 



Part #2: The Illustrated Masked Self-Attention 

Masked Self-Attention 
Assuming the model only has two tokens as input and we’re observing the second token. In this case, the last 
two tokens are masked. So the model interferes in the scoring step. It basically always scores the future tokens 
as 0 so the model can’t peak to future words: 



Part #2: The Illustrated Masked Self-Attention 

Masked Self-Attention 

Implemented as a matrix called an attention mask.  

Work in batches: assume a batch size of 4 that will process the entire sequence (with its four steps) as one batch. 



Part #2: The Illustrated Masked Self-Attention 

Matrix form: calculate the scores by multiplying a queries matrix by a keys matrix. 



Part #2: The Illustrated Masked Self-Attention 

Attention mask: after the multiplication, set the cells we want to mask to -infinity or a very large 

negative number (e.g. -1 billion in GPT2): 



Part #2: The Illustrated Masked Self-Attention 

Then, applying softmax on each row produces the actual scores used for self-attention: 
 
 
 
 
 
 
 
 
 
 
 
 
 When the model processes the first example in the dataset (row #1), which contains only one word (“robot”), 

100% of its attention will be on that word. 
 When the model processes the second example in the dataset (row #2), which contains the words (“robot 

must”), when it processes the word “must”, 48% of its attention will be on “robot”, and 52% of its attention will 
be on “must”. 

 And so on 



Evaluation Time 

Evaluation Time: Processing One Token at a Time 

During evaluation, when the model is only adding one new word after each iteration, it would be inefficient to 

recalculate self-attention along earlier paths for tokens which have already been processed. 



Evaluation Time 

Evaluation Time: Processing One Token at a Time 

GPT-2 holds on to the key and value vectors of a token. Every self-attention layer holds on to its 

respective key and value vectors for that token: 



Evaluation Time 

Evaluation Time: Processing One Token at a Time 
In the next iteration, when the model processes the word “robot”, it does not need to generate query, key, and 

value queries for the ‘a’ token. It just reuses the ones it saved from the first iteration: 



GPT-2 Parameters 

GPT-2 Self-attention: 1- Creating queries, keys, and values 

When processing the word ‘it’, in the bottom block, the input for that token would be the 

embedding of “it” + the positional encoding for slot #9: 



GPT-2 Parameters 

Every block in a transformer has its own weights.  

The first is the weight matrix that we use to create the queries, keys, and values. 

Self-attention 

multiplies its input 

by its weight matrix 

(and adds a bias 

vector). 



GPT-2 Parameters 

The multiplication results: a vector that’s basically a concatenation of the query, key, and value 

vectors for the word “it”. 

Multiplying the 

input vector by the 

attention weights 

vector (and adding 

a bias vector 

afterwards) results 

in the key, value, 

and query vectors 

for this token. 



GPT-2 Parameters 

GPT-2 Self-attention: 1.5- Splitting into attention heads 

“Splitting” attention heads is simply reshaping the long vector into a matrix.  

The small GPT2 has 12 attention heads, so that would be the first dimension of the reshaped matrix: 



GPT-2 Parameters 

Multiple attention-heads: 



GPT-2 Parameters 

GPT-2 Self-attention: 2- Scoring 



GPT-2 Parameters 

The token get scored against all of keys of the other tokens: 



GPT-2 Parameters 

GPT-2 Self-attention: 3- Sum 

Multiply each value with its score, then sum them up, producing the result of self-attention for attention-head #1: 



GPT-2 Parameters 

GPT-2 Self-attention: 3.5- Merge attention heads 

To deal with the various attention heads, firstly, concatenate them into one vector: 

But the vector isn’t 

ready to be sent to the 

next sublayer just yet. 

Need to first turn the 

hidden states into a 

homogenous 

representation. 



GPT-2 Parameters 

GPT-2 Self-attention: 4- Projecting 

A large weight matrix that projects the results of the attention heads into the output vector of the self-
attention sublayer: 



GPT-2 Parameters 

Produced the vector to send along to the next layer: 



GPT-2 Parameters 
GPT-2 Fully-Connected Neural Network: Layer #1 
The first layer is four times the size of the model (GPT2 small is 768, this network would have 768*4 = 3072 units).  
Why four times? That’s just the size the original transformer rolled with (model dimension was 512 and layer #1 in 
that model was 2048). This seems to give transformer models enough representational capacity to handle the tasks 
that have been thrown at them so far. 



GPT-2 Parameters 
GPT-2 Fully-Connected Neural Network: Layer #2 - Projecting to model dimension 
The second layer projects the result from the first layer back into model dimension (768 for the small GPT2).  
The result of this multiplication is the result of the transformer block for this token. 



GPT-2 Parameters 

To recap, the input vector of “it” encounters these weight matrices: 



GPT-2 Parameters 

Each block has its own set of these weights.  

The model has only one token embedding matrix and one positional encoding matrix: 
 



GPT-2 Parameters 

To see all the parameters 

of the model: 

Add up to 124M 

parameters instead of 

117M for some reason. 

Not sure why, but that’s 

how many of them 

seems to be in the 

published code. 
 



Part 3: Beyond Language Modeling 

The decoder-only transformer keeps showing promise beyond language modeling.  

Machine Translation 

An encoder is not 

required to conduct 

translation. The same 

task can be addressed 

by a decoder-only 

transformer: 



Part 3: Beyond Language Modeling 

Summarization 

This is the task that the first 

decoder-only transformer was 

trained on. Namely, it was trained to 

read a wikipedia article (without the 

opening section before the table of 

contents), and to summarize it. The 

actual opening sections of the 

articles were used as the labels in 

the training datasest: 



Part 3: Beyond Language Modeling 

The paper trained the model against wikipedia articles, and thus the trained model was able to summarize articles: 

 



Transfer Learning 

In Sample Efficient Text Summarization Using a Single Pre-Trained Transformer, a decoder-only 

transformer is first pre-trained on language modeling, then finetuned to do summarization. It turns 

out to achieve better results than a pre-trained encoder-decoder transformer in limited data settings. 

 

The GPT2 paper also shows results of summarization after pre-training the model on language 

modeling. 

 

https://arxiv.org/abs/1905.08836


Music Generation 

 Music Transformer: uses a decoder-only transformer to generate music with expressive timing and dynamics.  

 “Music Modeling”: let the model learn music in an unsupervised way, then have it sample outputs. 

 How music is represented? 

-- With a musical performance (e.g., Piano), represent the notes and velocity – how hard the piano key is pressed. 



Music Generation 

A music performance is a series of these one-hot vectors.  

A midi file can be converted into such a format: 



Music Generation 

The one-hot vector representation for this input sequence would look like this: 



Music Generation 

A visual showcases self-attention in the Music Transformer.  

"Figure: This piece has a recurring triangular contour. The query is at one of the latter peaks and it attends to 
all of the previous high notes on the peak, all the way to beginning of the piece." ... "[The] figure shows a 
query (the source of all the attention lines) and previous memories being attended to (the notes that are 
receiving more softmax probabiliy is highlighted in). The coloring of the attention lines correspond to different 
heads and the width to the weight of the softmax probability." 



Music Generation 



How GPT3 Works - Visualizations and Animations 

GPT3: A trained language model generates text. 



How GPT3 Works - Visualizations and Animations 

Training based on lots of text. Cost 355 GPU years and cost $4.6m. 



How GPT3 Works - Visualizations and Animations 

The dataset of 300 billion tokens of text is used to generate training examples for the model. 



How GPT3 Works - Visualizations and Animations 

Training: Calculate the error in its 

prediction and update the model so 

next time it makes a better 

prediction. 

Repeat millions of times. 



How GPT3 Works - Visualizations and Animations 

GPT3 actually generates output one token at a time. 



How GPT3 Works - Visualizations and Animations 

GPT3 is MASSIVE, with 175 billion 

parameters.  

The untrained model starts with 

random parameters.  

Training finds values that lead to 

better predictions. 



How GPT3 Works - Visualizations and Animations 

Prediction is mostly a lot of matrix multiplication.  

GPT3 is 2048 tokens wide. That is its “context window”. 



How GPT3 Works - Visualizations and Animations 

High-level steps: 

 Convert the word to a 

vector (list of numbers) 

representing the word 

 Compute prediction 

 Convert resulting 

vector to word 



How GPT3 Works - Visualizations and Animations 

GPT3 “depth”: 96 transformer decoder layers. 

Each of these decoder layers has its own 1.8B parameters.  



How GPT3 Works - Visualizations and Animations 

Every token flows through the entire layer stack.  



How GPT3 Works - Visualizations and Animations 

Code generation example: 

Input prompt (in green), and a couple of examples of description=>code.  

The react code would be generated like the pink tokens. 



How GPT3 Works - Visualizations and Animations 

Fine-tuning actually updates the model’s weights to make the model better at a certain task. 



Q&A 

问题及讨论 
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