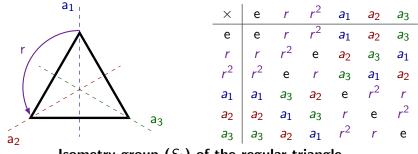
Exotic Integral Quantum Symmetry

Sébastien Palcoux

北京雁栖湖 应用数学研究院 Beijing Institute of Mathematical Sciences and Applications

Advances in Quantum Algebra Friday, January 26, 2024 A symmetry is a *transformation* that preserves an object. The set of symmetries of an object forms a group.



Isometry group (S_3) of the regular triangle

Every finite group is the isometry group of a polytope.

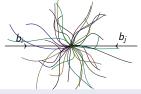
The notions of symmetry and group are *essentially* equivalent.

Quantum Symmetry

There are the notions of quantum group, Hopf algebra, tensor category, subfactor, planar algebra..., but let's start more easily by slightly augmenting the group structure by the fusion structure:

$$b_i b_j = \sum_{k \in I} N_{i,j}^k b_k,$$

where $N_{i,j}^k$ are non-negative integers (group case: $N_{g,h}^k = \delta_{gh,k}$).



The group axioms extend as follows: for all $i, j, k \in I$,

• Associativity: $b_i(b_jb_k) = (b_ib_j)b_k$,

• **Unit**:
$$b_1b_i = b_ib_1 = b_i$$
,

• Anti-involution $b_i^* = b_{i^*}$ with $N_{i^*,j}^1 = N_{j,i^*}^1 = \delta_{i,j}$.

This notion (by Lusztig, 1987) is now called fusion ring. Examples:

- Group ring $\mathbb{Z}G$ with basis G (the group case),
- Character ring ch(G) with basis the irreducible characters χ_i ,
- many other examples... (see next slides).

Non-Integral Quantum Symmetry

Let \mathcal{R} be a fusion ring with basis $\mathcal{B} = \{b_1, \ldots, b_r\}$.

Theorem (Frobenius-Perron dimension $\operatorname{FPdim})$

There is a unique *-homomorphism $d : \mathcal{R} \to \mathbb{C}$ s.t. $d(\mathcal{B}) \subset \mathbb{R}_{>0}$.

 $\operatorname{FPdim}(b_i)$ is the norm of its fusion matrix, so an algebraic integer. $\operatorname{FPdim}(\mathcal{R}) := \sum_i \operatorname{FPdim}(b_i)^2$, so |G| for $\operatorname{ch}(G)$. Such \mathcal{R} is called

- 1-Frobenius if $\frac{\text{FPdim}(\mathcal{R})}{\text{FPdim}(b_i)}$ is an algebraic integer (Kaplansky),
- pointed if $\operatorname{FPdim}(b_i) = 1$ (so it is a group ring $\mathbb{Z}G$),

The rank of \mathcal{R} is $|\mathcal{B}|$, and its type is $(\operatorname{FPdim}(b_i))_{i \in I}$.

Golden fusion ring (Yang-Lee rules)

$$\mathcal{B} = \{b_1, b_2\}, \ b_2^2 = b_1 + b_2, \text{ so}$$

FPdim $(b_2) = \frac{1+\sqrt{5}}{2}$ (golden ratio).

Golden Dragon: fractal of Hausdorff dimension the golden ratio $\simeq 1.618$.

Simple Integral Quantum Symmetry

A fusion ring \mathcal{R} is called:

- *integral* if $\operatorname{FPdim}(b_i)$ is an integer (e.g. $\operatorname{ch}(G)$ with $deg(\chi_i)$),
- simple if no proper non-trivial fusion subring,

The character ring ch(G) is simple if and only if G is simple.

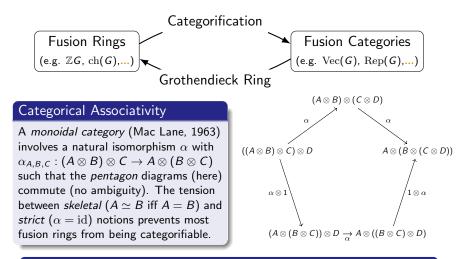
1	Dynkin Diagrams of Simple Lie Algebras													q			
As	A1(7)		<u>~~~</u> 9	9 	-9 -9	· >			1			'4,10 B ₂ (3)	$C_3(3)$	D ₈ (2)	$^2D_4(2^2)$	^{6,(1)} ³ A ₂ (9)	2
00 LOLM2/ As	300 ¹ 6,077 Aj(8) 304	e	âmpimô-	ę	- <u>o</u> 6	, o-	÷		÷	ș—ș		21424 B2(4)	Cy(5)	D _b (3)	204(3 ²)	2A2(16)	 0 5
A ₇	A ₂ (11)	La(2)	F.7(2)	<i>L₀(2)</i>	Fg(2)	G2(3)	³ D ₄ (2 ³)	2F6(2 ³)	2 ₈₂ (2 ³)	25. 2F4(2)/ 12mai	${}^{2}G_{2}(\mathfrak{d}^{3})$	R ₂ (2)	Cg(3)	D ₃ (2)	$^{2}D_{3}(2^{2})$	2 _{A2} (25)	0
A5 2006	A ₁ (13)	£4(3)	Ey(3)	£9(3)	Eg(3) Charlon	G2(4) 24.36400	³ D ₄ (3 ³)	2E ₆ (3 ²)	282(2 ⁵)	² F ₄ (2 ³) areason according	² G ₂ (3 ⁸) mann concti	82(3) carr str	C ₂ (7)	D ₆ (5)	² D ₄ (4 ²)	2 _{.45} (9) 3.54100	•
А,	A ₁ (17)	L ₆ (4)	F2(4)	<i>E</i> ₀ (4)	Fg(4)	G2(\$)	³ D ₄ (4 ²)	² E ₈ (4 ²) "200000	$^{2}\partial_{3}(x^{2})$	2 ₈₄ (2 ⁰) 2000	3 _{G2} (3 ⁷)	R2(7)	Cy(9)	D _b (3)	$^2\mathcal{O}_4(\mathbb{R}^2)$	2 _{.42} (64)	
As T	$A_k(q)$ $G_{ij}(q) = a$	E4(q)	Er(q) sfallera	t4(q) ≤78750	4(a) 20202	G2(q)	3 _{D4} (q3)	${}^2E_0(q^2)$ maggar	*8 ₄ (2***)	nyann) Asasta	16,00000) 101-10-10	$B_{t}(q)$	1755-10 Ga(4) जीव()राज	agoo D _a (q) C <u>S</u> SS[e	00341 2Da(q2) 5007((e-r	PRL-101 ³ A ₀ (4 ²) 555 [[2.
Chenal Conge Beiderg Longe Beiderg Longe Beiderg Longe Beiderg and Beiderge				М ₁₃ тны	M12 9564	M22	M23 1030940	M ₂₄	h 1594	12 10.000	нарын	h Records	M5 1110 M	McL escase	Be	73 879-14	
	ngo Tananana Ata	a. 201		ay under greede		005.0.5				4.0	105	41	WITT.	14711	0	6	6.96
to mark put h	nany tanya ania mina manjara ay minang panjara	tite tere		ad by the state	N Satz antertan	O'N o'N	Cey	Co1	Coy	HN remote	Ly union	Tk armse armse	N110 D22	N(2) F(g)	1/24 1/24	, 	м 1999

A classification of simple integral fusion rings really extends CFSG:

- The fusion ring ch(G) recalls the simple group G (false in general).
- There are *lots* of non-ch(G) simple integral fusion rings (see later).

More Substantial Quantum Symmetry

A fusion ring may be the skeleton of something more substantial:



Theorem (Ostrik, 2002)

A fusion ring with $b_2^2 = b_1 + nb_2$ is categorifiable iff n = 0, 1.

Exotic Integral Quantum Symmetry

Consider the following three **open** statements:

- (1) Every integral fusion category is weakly group-theoretical¹,
- (2) Every simple integral fusion category is WGT,
- (3) Every simple integral **modular** fusion category is pointed. ¹Morita equivalent to a sequence of group extensions (from Vec)

(Etingof-Nikshych-Ostrik, 2011). **Question**: Is (1) false? **Theorem**: A non-pointed WGT simple fusion category is Rep(G).

(Liu-P-Ren, 2023). Question: (1) \Leftrightarrow (2)? Theorem: (2) \Leftrightarrow (3).

(Alekseyev-Bruns-P-Petrov, 2023). Thm: (3) is true at rank < 13.

 \hookrightarrow same result in the *perfect* case, but $\mathcal{Z}(\operatorname{Rep}(A_5))$ is perfect and of rank 22

Categorical Commutativity

A braiding is a natural isomorphism $c_{X,Y} : X \otimes Y \to Y \otimes X$, with hexagon diagrams. S-matrix: $(s_{X,Y}) = (tr(c_{Y,X} \circ c_{X,Y}))$.

- Symmetric if $s_{X,Y} = d_X d_Y$, essentially $\operatorname{Rep}(G)$ by Deligne;
- Modular if S invertible (Moore-Seiberg '89, Turaev '92).

<u>More MTC</u>: Drinfeld center $\mathcal{Z}(_)$, TQFT, non-int simple Lie ex., VOA, $SL(2,\mathbb{Z})$ -reps...

Classification of simple integral fusion rings

By ENO's theorem, a non-pointed simple integral fusion category which is not isomorphic to Rep(G), cannot be WGT. But there are plenty of non-pointed simple integral fusion rings not isomorphic to ch(G). Their classification for small rank and FPdim is reachable.

Theorem (Alekseyev-Bruns-P-Petrov, arXiv:2302.01613)

A non-pointed simple integral fusion ring has rank at least 4.

We found a lot of rank 4 items $(\exists \infty ?)$, but none 1-Frobenius $(\nexists ?)$.

Theorem (Liu-P-Wu, Adv. in Math. 2021; Bruns-P, in progress)

Counting non-pointed simple integral 1-Frobenius fusion rings:

Rank	4	5	6	7	8	9	10	11	12
$FPdim \leq$	10 ¹⁰	10 ⁷	10 ⁶	10 ⁵	$2\cdot 10^4$	104	5000	3000	1000
#Fusion Rings	0	1	1	8	23	94	188	190	0

Among 505 fusion rings, only 8 are character rings (of PSL(2, q), A_7)

95% of the rest is excluded from *unitary* categorification by Quantum Fourier Analysis.

Unitary categorification criteria (QFA)

Theorem (Liu-P-Wu, AiM 2021; Huang-Liu-P-Wu, IMRN 2023)

The Grothendieck ring of a unitary fusion category is *n*-positive, i.e.

$$\sum \|M_i\|^{2-n}M_i^{\otimes n}\geq 0,$$

for all $n \ge 1$, where (M_i) are the fusion matrices.

Among the 497 remaining fusion rings, 20 ones only are 3-positive, and they can be obtained by applying three transformations on character rings (of non-abelian finite simple groups):

- interpolation,
- isotype variation,
- contraction.

Question: Is there an example out of this pattern?

Anyway, the categorification problem remains.

Categorical Classification

The first candidates are transformations applied to ch(PSL(2, q)):

- Rank 7 and FPdim 210: interpolation to q = 6,
 → excluded by TPE and Localization,
- Rank 8 and FPdim 660: isotype variation, q = 11,
 → excluded by Zero-Spectrum Criterion,
- Rank 9 and FPdim 504: isotype variation, q = 8,
 → Open Case.

See the next slides for more details. It follows that:

Theorem (Liu-P-Wu, AIM 2021; Bruns-P, in progress)

A non-pointed 1-Frobenius unitary simple integral fusion category with rank and ${\rm FPdim}$ as follows

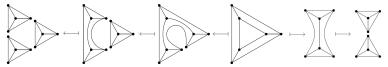
is isomorphic to $\operatorname{Rep}(\operatorname{PSL}(2,q))$ with q = 4, 7, 9, 11.

Triangular Prism Equations and Localization

An oriented triangular prism \bigwedge whose edges and vertices are well labeled by objects and morphisms in a pivotal fusion category, can be interpreted as a scalar and evaluated by two ways using (labeled oriented) tetrahedra \bigwedge . This provides a system of equations as:

$$(\mathsf{TPE}) \quad \sum \cdots \quad \bigtriangleup \quad \bigtriangleup \quad \bigtriangleup \quad \bigtriangleup \quad = \sum \cdots \quad \bigtriangleup \quad \bigstar$$

The following picture (by D. Thurston) illustrates the proof:



Theorem (Liu-P-Ren, arXiv:2203.06522)

In the spherical case, TPE are exactly PE, up to a change of basis.

The TPE provide insight to manage the complexity by localization, using efficient labelings. The q = 6 exclusion involves such local subsystems, with 12 polynomial equations and 10 variables.

Zero-Spectrum Criterion

It is about the existence of a PE of the form xy = 0 with $x, y \neq 0$:

Theorem (Liu-P-Ren, arXiv:2203.06522)

For a fusion ring \mathcal{R} , if there are indices i_j , $1 \leq j \leq 9$, such that $N_{i_{6},i_{1}}^{i_{6}}$, $N_{i_{5},i_{6}}^{i_{2}}$, $N_{i_{5},i_{6}}^{i_{3}}$, $N_{i_{7},i_{6}}^{i_{1}}$, $N_{i_{2},i_{7}}^{i_{8}}$, $N_{i_{2},i_{6}}^{i_{3}}$ are non-zero, and $\sum_{i} N_{i_4,i_7}^k N_{i_5,i_8}^k N_{i_6,i_9^*}^k = 0,$ $N_{i_0}^{i_3} = 1,$ $\sum_{i_1} N_{i_5,i_4}^k N_{i_3,i_1^*}^k = 1 \text{ or } \sum_{i_1} N_{i_2,i_4^*}^k N_{i_3,i_6^*}^k = 1 \text{ or } \sum_{i_1} N_{i_5,i_2}^k N_{i_6,i_1^*}^k = 1,$ $\sum_{i} N_{i_2,i_7}^k N_{i_3,i_9^*}^k = 1 \text{ or } \sum_{i} N_{i_8,i_7^*}^k N_{i_3,i_1^*}^k = 1 \text{ or } \sum_{i} N_{i_2^*,i_8}^k N_{i_1,i_9^*}^k = 1,$

then \mathcal{R} cannot be categorified (at all) over any field.

Rank 9, FPdim $504 = 2^3 \cdot 3^2 \cdot 7$ and type [1, 7, 7, 7, 7, 8, 9, 9, 9].

The character ring of PSL(2, 8):

The (proper) isotype variation:

Any idea to solve this case is welcome!

The localization strategy provides a first subsystem of 45 polynomial equations with 34 variables. Recently (10/01/2024), Paul Breiding found a solution using homotopy continuation!

Original motivation from subfactor theory

- A factor is a von Neumann algebra with trivial center.
- A subfactor is a unital inclusion of factors $N \subseteq M$.
- It admits an index |M : N|, multiplicative with intermediate:

$$N \subseteq P \subseteq M \Rightarrow |M:N| = |M:P| \cdot |P:N|,$$

A subfactor without intermediate is called **maximal** (Bisch, 1994). \rightarrow "quantum analogous" of prime numbers! What about natural numbers? See my papers on Ore's theorem. The finite group subfactors $(R^G \subset R)$ are in a specific class called *finite index, irreducible, depth* 2, completely characterized by:

Theorem (Longo, Szymanski, 1994; David, 1996)

Every finite index, irreducible, depth 2 subfactor is of the form $(R^H \subseteq R)$, where *H* is a finite dimensional Hopf C*-algebra (also called *finite quantum group*).

The only *known* maximal examples of this class are the finite group subfactors $(R^G \subset R)$, with G is cyclic of prime order.

Question (P. 2012)

Are there other maximal examples in this class?

Transition to fusion category theory

Theorem (Izumi, Longo, Popa, 1998)

There is a 1-1 correspondence between

- intermediates of finite quantum group subfactor $R^H \subseteq P \subseteq R$,
- *left coideal* *-subalgebras $L \subseteq H$, i.e. $\Delta(L) = H \otimes L$,

given by $P = R^L$.

Theorem (Burciu, 2012)

There is a 1-1 correspondence between

• normal left coideal *-subalgebras $L \subseteq H$

• fusion subcategories C of the integral fusion category $\operatorname{Rep}(H)$, given by $\mathcal{C} \simeq \operatorname{Rep}(H//L)$.

A fusion category w/o (non-trivial) fusion subcat. is called simple.

So we are looking for an exotic simple integral fusion category together with a fiber functor and that maximality.

Thanks for your attention!

 \downarrow

Extra Slides

Extra Slides

Simple integral fusion rings of rank 4

They generically have type $[1, d_1, d_2, d_3]$ and fusion matrices:

/1	0	0	0/		/0	1	0	0 \		/0	0	1	0 \		/0	0	0	$1 \setminus$
0	1	0	0		1	x_1	<i>x</i> ₂	<i>x</i> 3		0	<i>x</i> ₂	<i>x</i> ₄	x_5		0	<i>x</i> 3	<i>X</i> 5	<i>x</i> ₆
0	0	1	0	,	0	<i>x</i> ₂	<i>x</i> ₄	<i>x</i> 5	,	1	<i>x</i> ₄	<i>X</i> 7	<i>x</i> 8	,	0	<i>X</i> 5	<i>x</i> 8	<i>x</i> 9
/0	0	0	1/		0/	<i>x</i> 3	<i>X</i> 5	x_6		0/	<i>X</i> 5	<i>x</i> 8	x9/		$\backslash 1$	x ₆	X9	$\begin{pmatrix} x_6 \\ x_9 \\ x_{10} \end{pmatrix}$

Here is the full list of items with $FPdim < 10^6$ (Bruns-P, 2024):

FPdim	Factors	d1	d_2	d ₃	x1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	x ₆	<i>x</i> 7	<i>x</i> 8	X9	x ₁₀
574	$2^{1}7^{1}41$	11	14	16	0	4	4	1	6	3	12	1	9	6
7315	$5^{1}7^{1}11^{1}19$	35	40	67	30	1	2	9	15	25	12	12	25	39
63436	2 ² 1585	103	149	175	57	13	16	67	23	74	51	44	98	48
65971	2 ¹ 3 ² 5 ¹ 1259	65	89	232	51	5	2	4	22	56	60	10	79	186
68587	107 ¹ 641	103	116	211	48	27	12	19	33	79	30	38	79	129
90590	2 ¹ 5 ¹ 9059	142	180	195	39	0	75	77	60	32	25	87	56	120
113310	2 ¹ 3 ² 5 ¹ 125	90	172	275	77	2	3	25	40	64	39	75	112	184
310730	2 ¹ 5 ¹ 7 ¹ 23 ¹ 193	312	317	336	62	139	101	48	120	105	168	96	115	130
311343	3 ¹ 59 ¹ 1759	286	315	361	95	76	85	115	89	141	206	4	241	39
494102	2 ¹ 7 ¹ 29 ¹ 1217	396	399	422	40	219	127	20	150	135	248	124	141	162
532159	532159	211	409	566	84	24	30	63	98	129	299	56	332	278
585123	$3^{1}7^{1}11^{1}17^{1}149$	288	397	587	159	30	43	179	59	227	208	40	341	245

This table suggests the existence of infinitely many examples.

Definition (Burciu-P, arXiv:2302.07604)

- A fusion ring is *Burnside* if for every basic element then its fusion matrix has norm 1 iff its determinant is nonzero.
- A 3-positive commutative fusion ring is *dual-Burnside* when a column *c* of its character table has a 0-entry iff ||*c*||² < FPdim.
- Burnside proved that ch(G) is Burnside for every finite group G. It extends to every integral fusion categories (Burciu, 23).
 We found non-Burnside integral fusion rings (cat. criterion).
- For every nilpotent, or every simple non-alternating finite group G (except M₂₂, M₂₄) then ch(G) is dual-Burnside.

Theorems (Burciu-P, arXiv:2302.07604)

- A perfect MTC is (dual) Burnside iff it is integral.
- \bullet A perfect integral MTC ${\rm FPdim}$ has no powerless prime factor.

Interpolated simple integral fusion rings of Lie type

Generic character table of PSL(2, q), q even

Theorem (Liu-P-Ren, Internat. J. Math. 2023)

$$\begin{split} \mathbf{x}_{q-1,c_{1}}\mathbf{x}_{q-1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{\substack{c_{3} \text{ such that} \\ c_{1}+c_{2}+c_{3}\neq q+1 \text{ and } 2\max(c_{1},c_{2},c_{3})}} \mathbf{x}_{q-1,c_{1}}\mathbf{x}_{q,1} &= \sum_{c_{2}} (1 - \delta_{c_{1},c_{2}})\mathbf{x}_{q-1,c_{2}} + \mathbf{x}_{q,1} + \sum_{c_{2}} \mathbf{x}_{q+1,c_{2}}, \\ \mathbf{x}_{q-1,c_{1}}\mathbf{x}_{q,1} &= \sum_{c_{2}} (1 - \delta_{c_{1},c_{2}})\mathbf{x}_{q-1,c_{2}} + \mathbf{x}_{q,1} + \sum_{c_{2}} \mathbf{x}_{q+1,c_{2}}, \\ \mathbf{x}_{q-1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \sum_{c_{3}} \mathbf{x}_{q-1,c_{3}} + \mathbf{x}_{q,1} + \sum_{c_{3}} \mathbf{x}_{q+1,c_{3}}, \\ \mathbf{x}_{q,1}\mathbf{x}_{q,1} &= \mathbf{x}_{1,1} + \sum_{c} \mathbf{x}_{q-1,c} + \mathbf{x}_{q,1} + \sum_{c} \mathbf{x}_{q+1,c}, \\ \mathbf{x}_{q,1}\mathbf{x}_{q+1,c_{1}} &= \sum_{c_{2}} \mathbf{x}_{q-1,c_{2}} + \mathbf{x}_{q,1} + \sum_{c_{2}} (1 + \delta_{c_{1},c_{2}})\mathbf{x}_{q+1,c_{2}}, \\ \mathbf{x}_{q+1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{c_{3}} \mathbf{x}_{q-1,c_{3}} + (1 + \delta_{c_{1},c_{2}})\mathbf{x}_{q,1} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ such that} \atop c_{1}+c_{2}+c_{3}\neq q-1 \atop and 2\max(c_{1},c_{2},c_{3})} + \sum_{c_{3} \text{ s$$

Local subsystems for the q = 6 interpolation

10 variables and 12 polynomial equations

$$\begin{aligned} 5u_0+7u_1+7u_2-4/25=0,\\ 5v_0+5v_1+7v_3+7v_5+1/5=0,\\ 25v_0^2+25v_1^2+35v_3^2+35v_5^2-4/5=0,\\ 5v_0^3+5v_1^3+7v_3^3+7v_5^3-v_0^2+1/125=0,\\ 5v_0v_1^2+5v_1v_2^2+7v_3v_4^2+7v_5v_6^2+1/125=0,\\ 5u_0v_1-v_1^2+7u_1v_3+7u_2v_5+1/125=0,\\ 5v_1+5v_2+7v_4+7v_6+1/5=0,\\ 25v_0v_1+25v_1v_2+35v_3v_4+35v_5v_6+1/5=0,\\ 5v_0^2v_1+5v_1^2v_2+7v_3^2v_4+7v_5^2v_6-v_1^2+1/125=0,\\ 25v_1^2+25v_2^2+35v_4^2+35v_6^2-4/5=0,\\ 5v_1^3+5v_2^3+7v_4^3+7v_6^3-u_0+1/125=0,\\ 5u_0v_2-v_2^2+7u_1v_4+7u_2v_6+1/125=0\end{aligned}$$

It admits 14 solutions in char. 0, which can be written as a Gröbner basis. There is an extra equation linking two such subsystems, and leading to a contradiction.

Perfect MNSD

Theorem (Alekseyev-Bruns-P-Petrov, 2023; Czenky-Gvozdjak-Plavnik, 2023)

- Every odd-dim. MTC of rank < 25 is pointed.
- Every perfect one of rank $< 25^2 = 625$ is simple.

For the rank 25 simple case there remain the following 21 types:

- $1. \hspace{0.1in} [[1,1],\![15,2],\![63,2],\![115,2],\![161,4],\![315,2],\![805,2],\![1449,2],\![2415,8]],$
- $2. \ [[1,1],[21,2],[35,2],[63,2],[85,2],[119,2],[255,2],[595,2],[1071,2],[1785,8]],$
- $3. \ [[1,1],[39,4],[65,2],[189,2],[315,2],[585,2],[1365,2],[2457,2],[4095,8]],$
- $4. \ [[1,1], [39,2], [231,2], [273,2], [1001,2], [1287,2], [3465,2], [4095,2], [9009,2], [15015,8]],$
- $5. \ [[1,1],[39,2],[231,2],[273,2],[1001,2],[3465,2],[4095,2],[6435,4],[15015,8]],$
- $6. \ [[1,1],[45,2],[95,6],[99,2],[495,2],[1045,2],[1881,2],[3135,8]],\\$
- $7. \ [[1,1], [75,2], [91,4], [175,2], [585,2], [975,2], [2275,2], [4095,2], [6825,8]],$
- $8. \ [[1,1], [75,2], [91,4], [175,2], [975,2], [2275,2], [2925,4], [6825,8]],$
- $9. \ [[1,1], [99,2], [195,2], [385,2], [405,2], [15015,2], [31185,2], [36855,2], [81081,2], [135135,8]], \\$
- $10. \ [[1,1], [99,2], [231,2], [385,2], [675,2], [10395,4], [28875,2], [51975,2], [86625,8]], \\$
- $11. \ [[1,1], [99,2], [273,2], [1001,2], [1365,2], [2145,2], [3465,4], [9009,2], [15015,8]], \\$
- $12. \ [[1,1], [135,4], [165,2], [189,2], [315,2], [385,2], [1155,2], [2079,2], [3465,8]],$
- $13. \ [[1,1], [195,4], [231,2], [1001,2], [1287,2], [3465,2], [4095,2], [9009,2], [15015,8]],$
- $14. \ [[1,1], [195,4], [231,2], [1001,2], [3465,2], [4095,2], [6435,4], [15015,8]],$
- $15. \ [[1,1],[205,2],[369,2],[805,2],[6601,2],[8487,2],[12915,2],[33005,2],[59409,2],[99015,8]],$
- $16. \ [[1,1], [205,2], [369,2], [805,2], [6601,2], [12915,2], [33005,2], [42435,4], [99015,8]], \\$
- $17. \ [[1,1],[231,2],[777,2],[1155,2],[1221,2],[3465,2],[6105,2],[14245,2],[25641,2],[42735,8]],$
- $18. \ [[1,1], [297,2], [385,2], [3465,2], [5859,2], [7161,2], [15345,2], [35805,2], [64449,2], [107415,8]], \\ [10,1], [297,2], [385,2], [3465,2], [5859,2], [7161,2], [15345,2], [35805,2], [64449,2], [107415,8]], \\ [10,1], [10,1]$
- $19. \ [[1,1],[693,2],[1771,2],[4301,2],[11781,2],[24633,2],[30107,4],[38709,2],[90321,8]],$
- $20. \ [[1,1],[693,2],[1771,2],[11781,2],[12903,4],[24633,2],[38709,4],[90321,8]],$
- $21. \ [[1,1], [3485,2], [6273,2], [33825,2], [34425,2], [621027,4], [1725075,2], [3105135,2], [5175225,8]].$

Robin's reformulation of Riemann Hypothesis (RH)

There is a way to extend RH to SPA using the biprojection lattices.

Let σ be the *divisor function*, defined on $\mathbb{N}_{\geq 1}$ by

$$\sigma(n):=\sum_{d\mid n}d.$$

Theorem

Let γ the Euler–Mascheroni constant, then

$$\limsup_{n\to\infty}\frac{\sigma(n)}{n\log\log n}=e^{\gamma}.$$

Theorem (Robin, 1984)

RH is true if and only if for n large enough

 $\sigma(n) < e^{\gamma} n \log \log n.$

Quantum Riemann Hypothesis (QRH)

Here \mathcal{P} denotes an irreducible SPA and $|\mathcal{P}|$ its index.

Let the divisor function and its divisor set (finite by Watatani) be

$$\sigma(\mathcal{P}) := \sum_{d \in D(\mathcal{P})} d$$
, where $D(\mathcal{P}) := \{ | b : e_1 | \text{ with } b \in [e_1, id] \}.$

Let \mathfrak{F}_r be the set of irreducible SPA of depth r (up to equivalence).

Quantum Riemann Hypothesis of depth $r \ge 2$ (QRH_r)

There is a (finite) constant γ_r such that

$$\limsup_{\mathcal{P}\in\mathfrak{F}_r, |\mathcal{P}|\to\infty}\frac{\sigma(\mathcal{P})}{|\mathcal{P}|\log\log|\mathcal{P}|}=e^{\gamma r}$$

and for $\mathcal{P} \in \mathfrak{F}_r$ with $|\mathcal{P}|$ large enough

 $\sigma(\mathcal{P}) < e^{\gamma_r} |\mathcal{P}| \log \log |\mathcal{P}|.$

By Galois correspondence, $\gamma_2 = \gamma$ and $QRH_2 \Leftrightarrow RH$.

Generalization of QRH to Tensor Categories?

Consider the following reformulations in a unitary tensor category:

- Finite index subfactor \leftrightarrow Unitary Frobenius algebra,
- Irreducible \leftrightarrow Connected,
- Intermediate subfactor \leftrightarrow Unitary Frobenius subalgebra.

Watatani's theorem reformulated

A connected unitary Frobenius algebra in a unitary tensor category has finitely many unitary Frobenius subalgebras.

Question: To what extent can the unitary assumption be relaxed?

Categorical Riemann Hypothesis (CRH)

Then, RH can be extended to tensor categories as for the previous slide, but involving Frobenius subalgebra lattices.

Question: Can we reduce QRH or CRH to distributive lattices¹?

¹generalizing natural numbers as maximal does for primes (my Ore's papers)