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Symmetry

A symmetry is a transformation that preserves an object.
The set of symmetries of an object forms a group.

a1

a2

a3

r

× e r r2 a1 a2 a3
e e r r2 a1 a2 a3
r r r2 e a2 a3 a1
r2 r2 e r a3 a1 a2
a1 a1 a3 a2 e r2 r

a2 a2 a1 a3 r e r2

a3 a3 a2 a1 r2 r e

Isometry group (S3) of the regular triangle

Every finite group is the isometry group of a polytope.

The notions of symmetry and group are essentially equivalent.
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Quantum Symmetry
There are the notions of quantum group, Hopf algebra, tensor
category, subfactor, planar algebra..., but let’s start more easily by
slightly augmenting the group structure by the fusion structure:

bibj =
∑
k∈I

Nk
i ,jbk ,

where Nk
i ,j are non-negative integers

(group case: Nk
g ,h = δgh,k).

bi bj•

The group axioms extend as follows: for all i , j , k ∈ I ,

Associativity: bi (bjbk) = (bibj)bk ,

Unit: b1bi = bib1 = bi ,

Anti-involution b∗i = bi∗ with N1
i∗,j = N1

j ,i∗ = δi ,j .

This notion (by Lusztig, 1987) is now called fusion ring. Examples:

Group ring ZG with basis G (the group case),

Character ring ch(G ) with basis the irreducible characters χi ,

many other examples... (see next slides).
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Non-Integral Quantum Symmetry

Let R be a fusion ring with basis B = {b1, . . . , br}.

Theorem (Frobenius-Perron dimension FPdim)

There is a unique ∗-homomorphism d : R → C s.t. d(B) ⊂ R>0.

FPdim(bi ) is the norm of its fusion matrix, so an algebraic integer.
FPdim(R) :=

∑
i FPdim(bi )

2, so |G | for ch(G ). Such R is called

1-Frobenius if FPdim(R)
FPdim(bi )

is an algebraic integer (Kaplansky),

pointed if FPdim(bi ) = 1 (so it is a group ring ZG ),

The rank of R is |B|, and its type is (FPdim(bi ))i∈I .

Golden fusion ring (Yang-Lee rules)

B = {b1, b2}, b22 = b1 + b2, so

FPdim(b2) =
1+

√
5

2 (golden ratio).

Golden Dragon: fractal of Hausdorff
dimension the golden ratio ≃ 1.618.
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Simple Integral Quantum Symmetry
A fusion ring R is called:

integral if FPdim(bi ) is an integer (e.g. ch(G ) with deg(χi )),

simple if no proper non-trivial fusion subring,

The character ring ch(G ) is simple if and only if G is simple.

A classification of simple integral fusion rings really extends CFSG:

The fusion ring ch(G ) recalls the simple group G (false in general).

There are lots of non-ch(G ) simple integral fusion rings (see later).
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More Substantial Quantum Symmetry
A fusion ring may be the skeleton of something more substantial:

Fusion Rings
(e.g. ZG , ch(G),...)

Fusion Categories
(e.g. Vec(G), Rep(G),...)

Grothendieck Ring

Categorification

Categorical Associativity

A monoidal category (Mac Lane, 1963)
involves a natural isomorphism α with
αA,B,C : (A⊗ B)⊗ C → A⊗ (B ⊗ C)
such that the pentagon diagrams (here)
commute (no ambiguity). The tension
between skeletal (A ≃ B iff A = B) and
strict (α = id) notions prevents most
fusion rings from being categorifiable. A⊗ ((B ⊗ C )⊗ D)

A⊗ (B ⊗ (C ⊗ D))

(A⊗ B)⊗ (C ⊗ D)

((A⊗ B)⊗ C )⊗ D

(A⊗ (B ⊗ C ))⊗ D

1⊗ α

α

αα

α⊗ 1

Theorem (Ostrik, 2002)

A fusion ring with b22 = b1 + nb2 is categorifiable iff n = 0, 1.
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Exotic Integral Quantum Symmetry
Consider the following three open statements:

(1) Every integral fusion category is weakly group-theoretical1,

(2) Every simple integral fusion category is WGT,

(3) Every simple integral modular fusion category is pointed.
1Morita equivalent to a sequence of group extensions (from Vec)

(Etingof-Nikshych-Ostrik, 2011). Question: Is (1) false?
Theorem: A non-pointed WGT simple fusion category is Rep(G ).

(Liu-P-Ren, 2023). Question: (1) ⇔ (2)? Theorem: (2) ⇔ (3).

(Alekseyev-Bruns-P-Petrov, 2023). Thm: (3) is true at rank < 13.

↪→ same result in the perfect case, but Z(Rep(A5)) is perfect and of rank 22

Categorical Commutativity

A braiding is a natural isomorphism cX ,Y : X ⊗ Y → Y ⊗ X ,
with hexagon diagrams. S-matrix: (sX ,Y ) = (tr(cY ,X ◦ cX ,Y )).

Symmetric if sX ,Y = dXdY , essentially Rep(G) by Deligne;

Modular if S invertible (Moore-Seiberg ‘89, Turaev ‘92).

X Y

X Y

cY ,X

cX ,Y

More MTC: Drinfeld center Z( ), TQFT, non-int simple Lie ex., VOA, SL(2,Z)-reps...
7/17



Classification of simple integral fusion rings
By ENO’s theorem, a non-pointed simple integral fusion category
which is not isomorphic to Rep(G ), cannot be WGT. But there are
plenty of non-pointed simple integral fusion rings not isomorphic to
ch(G ). Their classification for small rank and FPdim is reachable.

Theorem (Alekseyev-Bruns-P-Petrov, arXiv:2302.01613)

A non-pointed simple integral fusion ring has rank at least 4.

We found a lot of rank 4 items (∃∞?), but none 1-Frobenius (∄?).

Theorem (Liu-P-Wu, Adv. in Math. 2021; Bruns-P, in progress)

Counting non-pointed simple integral 1-Frobenius fusion rings:
Rank 4 5 6 7 8 9 10 11 12

FPdim ≤ 1010 107 106 105 2 · 104 104 5000 3000 1000

#Fusion Rings 0 1 1 8 23 94 188 190 0

Among 505 fusion rings, only 8 are character rings (of PSL(2, q), A7)

95% of the rest is excluded from unitary
categorification by Quantum Fourier Analysis.
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Unitary categorification criteria (QFA)

Theorem (Liu-P-Wu, AiM 2021; Huang-Liu-P-Wu, IMRN 2023)

The Grothendieck ring of a unitary fusion category is n-positive, i.e.∑
∥Mi∥2−nM⊗n

i ≥ 0,

for all n ≥ 1, where (Mi ) are the fusion matrices.

Among the 497 remaining fusion rings, 20 ones only are 3-positive,
and they can be obtained by applying three transformations on
character rings (of non-abelian finite simple groups):

interpolation,

isotype variation,

contraction.

Question: Is there an example out of this pattern?

Anyway, the categorification problem remains.
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Categorical Classification

The first candidates are transformations applied to ch(PSL(2, q)):

Rank 7 and FPdim 210: interpolation to q = 6,
⇝ excluded by TPE and Localization,

Rank 8 and FPdim 660: isotype variation, q = 11,
⇝ excluded by Zero-Spectrum Criterion,

Rank 9 and FPdim 504: isotype variation, q = 8,
⇝ Open Case.

See the next slides for more details. It follows that:

Theorem (Liu-P-Wu, AIM 2021; Bruns-P, in progress)

A non-pointed 1-Frobenius unitary simple integral fusion category
with rank and FPdim as follows

Rank 4 5 6 7 8 9 10 11

FPdim < 1010 107 106 105 2 · 104 504 1680 990

is isomorphic to Rep(PSL(2, q)) with q = 4, 7, 9, 11.
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Triangular Prism Equations and Localization

An oriented triangular prism
• •

•

•

•

• whose edges and vertices are well
labeled by objects and morphisms in a pivotal fusion category, can
be interpreted as a scalar and evaluated by two ways using (labeled

oriented) tetrahedra
• •

••

• . This provides a system of equations as:

(TPE)
∑

· · ·
• •

••

•

• •

••

•

• •

••

• =
∑

· · ·
• •

••

•

• •

••

•

The following picture (by D. Thurston) illustrates the proof:

Theorem (Liu-P-Ren, arXiv:2203.06522)

In the spherical case, TPE are exactly PE, up to a change of basis.

The TPE provide insight to manage the complexity by localization,
using efficient labelings. The q = 6 exclusion involves such local
subsystems, with 12 polynomial equations and 10 variables.
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Zero-Spectrum Criterion

It is about the existence of a PE of the form xy = 0 with x , y ̸= 0:

Theorem (Liu-P-Ren, arXiv:2203.06522)

For a fusion ring R, if there are indices ij , 1 ≤ j ≤ 9, such that

N i6
i4,i1

, N i2
i5,i4

, N i3
i5,i6

, N i1
i7,i9

, N i8
i2,i7

, N i3
i8,i9

are non-zero, and∑
k

Nk
i4,i7N

k
i∗5 ,i8

Nk
i6,i∗9

= 0,

N i3
i2,i1

= 1,∑
k

Nk
i5,i4N

k
i3,i∗1

= 1 or
∑
k

Nk
i2,i∗4

Nk
i3,i∗6

= 1 or
∑
k

Nk
i∗5 ,i2

Nk
i6,i∗1

= 1,∑
k

Nk
i2,i7N

k
i3,i∗9

= 1 or
∑
k

Nk
i8,i∗7

Nk
i3,i∗1

= 1 or
∑
k

Nk
i∗2 ,i8

Nk
i1,i∗9

= 1,

then R cannot be categorified (at all) over any field.
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Current smallest candidate

Rank 9, FPdim 504 = 23 · 32 · 7 and type [1, 7, 7, 7, 7, 8, 9, 9, 9].

The character ring of PSL(2, 8):

The (proper) isotype variation:

Any idea to solve this case is welcome!

The localization strategy provides a first subsystem of 45
polynomial equations with 34 variables. Recently (10/01/2024),
Paul Breiding found a solution using homotopy continuation!
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Original motivation from subfactor theory

A factor is a von Neumann algebra with trivial center.

A subfactor is a unital inclusion of factors N ⊆ M.

It admits an index |M : N|, multiplicative with intermediate:

N ⊆ P ⊆ M ⇒ |M : N| = |M : P| · |P : N|,

A subfactor without intermediate is called maximal (Bisch, 1994).
→ “quantum analogous” of prime numbers!
What about natural numbers? See my papers on Ore’s theorem.
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The finite group subfactors (RG ⊂ R) are in a specific class called
finite index, irreducible, depth 2, completely characterized by:

Theorem (Longo, Szymanski, 1994; David, 1996)

Every finite index, irreducible, depth 2 subfactor is of the form
(RH ⊆ R), where H is a finite dimensional Hopf C∗-algebra (also
called finite quantum group).

The only known maximal examples of this class are the finite group
subfactors (RG ⊂ R), with G is cyclic of prime order.

Question (P. 2012)

Are there other maximal examples in this class?
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Transition to fusion category theory

Theorem (Izumi, Longo, Popa, 1998)

There is a 1-1 correspondence between

intermediates of finite quantum group subfactor RH ⊆ P ⊆ R,

left coideal ∗-subalgebras L ⊆ H, i.e. ∆(L) = H ⊗ L,

given by P = RL.

Theorem (Burciu, 2012)

There is a 1-1 correspondence between

normal left coideal ∗-subalgebras L ⊆ H

fusion subcategories C of the integral fusion category Rep(H),

given by C ≃ Rep(H//L).

A fusion category w/o (non-trivial) fusion subcat. is called simple.

So we are looking for an exotic simple integral fusion category
together with a fiber functor and that maximality.
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Thanks for your attention!

↓

Extra Slides
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Simple integral fusion rings of rank 4

They generically have type [1, d1, d2, d3] and fusion matrices:
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


0 1 0 0

1 x1 x2 x3
0 x2 x4 x5
0 x3 x5 x6

 ,


0 0 1 0

0 x2 x4 x5
1 x4 x7 x8
0 x5 x8 x9

 ,


0 0 0 1

0 x3 x5 x6
0 x5 x8 x9
1 x6 x9 x10


Here is the full list of items with FPdim < 106 (Bruns-P, 2024):

FPdim Factors d1 d2 d3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
574 217141 11 14 16 0 4 4 1 6 3 12 1 9 6

7315 517111119 35 40 67 30 1 2 9 15 25 12 12 25 39

63436 221585 103 149 175 57 13 16 67 23 74 51 44 98 48

65971 2132511259 65 89 232 51 5 2 4 22 56 60 10 79 186

68587 1071641 103 116 211 48 27 12 19 33 79 30 38 79 129

90590 21519059 142 180 195 39 0 75 77 60 32 25 87 56 120

113310 213251125 90 172 275 77 2 3 25 40 64 39 75 112 184

310730 215171231193 312 317 336 62 139 101 48 120 105 168 96 115 130

311343 315911759 286 315 361 95 76 85 115 89 141 206 4 241 39

494102 21712911217 396 399 422 40 219 127 20 150 135 248 124 141 162

532159 532159 211 409 566 84 24 30 63 98 129 299 56 332 278

585123 3171111171149 288 397 587 159 30 43 179 59 227 208 40 341 245

This table suggests the existence of infinitely many examples.
2/9



Burnside type results and MTC

Definition (Burciu-P, arXiv:2302.07604)

A fusion ring is Burnside if for every basic element then its
fusion matrix has norm 1 iff its determinant is nonzero.

A 3-positive commutative fusion ring is dual-Burnside when a
column c of its character table has a 0-entry iff ∥c∥2 < FPdim.

Burnside proved that ch(G ) is Burnside for every finite group
G . It extends to every integral fusion categories (Burciu, 23).
We found non-Burnside integral fusion rings (cat. criterion).

For every nilpotent, or every simple non-alternating finite
group G (except M22, M24) then ch(G ) is dual-Burnside.

Theorems (Burciu-P, arXiv:2302.07604)

A perfect MTC is (dual) Burnside iff it is integral.

A perfect integral MTC FPdim has no powerless prime factor.
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Interpolated simple integral fusion rings of Lie type

Generic character table of PSL(2, q), q even

charparam c

classparam k {1} {1} {1, . . . , q−2
2

} {1, . . . , q
2
}

{1} 1 1 1 1

{1, . . . , q
2
} q − 1 −1 0 −ζkcq+1 − ζ−kc

q+1

{1} q 0 1 −1

{1, . . . , q−2
2

} q + 1 1 ζkcq−1 + ζ−kc
q−1 0

class size 1 q2 − 1 q(q + 1) q(q − 1)

Theorem (Liu-P-Ren, Internat. J. Math. 2023)
xq−1,c1

xq−1,c2
= δc1,c2 x1,1 +

∑
c3 such that

c1+c2+c3 ̸=q+1 and 2max(c1,c2,c3)

xq−1,c3
+ (1 − δc1,c2 )xq,1 +

∑
c3

xq+1,c3
,

xq−1,c1
xq,1 =

∑
c2

(1 − δc1,c2 )xq−1,c2
+ xq,1 +

∑
c2

xq+1,c2
,

xq−1,c1
xq+1,c2

=
∑
c3

xq−1,c3
+ xq,1 +

∑
c3

xq+1,c3
,

xq,1xq,1 = x1,1 +
∑
c

xq−1,c + xq,1 +
∑
c

xq+1,c ,

xq,1xq+1,c1
=

∑
c2

xq−1,c2
+ xq,1 +

∑
c2

(1 + δc1,c2 )xq+1,c2
,

xq+1,c1
xq+1,c2

= δc1,c2 x1,1 +
∑
c3

xq−1,c3
+ (1 + δc1,c2 )xq,1 +

∑
c3 such that

c1+c2+c3 ̸=q−1
and 2max(c1,c2,c3)

xq+1,c3
+

∑
c3 such that

c1+c2+c3=q−1
or 2max(c1,c2,c3)

2xq+1,c3
,
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Local subsystems for the q = 6 interpolation

10 variables and 12 polynomial equations

5u0 + 7u1 + 7u2 − 4/25 = 0,

5v0 + 5v1 + 7v3 + 7v5 + 1/5 = 0,

25v 2
0 + 25v 2

1 + 35v 2
3 + 35v 2

5 − 4/5 = 0,

5v 3
0 + 5v 3

1 + 7v 3
3 + 7v 3

5 − v 2
0 + 1/125 = 0,

5v0v
2
1 + 5v1v

2
2 + 7v3v

2
4 + 7v5v

2
6 + 1/125 = 0,

5u0v1 − v 2
1 + 7u1v3 + 7u2v5 + 1/125 = 0,

5v1 + 5v2 + 7v4 + 7v6 + 1/5 = 0,

25v0v1 + 25v1v2 + 35v3v4 + 35v5v6 + 1/5 = 0,

5v 2
0 v1 + 5v 2

1 v2 + 7v 2
3 v4 + 7v 2

5 v6 − v 2
1 + 1/125 = 0,

25v 2
1 + 25v 2

2 + 35v 2
4 + 35v 2

6 − 4/5 = 0,

5v 3
1 + 5v 3

2 + 7v 3
4 + 7v 3

6 − u0 + 1/125 = 0,

5u0v2 − v 2
2 + 7u1v4 + 7u2v6 + 1/125 = 0

It admits 14 solutions in char. 0, which can be written as a
Gröbner basis. There is an extra equation linking two such
subsystems, and leading to a contradiction. 5/9



Perfect MNSD

Theorem (Alekseyev-Bruns-P-Petrov, 2023; Czenky-Gvozdjak-Plavnik, 2023)

Every odd-dim. MTC of rank < 25 is pointed.

Every perfect one of rank < 252 = 625 is simple.

For the rank 25 simple case there remain the following 21 types:
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Robin’s reformulation of Riemann Hypothesis (RH)

There is a way to extend RH to SPA using the biprojection lattices.

Let σ be the divisor function, defined on N≥1 by

σ(n) :=
∑
d |n

d .

Theorem

Let γ the Euler–Mascheroni constant, then

lim sup
n→∞

σ(n)

n log log n
= eγ .

Theorem (Robin, 1984)

RH is true if and only if for n large enough

σ(n) < eγn log log n.
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Quantum Riemann Hypothesis (QRH)

Here P denotes an irreducible SPA and |P| its index.

Let the divisor function and its divisor set (finite by Watatani) be

σ(P) :=
∑

d∈D(P)

d , where D(P) := {|b : e1| with b ∈ [e1, id ]}.

Let Fr be the set of irreducible SPA of depth r (up to equivalence).

Quantum Riemann Hypothesis of depth r ≥ 2 (QRHr )

There is a (finite) constant γr such that

lim sup
P∈Fr ,|P|→∞

σ(P)

|P| log log |P|
= eγr

and for P ∈ Fr with |P| large enough

σ(P) < eγr |P| log log |P|.

By Galois correspondence, γ2 = γ and QRH2 ⇔ RH.
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Generalization of QRH to Tensor Categories?

Consider the following reformulations in a unitary tensor category:

Finite index subfactor ↔ Unitary Frobenius algebra,

Irreducible ↔ Connected,

Intermediate subfactor ↔ Unitary Frobenius subalgebra.

Watatani’s theorem reformulated

A connected unitary Frobenius algebra in a unitary tensor category
has finitely many unitary Frobenius subalgebras.

Question: To what extent can the unitary assumption be relaxed?

Categorical Riemann Hypothesis (CRH)

Then, RH can be extended to tensor categories as for the previous
slide, but involving Frobenius subalgebra lattices.

Question: Can we reduce QRH or CRH to distributive lattices1?

1generalizing natural numbers as maximal does for primes (my Ore’s papers)
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